1
|
Chen Z, Lu Y, Cui J, Feng Y, Dong H, Huang X, Zhu C, Xiong X, Chen H, Wang Q, Liu G. Monitoring of Bacillus spore-forming dynamics through flow cytometry. Front Microbiol 2024; 15:1450913. [PMID: 39534508 PMCID: PMC11554475 DOI: 10.3389/fmicb.2024.1450913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The plate counting method is a traditional and widely accepted technique for live cell counting, often employed for Bacillus enumeration and spore forming rate calculations. However, this method requires at least 12 h to generate results, making it unsuitable for real-time monitoring of bacterial growth status and spore transformation rate. Bacillus thuringiensis crystals, produced during sporulation, are widely used as microbial pesticides, with high demand for industrial scale production. Variations in cultivation conditions and harvest timing during large-scale pore production of Bacillus thuringiensis significantly affect spore forming rate, impacting crystallization yield. Nevertheless, there is a lack of real-time monitoring methods for spore conversion rate. Flow cytometry (FCM), a well-established technique for single-cell analysis in eukaryotic cells, has been successfully applied in bacterial detection in environmental and food samples. In this study, we introduced a rapid flow cytometry-based method for determining spore forming rate of Bacillus thuringiensis, with two nucleic acid dyes, SYTO24 and LDS751. The method enables dynamic monitoring of spore, vegetative cell, and viable but non-culturable/dead cell proportions during the whole cultivation process, and spore forming rate could be gained within 30 min. Data of spore forming rate by FCM method is consistent with that by plate counting method, offering a faster and more efficient approach for assessing sporulation status in industrial Bacillus thuringiensis microbial pesticide production.
Collapse
Affiliation(s)
- Zhili Chen
- Academy of Military Medical Sciences, Beijing, China
| | - Yuanyuan Lu
- Academy of Military Medical Sciences, Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jiazhen Cui
- Academy of Military Medical Sciences, Beijing, China
| | - Yuzhong Feng
- Academy of Military Medical Sciences, Beijing, China
| | - Haolong Dong
- Academy of Military Medical Sciences, Beijing, China
| | - Xuan Huang
- Academy of Military Medical Sciences, Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Chen Zhu
- Academy of Military Medical Sciences, Beijing, China
| | | | - Huipeng Chen
- Academy of Military Medical Sciences, Beijing, China
| | - Qingyang Wang
- Academy of Military Medical Sciences, Beijing, China
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Qian J, Wang Y, Hu Z, Shi T, Wang Y, Ye C, Huang H. Bacillus sp. as a microbial cell factory: Advancements and future prospects. Biotechnol Adv 2023; 69:108278. [PMID: 37898328 DOI: 10.1016/j.biotechadv.2023.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Bacillus sp. is one of the most distinctive gram-positive bacteria, able to grow efficiently using cheap carbon sources and secrete a variety of useful substances, which are widely used in food, pharmaceutical, agricultural and environmental industries. At the same time, Bacillus sp. is also recognized as a safe genus with a relatively clear genetic background, which is conducive to the industrial production of target metabolites. In this review, we discuss the reasons why Bacillus sp. has been so extensively studied and summarize its advances in systems and synthetic biology, engineering strategies to improve microbial cell properties, and industrial applications in several metabolic engineering applications. Finally, we present the current challenges and possible solutions to provide a reliable basis for Bacillus sp. as a microbial cell factory.
Collapse
Affiliation(s)
- Jinyi Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuzhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Zijian Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Sun R, Vermeulen A, Wieme AD, Vandamme P, Devlieghere F. Identification and characterization of acid-tolerant spore-forming spoilage bacteria from acidified and low-acid pasteurized sauces. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Levels and Characteristics of mRNAs in Spores of Firmicute Species. J Bacteriol 2021; 203:e0001721. [PMID: 33972352 DOI: 10.1128/jb.00017-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of firmicute species contain 100s of mRNAs, whose major function in Bacillus subtilis is to provide ribonucleotides for new RNA synthesis when spores germinate. To determine if this is a general phenomenon, RNA was isolated from spores of multiple firmicute species and relative mRNA levels determined by transcriptome sequencing (RNA-seq). Determination of RNA levels in single spores allowed calculation of RNA nucleotides/spore, and assuming mRNA is 3% of spore RNA indicated that only ∼6% of spore mRNAs were present at >1/spore. Bacillus subtilis, Bacillus atrophaeus, and Clostridioides difficile spores had 49, 42, and 51 mRNAs at >1/spore, and numbers of mRNAs at ≥1/spore were ∼10 to 50% higher in Geobacillus stearothermophilus and Bacillus thuringiensis Al Hakam spores and ∼4-fold higher in Bacillus megaterium spores. In all species, some to many abundant spore mRNAs (i) were transcribed by RNA polymerase with forespore-specific σ factors, (ii) encoded proteins that were homologs of those encoded by abundant B. subtilis spore mRNAs and are proteins in dormant spores, and (iii) were likely transcribed in the mother cell compartment of the sporulating cell. Analysis of the coverage of RNA-seq reads on mRNAs from all species suggested that abundant spore mRNAs were fragmented, as was confirmed by reverse transcriptase quantitative PCR (RT-qPCR) analysis of abundant B. subtilis and C. difficile spore mRNAs. These data add to evidence indicating that the function of at least the great majority of mRNAs in all firmicute spores is to be degraded to generate ribonucleotides for new RNA synthesis when spores germinate. IMPORTANCE Only ∼6% of mRNAs in spores of six firmicute species are at ≥1 molecule/spore, many abundant spore mRNAs encode proteins similar to B. subtilis spore proteins, and some abundant B. subtilis and C. difficile spore mRNAs were fragmented. Most of the abundant B. subtilis and other Bacillales spore mRNAs are transcribed under the control of the forespore-specific RNA polymerase σ factors, F or G, and these results may stimulate transcription analyses in developing spores of species other than B. subtilis. These findings, plus the absence of key nucleotide biosynthetic enzymes in spores, suggest that firmicute spores' abundant mRNAs are not translated when spores germinate but instead are degraded to generate ribonucleotides for new RNA synthesis by the germinated spore.
Collapse
|
5
|
Jessberger N, Dietrich R, Granum PE, Märtlbauer E. The Bacillus cereus Food Infection as Multifactorial Process. Toxins (Basel) 2020; 12:E701. [PMID: 33167492 PMCID: PMC7694497 DOI: 10.3390/toxins12110701] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
The ubiquitous soil bacterium Bacillus cereus presents major challenges to food safety. It is responsible for two types of food poisoning, the emetic form due to food intoxication and the diarrheal form emerging from food infections with enteropathogenic strains, also known as toxico-infections, which are the subject of this review. The diarrheal type of food poisoning emerges after production of enterotoxins by viable bacteria in the human intestine. Basically, the manifestation of the disease is, however, the result of a multifactorial process, including B. cereus prevalence and survival in different foods, survival of the stomach passage, spore germination, motility, adhesion, and finally enterotoxin production in the intestine. Moreover, all of these processes are influenced by the consumed foodstuffs as well as the intestinal microbiota which have, therefore, to be considered for a reliable prediction of the hazardous potential of contaminated foods. Current knowledge regarding these single aspects is summarized in this review aiming for risk-oriented diagnostics for enteropathogenic B. cereus.
Collapse
Affiliation(s)
- Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Per Einar Granum
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway;
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| |
Collapse
|
6
|
Setlow P, Christie G. Bacterial Spore mRNA - What's Up With That? Front Microbiol 2020; 11:596092. [PMID: 33193276 PMCID: PMC7649253 DOI: 10.3389/fmicb.2020.596092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023] Open
Abstract
Bacteria belonging to the orders Bacillales and Clostridiales form spores in response to nutrient starvation. From a simplified morphological perspective, the spore can be considered as comprising a central protoplast or core, that is, enveloped sequentially by an inner membrane (IM), a peptidoglycan cortex, an outer membrane, and a proteinaceous coat. All of these structures are characterized by unique morphological and/or structural features, which collectively confer metabolic dormancy and properties of environmental resistance to the quiescent spore. These properties are maintained until the spore is stimulated to germinate, outgrow and form a new vegetative cell. Spore germination comprises a series of partially overlapping biochemical and biophysical events - efflux of ions from the core, rehydration and IM reorganization, disassembly of cortex and coat - all of which appear to take place in the absence of de novo ATP and protein synthesis. If the latter points are correct, why then do spores of all species examined to date contain a diverse range of mRNA molecules deposited within the spore core? Are some of these molecules "functional," serving as translationally active units that are required for efficient spore germination and outgrowth, or are they just remnants from sporulation whose sole purpose is to provide a reservoir of ribonucleotides for the newly outgrowing cell? What is the fate of these molecules during spore senescence, and indeed, are conditions within the spore core likely to provide any opportunity for changes in the transcriptional profile of the spore during dormancy? This review encompasses a historical perspective of spore ribonucleotide biology, from the earliest biochemical led analyses - some of which in hindsight have proved to be remarkably prescient - through the transcriptomic era at the turn of this century, to the latest next generation sequencing derived insights. We provide an overview of the key literature to facilitate reasoned responses to the aforementioned questions, and many others, prior to concluding by identifying the major outstanding issues in this crucial area of spore biology.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Trunet C, Mtimet N, Mathot AG, Postollec F, Leguerinel I, Couvert O, Broussolle V, Carlin F, Coroller L. Suboptimal Bacillus licheniformis and Bacillus weihenstephanensis Spore Incubation Conditions Increase Heterogeneity of Spore Outgrowth Time. Appl Environ Microbiol 2020; 86:e02061-19. [PMID: 31900309 PMCID: PMC7054099 DOI: 10.1128/aem.02061-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/14/2019] [Indexed: 11/20/2022] Open
Abstract
Changes with time of a population of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 dormant spores into germinated spores and vegetative cells were followed by flow cytometry, at pH ranges of 4.7 to 7.4 and temperatures of 10°C to 37°C for B. weihenstephanensis and 18°C to 59°C for B. licheniformis Incubation conditions lower than optimal temperatures or pH led to lower proportions of dormant spores able to germinate and extended time of germination, a lower proportion of germinated spores able to outgrow, an extension of their times of outgrowth, and an increase of the heterogeneity of spore outgrowth time. A model based on the strain growth limits was proposed to quantify the impact of incubation temperature and pH on the passage through each physiological stage. The heat treatment temperature or time acted independently on spore recovery. Indeed, a treatment at 85°C for 12 min or at 95°C for 2 min did not have the same impact on spore germination and outgrowth kinetics of B. weihenstephanensis despite the fact that they both led to a 10-fold reduction of the population. Moreover, acidic sporulation pH increased the time of outgrowth 1.2-fold and lowered the proportion of spores able to germinate and outgrow 1.4-fold. Interestingly, we showed by proteomic analysis that some proteins involved in germination and outgrowth were detected at a lower abundance in spores produced at pH 5.5 than in those produced at pH 7.0, maybe at the origin of germination and outgrowth behavior of spores produced at suboptimal pH.IMPORTANCE Sporulation and incubation conditions have an impact on the numbers of spores able to recover after exposure to sublethal heat treatment. Using flow cytometry, we were able to follow at a single-cell level the changes in the physiological states of heat-stressed spores of Bacillus spp. and to discriminate between dormant spores, germinated spores, and outgrowing vegetative cells. We developed original mathematical models that describe (i) the changes with time of the proportion of cells in their different states during germination and outgrowth and (ii) the influence of temperature and pH on the kinetics of spore recovery using the growth limits of the tested strains as model parameters. We think that these models better predict spore recovery after a sublethal heat treatment, a common situation in food processing and a concern for food preservation and safety.
Collapse
Affiliation(s)
- C Trunet
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
- ADRIA Food Expertise, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - N Mtimet
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - A-G Mathot
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - F Postollec
- ADRIA Food Expertise, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - I Leguerinel
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - O Couvert
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - V Broussolle
- INRAE, Avignon Université, UMR SQPOV, Avignon, France
| | - F Carlin
- INRAE, Avignon Université, UMR SQPOV, Avignon, France
| | - L Coroller
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| |
Collapse
|
8
|
Ultrasound pretreatment enhances the inhibitory effects of nisin/carvacrol against germination, outgrowth and vegetative growth of spores of Bacillus subtilis ATCC6633 in laboratory medium and milk: Population and single-cell analysis. Int J Food Microbiol 2019; 311:108329. [DOI: 10.1016/j.ijfoodmicro.2019.108329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/09/2019] [Accepted: 08/25/2019] [Indexed: 11/22/2022]
|
9
|
Trunet C, Ngo H, Coroller L. Quantifying permeabilization and activity recovery of Bacillus spores in adverse conditions for growth. Food Microbiol 2019; 81:115-120. [DOI: 10.1016/j.fm.2018.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
|
10
|
Properties of Aged Spores of Bacillus subtilis. J Bacteriol 2019; 201:JB.00231-19. [PMID: 31061168 DOI: 10.1128/jb.00231-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Bacillus spores incubated on plates for 2 to 98 days at 37°C had identical Ca-dipicolinic acid contents, exhibited identical viability on rich- or poor-medium plates, germinated identically in liquid with all germinants tested, identically returned to vegetative growth in rich or minimal medium, and exhibited essentially identical resistance to dry heat and similar resistance to UV radiation. However, the oldest spores had a lower core water content and significantly higher wet heat and NaOCl resistance. In addition, 47- and 98-day spores had lost >98% of intact 16S and 23S rRNA and 97 to 99% of almost all mRNAs, although minimal amounts of mononucleotides were generated in 91 days. Levels of 3-phosphoglyceric acid (3PGA) also fell 30 to 60% in the oldest spores, but how the 3PGA was lost is not clear. These results indicate that (i) translation of dormant spore mRNA is not essential for completion of spore germination, nor is protein synthesis from any mRNA; (ii) in sporulation for up to 91 days at 37°C, the RNA broken down generates minimal levels of mononucleotides; and (iii) the lengths of time that spores are incubated in sporulation medium should be considered when determining conditions for spore inactivation by wet heat, in particular, in using spores to test for the efficacy of sterilization regimens.IMPORTANCE We show that spores incubated at 37°C on sporulation plates for up to 98 days have lost almost all mRNAs and rRNAs, yet the aged spores germinated and outgrew as well as 2-day spores, and all these spores had identical viability. Thus, it is unlikely that spore mRNA, rRNA, or protein synthesis is important in spore germination. Spores incubated for 47 to 98 days also had much higher wet heat resistance than 2-day spores, suggesting that spore "age" should be considered in generating spores for tests of sterilization assurance. These data are the first to show complete survival of hydrated spores for ∼100 days, complementing published data showing dry-spore survival for years.
Collapse
|
11
|
Analysis of the mRNAs in Spores of Bacillus subtilis. J Bacteriol 2019; 201:JB.00007-19. [PMID: 30782632 DOI: 10.1128/jb.00007-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Large-scale shotgun sequencing (RNA-seq) analysis of mRNAs in dormant Bacillus subtilis spores prepared on plates or in liquid generally found the same ∼46 abundant mRNA species, with >250 mRNAs detected at much lower abundances. Knowledge of the amount of phosphate in a single B. subtilis spore allowed calculation of the amount of mRNA in an individual spore as ∼106 nucleotides (nt). Given the levels of abundant spore mRNAs compared to those of other mRNAs, it was calculated that the great majority of low-abundance mRNAs are present in only small fractions of spores in populations. Almost all of the most abundant spore mRNAs are encoded by genes expressed late in sporulation in the developing spore under the control of the forespore-specific RNA polymerase sigma factor, σG, and most of the encoded proteins are in spores. Levels of the most abundant spore mRNAs were also relatively stable for a week at 4°C after spore harvest. RNA-seq analysis of mRNAs in highly purified and less-well-purified spores made in liquid, as well as from spores that were chemically decoated to remove possible contaminating mRNA, indicated that low-abundance mRNAs in spores were not contaminants in purified spore preparations, and several sources of low-abundance mRNAs in spores are suggested. The function of at least the great majority of spore mRNAs seems most likely to be the generation of ribonucleotides for new RNA synthesis by their degradation early in spore revival.IMPORTANCE Previous work indicates that dormant Bacillus subtilis spores have many hundreds of mRNAs, some of which are suggested to play roles in spores' "return to life" or revival. The present work finds only ∼46 mRNAs at ≥1 molecule spore, with others in only fractions of spores in populations, often very small fractions. Less-abundant spore mRNAs are not contaminants in spore preparations, but how spores accumulate them is not clear. Almost all abundant spore mRNAs are synthesized in the developing spore late in its development, most encode proteins in spores, and abundant mRNAs in spores are relatively stable at 4°C. These findings will have a major impact on thinking about the roles that spore mRNAs may play in spore revival.
Collapse
|
12
|
Dispersed phase volume fraction, weak acids and Tween 80 in a model emulsion: Effect on the germination and growth of Bacillus weihenstephanensis KBAB4 spores. Food Res Int 2018; 109:288-297. [PMID: 29803452 DOI: 10.1016/j.foodres.2018.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 11/21/2022]
Abstract
In foodstuffs, physico-chemical interactions and/or physical constraints between spores, inhibitors and food components may exist. Thus, the objective of this study was to investigate such interactions using a model emulsion as a microbial medium in order to improve bacterial spore control with better knowledge of the interactions in the formulation. Emulsions were prepared with hexadecane mixed with nutrient broth using sonication and were stabilized by Tween 80 and Span 80. The hexadecane ratio was either 35% (v/v) or 50% (v/v) and each emulsion was studied in the presence of organic acid (acetic, lactic or hexanoic) at two pH levels (5.5 and 6). Self-diffusion coefficients of emulsion components and the organic acids were measured by Pulsed Field Gradient-Nuclear Magnetic Resonance (PFG-NMR). The inhibition effect on the spore germination and cell growth of Bacillus weihenstephanensis KBAB4 was characterized by the measure of the probability of growth using the most probable number methodology, and the measure of the time taken for the cells to germinate and grow using a single cell Bioscreen® method and using flow cytometry. The inhibition of spore germination and growth in the model emulsion depended on the dispersed phase volume fraction and the pH value. The effect of the dispersed phase volume fraction was due to a combination of (i) the lipophilicity of the biocide, hexanoic acid, that may have had an impact on the distribution of organic acid between hexadecane and the aqueous phases and (ii) the antimicrobial activity of the emulsifier Tween 80 detected at the acidic pH value. The interface phenomena seemed to have a major influence. Future work will focus on the exploration of these phenomena at the interface.
Collapse
|
13
|
Characterization of four Paenibacillus species isolated from pasteurized, chilled ready-to-eat meals. Int J Food Microbiol 2017; 252:35-41. [DOI: 10.1016/j.ijfoodmicro.2017.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/30/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022]
|
14
|
Trunet C, Carlin F, Coroller L. Investigating germination and outgrowth of bacterial spores at several scales. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Appl Microbiol Biotechnol 2017; 101:5101-5114. [DOI: 10.1007/s00253-017-8260-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
16
|
Warda AK, Xiao Y, Boekhorst J, Wells-Bennik MHJ, Nierop Groot MN, Abee T. Analysis of Germination Capacity and Germinant Receptor (Sub)clusters of Genome-Sequenced Bacillus cereus Environmental Isolates and Model Strains. Appl Environ Microbiol 2017; 83:e02490-16. [PMID: 27881417 PMCID: PMC5288832 DOI: 10.1128/aem.02490-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022] Open
Abstract
Spore germination of 17 Bacillus cereus food isolates and reference strains was evaluated using flow cytometry analysis in combination with fluorescent staining at a single-spore level. This approach allowed for rapid collection of germination data under more than 20 conditions, including heat activation of spores, germination in complex media (brain heart infusion [BHI] and tryptone soy broth [TSB]), and exposure to saturating concentrations of single amino acids and the combination of alanine and inosine. Whole-genome sequence comparison revealed a total of 11 clusters of operons encoding germinant receptors (GRs): GerK, GerI, and GerL were present in all strains, whereas GerR, GerS, GerG, GerQ, GerX, GerF, GerW, and GerZ (sub)clusters showed a more diverse presence/absence in different strains. The spores of tested strains displayed high diversity with regard to their sensitivity and responsiveness to selected germinants and heat activation. The two laboratory strains, B. cereus ATCC 14579 and ATCC 10987, and 11 food isolates showed a good germination response under a range of conditions, whereas four other strains (B. cereus B4085, B4086, B4116, and B4153) belonging to phylogenetic group IIIA showed a very weak germination response even in BHI and TSB media. Germination responses could not be linked to specific (combinations of) GRs, but it was noted that the four group IIIA strains contained pseudogenes or variants of subunit C in their gerL cluster. Additionally, two of those strains (B4086 and B4153) carried pseudogenes in the gerK and gerRI (sub)clusters that possibly affected the functionality of these GRs. IMPORTANCE Germination of bacterial spores is a critical step before vegetative growth can resume. Food products may contain nutrient germinants that trigger germination and outgrowth of Bacillus species spores, possibly leading to food spoilage or foodborne illness. Prediction of spore germination behavior is, however, very challenging, especially for spores of natural isolates that tend to show more diverse germination responses than laboratory strains. The approach used has provided information on the genetic diversity in GRs and corresponding subclusters encoded by B. cereus strains, as well as their germination behavior and possible associations with GRs, and it provides a basis for further extension of knowledge on the role of GRs in B. cereus (group member) ecology and transmission to the host.
Collapse
Affiliation(s)
- Alicja K Warda
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Yinghua Xiao
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- TI Food and Nutrition, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Marjon H J Wells-Bennik
- TI Food and Nutrition, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Masja N Nierop Groot
- TI Food and Nutrition, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
17
|
Inhibition of Bacillus cereus Strains by Antimicrobial Metabolites from Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21. Probiotics Antimicrob Proteins 2016; 6:208-16. [PMID: 25305011 DOI: 10.1007/s12602-014-9169-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bacillus cereus is an endospore-forming, Gram-positive bacterium able to cause foodborne diseases. Lactic acid bacteria (LAB) are known for their ability to synthesize organic acids and bacteriocins, but the potential of these compounds against B. cereus has been scarcely documented in food models. The present study has examined the effect of the metabolites produced by Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21 on the viability of select B. cereus strains. Furthermore, the effect of E. faecium SM21 metabolites against B. cereus strains has also been investigated on a rice food model. L. johnsonii CRL1647 produced 128 mmol/L of lactic acid, 38 mmol/L of acetic acid and 0.3 mmol/L of phenyl-lactic acid. These organic acids reduced the number of vegetative cells and spores of the B. cereus strains tested. However, the antagonistic effect disappeared at pH 6.5. On the other hand, E. faecium SM21 produced only lactic and acetic acid (24.5 and 12.2 mmol/L, respectively) and was able to inhibit both vegetative cells and spores of the B. cereus strains, at a final fermentation pH of 5.0 and at pH 6.5. This would indicate the action of other metabolites, different from organic acids, present in the cell-free supernatant. On cooked rice grains, the E. faecium SM21 bacteriocin(s) were tested against two B. cereus strains. Both of them were significantly affected within the first 4 h of contact; whereas B. cereus BAC1 cells recovered after 24 h, the effect on B. cereus 1 remained up to the end of the assay. The LAB studied may thus be considered to define future strategies for biological control of B. cereus.
Collapse
|
18
|
Transcriptome analysis of Bacillus thuringiensis spore life, germination and cell outgrowth in a vegetable-based food model. Food Microbiol 2016; 55:73-85. [DOI: 10.1016/j.fm.2015.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022]
|
19
|
Inhibition of nutrient- and high pressure-induced germination of Bacillus cereus spores by plant essential oils. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Warda AK, Tempelaars MH, Boekhorst J, Abee T, Nierop Groot MN. Identification of CdnL, a Putative Transcriptional Regulator Involved in Repair and Outgrowth of Heat-Damaged Bacillus cereus Spores. PLoS One 2016; 11:e0148670. [PMID: 26849219 PMCID: PMC4746229 DOI: 10.1371/journal.pone.0148670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/21/2016] [Indexed: 12/27/2022] Open
Abstract
Spores are widely present in the environment and are common contaminants in the food chain, creating a challenge for food industry. Nowadays, heat treatments conventionally applied in food processing may become milder to comply with consumer desire for products with higher sensory and nutritional values. Consequently subpopulations of spores may emerge that are sublethally damaged rather than inactivated. Such spores may germinate, repair damage, and eventually grow out leading to uncontrolled spoilage and safety issues. To gain insight into both the behaviour of damaged Bacillus cereus spores, and the process of damage repair, we assessed the germination and outgrowth performance using OD595 measurements and microscopy combined with genome-wide transcription analysis of untreated and heat-treated spores. The first two methods showed delayed germination and outgrowth of heat-damaged B. cereus ATCC14579 spores. A subset of genes uniquely expressed in heat-treated spores was identified with putative roles in the outgrowth of damaged spores, including cdnL (BC4714) encoding the putative transcriptional regulator CdnL. Next, a B. cereus ATCC14579 cdnL (BC4714) deletion mutant was constructed and assessment of outgrowth from heat-treated spores under food relevant conditions showed increased damage compared to wild type spores. The approach used in this study allows for identification of candidate genes involved in spore damage repair. Further identification of cellular parameters and characterisation of the molecular processes contributing to spore damage repair may provide leads for better control of spore outgrowth in foods.
Collapse
Affiliation(s)
- Alicja K. Warda
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, Wageningen, The Netherlands
| | - Marcel H. Tempelaars
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Jos Boekhorst
- TI Food and Nutrition, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Masja N. Nierop Groot
- TI Food and Nutrition, Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, Wageningen, The Netherlands
| |
Collapse
|
21
|
Hayrapetyan H, Abee T, Nierop Groot M. Sporulation dynamics and spore heat resistance in wet and dry biofilms of Bacillus cereus. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.08.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Pandey R, Pieper GH, Beek AT, Vischer NO, Smelt JP, Manders EM, Brul S. Quantifying the effect of sorbic acid, heat and combination of both on germination and outgrowth of Bacillus subtilis spores at single cell resolution. Food Microbiol 2015; 52:88-96. [DOI: 10.1016/j.fm.2015.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/10/2015] [Accepted: 06/19/2015] [Indexed: 11/26/2022]
|
23
|
Diomandé SE, Nguyen-The C, Guinebretière MH, Broussolle V, Brillard J. Role of fatty acids in Bacillus environmental adaptation. Front Microbiol 2015; 6:813. [PMID: 26300876 PMCID: PMC4525379 DOI: 10.3389/fmicb.2015.00813] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022] Open
Abstract
The large bacterial genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbor pathogenic characteristics. The fatty acid (FA) composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness.
Collapse
Affiliation(s)
- Sara E Diomandé
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Christophe Nguyen-The
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Marie-Hélène Guinebretière
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Julien Brillard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; UMR 1333 DGIMI, INRA, Université de Montpellier Montpellier, France
| |
Collapse
|
24
|
Caldwell JM, Pérez-Díaz IM, Sandeep KP, Simunovic J, Harris K, Osborne JA, Hassan HM. Mitochondrial DNA Fragmentation as a Molecular Tool to Monitor Thermal Processing of Plant-Derived, Low-Acid Foods, and Biomaterials. J Food Sci 2015; 80:M1804-14. [PMID: 26235411 DOI: 10.1111/1750-3841.12937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/13/2015] [Indexed: 11/30/2022]
Abstract
Cycle threshold (Ct) increase, quantifying plant-derived DNA fragmentation, was evaluated for its utility as a time-temperature integrator. This novel approach to monitoring thermal processing of fresh, plant-based foods represents a paradigm shift. Instead of using quantitative polymerase chain reaction (qPCR) to detect pathogens, identify adulterants, or authenticate ingredients, this rapid technique was used to quantify the fragmentation of an intrinsic plant mitochondrial DNA (mtDNA) gene over time-temperature treatments. Universal primers were developed which amplified a mitochondrial gene common to plants (atp1). These consensus primers produced a robust qPCR signal in 10 vegetables, 6 fruits, 3 types of nuts, and a biofuel precursor. Using sweet potato (Ipomoea batatas) puree as a model low-acid product and simple linear regression, Ct value was highly correlated to time-temperature treatment (R(2) = 0.87); the logarithmic reduction (log CFU/mL) of the spore-forming Clostridium botulinum surrogate, Geobacillus stearothermophilus (R(2) = 0.87); and cumulative F-value (min) in a canned retort process (R(2) = 0.88), all comparisons conducted at 121 °C. D121 and z-values were determined for G. stearothermophilus ATCC 7953 and were 2.71 min and 11.0 °C, respectively. D121 and z-values for a 174-bp universal plant amplicon were 11.3 min and 9.17 °C, respectively, for mtDNA from sweet potato puree. We present these data as proof-of-concept for a molecular tool that can be used as a rapid, presumptive method for monitoring thermal processing in low-acid plant products.
Collapse
Affiliation(s)
- Jane M Caldwell
- Dept. of Food, Bioprocessing, and Nutrition Sciences, North Carolina State Univ, Raleigh, NC, 27695, U.S.A
| | - Ilenys M Pérez-Díaz
- USDA-Agriculture Research Service, SAA, Food Science Research Unit, 322 Schaub Hall-NCSU, Raleigh, NC, 27695, U.S.A
| | - K P Sandeep
- Dept. of Food, Bioprocessing, and Nutrition Sciences, North Carolina State Univ, Raleigh, NC, 27695, U.S.A
| | - Josip Simunovic
- Dept. of Food, Bioprocessing, and Nutrition Sciences, North Carolina State Univ, Raleigh, NC, 27695, U.S.A
| | - Keith Harris
- Dept. of Food, Bioprocessing, and Nutrition Sciences, North Carolina State Univ, Raleigh, NC, 27695, U.S.A
| | - Jason A Osborne
- Dept. of Statistics, North Carolina State Univ, Raleigh, NC, 27695, U.S.A
| | - Hosni M Hassan
- Prestage Dept. of Poultry Science, North Carolina State Univ, Raleigh, NC, 27695, U.S.A
| |
Collapse
|
25
|
Ter Beek A, Wijman JG, Zakrzewska A, Orij R, Smits GJ, Brul S. Comparative physiological and transcriptional analysis of weak organic acid stress in Bacillus subtilis. Food Microbiol 2015; 45:71-82. [DOI: 10.1016/j.fm.2014.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/16/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
|
26
|
Luu-Thi H, Corthouts J, Passaris I, Grauwet T, Aertsen A, Hendrickx M, Michiels CW. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores. Int J Food Microbiol 2014; 197:45-52. [PMID: 25560915 DOI: 10.1016/j.ijfoodmicro.2014.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/20/2014] [Accepted: 12/14/2014] [Indexed: 12/30/2022]
Abstract
The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C.
Collapse
Affiliation(s)
- Hue Luu-Thi
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Belgium
| | - Jorinde Corthouts
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Belgium
| | - Ioannis Passaris
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Belgium
| | - Marc Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Belgium
| | - Chris W Michiels
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Belgium.
| |
Collapse
|
27
|
Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores. Food Microbiol 2014; 45:26-33. [PMID: 25481059 DOI: 10.1016/j.fm.2014.03.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/21/2022]
Abstract
Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity.
Collapse
|
28
|
Pandey R, Ter Beek A, Vischer NOE, Smelt JPPM, Kemperman R, Manders EMM, Brul S. Quantitative analysis of the effect of specific tea compounds on germination and outgrowth of Bacillus subtilis spores at single cell resolution. Food Microbiol 2014; 45:63-70. [PMID: 25481063 DOI: 10.1016/j.fm.2014.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 01/31/2023]
Abstract
Tea is one of the most widely consumed beverages in the world and known for its antimicrobial activity against many microorganisms. Preliminary studies have shown that tea polyphenols can inhibit the growth of a wide range of Gram-positive bacteria. However, the effect of these compounds on germination and outgrowth of bacterial spores is unclear. Spore-forming bacteria are an aggravating problem for the food industry due to spore formation and their subsequent returning to vegetative state during food storage, thus posing spoilage and food safety challenges. Here we analysed the effect of tea compounds: gallic acid, gallocatechin gallate, Teavigo (>90% epigallocatechin gallate), and theaflavin 3,3'-digallate on spore germination and outgrowth and subsequent growth of vegetative cells of Bacillus subtilis. To quantitatively analyse the effect of these compounds, live cell images were tracked from single phase-bright spores up to microcolony formation and analysed with the automated image analysis tool "SporeTracker". In general, the tested compounds had a significant effect on most stages of germination and outgrowth. However, germination efficiency (ability of spores to become phase-dark) was not affected. Gallic acid most strongly reduced the ability to grow out. Additionally, all compounds, in particular theaflavin 3,3'-digallate, clearly affected the growth of emerging vegetative cells.
Collapse
Affiliation(s)
- Rachna Pandey
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Van Leeuwenhoek Centre for Advanced Microscopy Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Alexander Ter Beek
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Norbert O E Vischer
- Van Leeuwenhoek Centre for Advanced Microscopy Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jan P P M Smelt
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | | | - Erik M M Manders
- Van Leeuwenhoek Centre for Advanced Microscopy Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
van Melis CCJ, den Besten HMW, Nierop Groot MN, Abee T. Quantification of the impact of single and multiple mild stresses on outgrowth heterogeneity of Bacillus cereus spores. Int J Food Microbiol 2014; 177:57-62. [PMID: 24607860 DOI: 10.1016/j.ijfoodmicro.2014.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 11/19/2022]
Abstract
Outgrowth heterogeneity of bacterial spore populations complicates both prediction and efficient control of spore outgrowth. In this study, the impact of mild preservation stresses on outgrowth of Bacillus cereus ATCC 14579 spores was quantified during the first stages of outgrowth. Heterogeneity in outgrowth of heat-treated (90°C for 10 min) and non-heat-treated germinated single spores to the maximum micro-colony stage of 256 cells was assessed by direct imaging on Anopore strips, placed on BHI plates at pH7 and pH5.5, without and with added NaCl or sorbic acid (HSA). At pH7 non-heated and heat-treated germinated spores required 6h to reach the maximum microcolony stage with limited heterogeneity, and these parameters were only slightly affected with both types of spores when incubated at pH7 with added NaCl. Notably, the most pronounced effects were observed during outgrowth of spores at pH5.5 without and with added NaCl or HSA. Non-heat-treated germinated spores showed again efficient outgrowth with limited heterogeneity reaching the maximum microcolony stage after 6h at pH5.5, which increased to 12h and 16 h with added NaCl and HSA, respectively. In contrast, heat-treated spores displayed a strong delay between initial germination and swelling and further outgrowth at pH5.5, resulting in large heterogeneity and low numbers of fastest growers reaching the maximum microcolony stage after 10, 12 and 24h, without and with added NaCl or HSA, respectively. This work shows that Anopore technology provides quantitative information on the impact of combined preservation stresses on outgrowth of single spores, showing that outgrowth of germinated heat-treated spores is significantly affected at pH5.5 with a large fraction of spores arrested in the early outgrowth stage, and with outgrowing cells showing large heterogeneity with only a small fraction committed to relatively fast outgrowth.
Collapse
Affiliation(s)
- C C J van Melis
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands; Food Microbiology Laboratory, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - H M W den Besten
- Food Microbiology Laboratory, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - M N Nierop Groot
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands; Food and Biobased Research, Wageningen University & Research Centre, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - T Abee
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands; Food Microbiology Laboratory, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
30
|
|
31
|
Germination inhibition of Bacillus cereus spores: impact of the lipophilic character of inhibiting compounds. Int J Food Microbiol 2012. [DOI: 10.1016/j.ijfoodmicro.2012.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Impact of sorbic acid on germination and outgrowth heterogeneity of Bacillus cereus ATCC 14579 spores. Appl Environ Microbiol 2012; 78:8477-80. [PMID: 23001664 DOI: 10.1128/aem.02361-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Population heterogeneity complicates the predictability of the outgrowth kinetics of individual spores. Flow cytometry sorting and monitoring of the germination and outgrowth of single dormant spores allowed the quantification of acid-induced spore population heterogeneity at pH 5.5 and in the presence of sorbic acid. This showed that germination efficiency was not a good predictor for heterogeneity in final outgrowth.
Collapse
|
33
|
Brul S, Bassett J, Cook P, Kathariou S, McClure P, Jasti P, Betts R. ‘Omics’ technologies in quantitative microbial risk assessment. Trends Food Sci Technol 2012. [DOI: 10.1016/j.tifs.2012.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Bassi D, Cappa F, Cocconcelli PS. Array-based transcriptional analysis of Clostridium sporogenes UC9000 during germination, cell outgrowth and vegetative life. Food Microbiol 2012; 33:11-23. [PMID: 23122496 DOI: 10.1016/j.fm.2012.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/04/2012] [Accepted: 08/05/2012] [Indexed: 01/22/2023]
Abstract
The members of the genus Clostridium, including the spore-forming anaerobic bacteria, have a complex and strictly regulated life cycle, but very little is known about the genetic pathways involved in the different stages of their life cycle. Clostridium sporogenes, a Gram-positive bacterium usually involved in food spoilage and frequently isolated from late blowing cheese, is genetically indistinguishable from the proteolytic Clostridium botulinum. As the non-neurotoxic counterpart, it is often used as an exemplar for the toxic subtypes. In this work, we performed a microscopic study combined with a custom array-based analysis of the C. sporogenes cycle, from dormant spores to the early stationary phase. We identified a total of 211 transcripts in spores, validating the hypothesis that mRNAs are abundant in spores and the pattern of mRNA expression is strikingly different from that present in growing cells. The spore transcripts included genes responsible for different life-sustaining functions, suggesting there was transcript entrapment or basic poly-functional gene activation for future steps. In addition, 3 h after the beginning of the germination process, 20% of the total up-regulated genes were temporally expressed in germinating spores. The vegetative condition appeared to be more active in terms of gene transcription and protein synthesis than the spore, and genes coding for germination and sporulation factors seemed to be expressed at this point. These results suggest that spores are not silent entities, and a broader knowledge of the genetic pathways involved in the Clostridium life cycle could provide a better understanding of pathogenic clostridia types.
Collapse
Affiliation(s)
- Daniela Bassi
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza/Via Milano 24, 26100 Cremona, Italy.
| | | | | |
Collapse
|
35
|
Mellegård H, From C, Christensen BE, Granum PE. Inhibition of Bacillus cereus spore outgrowth and multiplication by chitosan. Int J Food Microbiol 2011; 149:218-25. [PMID: 21798612 DOI: 10.1016/j.ijfoodmicro.2011.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/14/2011] [Accepted: 06/18/2011] [Indexed: 11/29/2022]
Abstract
Bacillus cereus is an endospore-forming bacterium able to cause food-associated illness. Different treatment processes are used in the food industry to reduce the number of spores and thereby the potential of foodborne disease. Chitosan is a polysaccharide with well-documented antibacterial activity towards vegetative cells. The activity against bacterial spores, spore germination and subsequent outgrowth and growth (the latter two events hereafter denoted (out)growth), however, is poorly documented. By using six different chitosans with defined macromolecular properties, we evaluated the effect of chitosan on Bacillus cereus spore germination and (out)growth using optical density assays and a dipicolinic acid release assay. (Out)growth was inhibited by chitosan, but germination was not. The action of chitosan was found to be concentration-dependent and also closely related to weight average molecular weight (M(w)) and fraction of acetylation (F(A)) of the biopolymer. Chitosans of low acetylation (F(A)=0.01 or 0.16) inhibited (out)growth more effectively than higher acetylated chitosans (F(A)=0.48). For the F(A)=0.16 chitosans with medium (56.8kDa) and higher M(w) (98.3kDa), a better (out)growth inhibition was observed compared to low M(w) (10.6kDa) chitosan. The same trend was not evident with chitosans of 0.48 acetylation, where the difference in activity between the low (19.6kDa) and high M(w) (163.0kDa) chitosans was only minor. In a spore test concentration corresponding to 10(2)-10(3)CFU/ml (spore numbers relevant to food), less chitosan was needed to suppress (out)growth compared to higher spore numbers (equivalent to 10(8)CFU/ml), as expected. No major differences in chitosan susceptibility between three different strains of B. cereus were detected. Our results contribute to a better understanding of chitosan activity towards bacterial spore germination and (out)growth.
Collapse
Affiliation(s)
- Hilde Mellegård
- Dept. of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146 Dep, NO-0033 Oslo, Norway
| | | | | | | |
Collapse
|
36
|
Abstract
Coping with acid environments is one of the prerequisites for the soil saprophytic and human pathogenic lifestyle of Bacillus cereus. This minireview highlights novel insights in the responses displayed by vegetative cells and germinating spores of B. cereus upon exposure to low pH as well as organic acids, including acetic acid, lactic acid and sorbic acid. Insights regarding the possible acid-inflicted damage, physiological responses and protective mechanisms have been compiled based on single cell fluorescence microscopy, flow cytometry and transcriptome analyses.
Collapse
Affiliation(s)
- Maarten Mols
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | | |
Collapse
|
37
|
Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Curr Opin Biotechnol 2011; 22:180-6. [DOI: 10.1016/j.copbio.2010.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 11/21/2022]
|
38
|
Impact of sorbic acid on germinant receptor-dependent and -independent germination pathways in Bacillus cereus. Appl Environ Microbiol 2011; 77:2552-4. [PMID: 21278268 DOI: 10.1128/aem.02520-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amino acid- and inosine-induced germination of Bacillus cereus ATCC 14579 spores was reversibly inhibited in the presence of 3 mM undissociated sorbic acid. Exposure to high hydrostatic pressure, Ca-dipicolinic acid (DPA), and bryostatin, an activator of PrkC kinase, negated this inhibition, pointing to specific blockage of signal transduction in germinant receptor-mediated germination.
Collapse
|