1
|
Lambrechts K, Rip D. Listeria monocytogenes in the seafood industry: Exploring contamination sources, outbreaks, antibiotic susceptibility and genetic diversity. Microbiologyopen 2024; 13:e70003. [PMID: 39420711 PMCID: PMC11486915 DOI: 10.1002/mbo3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Fish and seafood are rich sources of protein, vitamins, and minerals, significantly contributing to individual health. A global increase in consumption has been observed. Listeria monocytogenes is a known problem in food processing environments and is found in various seafood forms, including raw, smoked, salted, and ready-to-eat. Without heat treatment and given L. monocytogenes' ability to multiply under refrigerated conditions, consuming seafood poses a substantial health hazard, particularly to immunocompromised individuals. Numerous global outbreaks of listeriosis have been linked to various fish products, underscoring the importance of studying L. monocytogenes. Different strains exhibit varying disease-causing abilities, making it crucial to understand and monitor the organism's virulence and resistance aspects for food safety. This paper aims to highlight the genetic diversity of L. monocytogenes found in fish products globally and to enhance understanding of contamination routes from raw fish to the final product.
Collapse
Affiliation(s)
| | - Diane Rip
- Department of Food ScienceStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
2
|
Lambrechts K, Gouws P, Rip D. Genetic diversity of Listeria monocytogenes from seafood products, its processing environment, and clinical origin in the Western Cape, South Africa using whole genome sequencing. AIMS Microbiol 2024; 10:608-643. [PMID: 39219753 PMCID: PMC11362271 DOI: 10.3934/microbiol.2024029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Listeria monocytogenes is a concern in seafood and its food processing environment (FPE). Several outbreaks globally have been linked to various types of seafood. Genetic profiling of L. monocytogenes is valuable to track bacterial contamination throughout the FPE and in understanding persistence mechanisms, with limited studies from South Africa. Forty-six L. monocytogenes isolates from origins: Fish/seafood products (n = 32) (salmon, smoked trout, fresh hake, oysters), the FPE (n = 6), and clinical (n = 8) were included in this study. Lineage typing, antibiotic susceptibility testing, and screening for two genes (bcrABC and emrC) conferring sanitizer tolerance was conducted. The seafood and FPE isolates originated from seven different factories processing various seafood products with undetermined origin. All clinical isolates were categorized as lineage I, and seafood and FPE isolates were mostly categorized into lineage II (p < 0.01). Seafood and FPE isolates (53%) carried the bcrABC gene cassette and one fish isolate, the emrC gene. A subset, n = 24, was grouped into serotypes, sequence types (STs), and clonal complexes (CCs) with whole genome sequencing (WGS). Eight CCs and ten STs were identified. All clinical isolates belonged to serogroup 4b, hypervirulent CC1. CC121 was the most prevalent in isolates from food and the FPE. All isolates carried Listeria pathogenicity islands (LIPI) 1 and 2. LIPI-3 and LIPI-4 were found in certain isolates. We identified genetic determinants linked to enhanced survival in the FPE, including stress survival islets (SSI) and genes conferring tolerance to sanitizers. SSI-1 was found in 44% isolates from seafood and the FPE. SSI-2 was found in all the ST121 seafood isolates. Isolates (42%) harbored transposon Tn1688_qac (ermC), conferring tolerance to quaternary ammonium compounds. Five plasmids were identified in 13 isolates from seafood and the FPE. This is the first One Health study reporting on L. monocytogenes genetic diversity, virulence and resistance profiles from various types of seafood and its FPE in South Africa.
Collapse
Affiliation(s)
| | | | - Diane Rip
- Department of Food Science, Stellenbosch University, 7602, South Africa
| |
Collapse
|
3
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
4
|
Song MG, Roy PK, Jeon EB, Kim SH, Heu MS, Lee JS, Choi JS, Kim JS, Park SY. Effect of Dielectric Barrier Discharge Plasma against Listeria monocytogenes Mixed-Culture Biofilms on Food-Contact Surfaces. Antibiotics (Basel) 2023; 12:antibiotics12030609. [PMID: 36978476 PMCID: PMC10045436 DOI: 10.3390/antibiotics12030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen. Various methods can be used to control biofilms formed by foodborne pathogens. Recently, the food industry has become interested in plasma, which can be used as a non-thermal technology with minimum changes to product quality. In this study, the effects of dielectric barrier discharge (DBD) plasma on L. monocytogenes mixed-culture biofilms formed on stainless steel (SS), latex hand glove (HG), and silicone rubber (SR) were investigated. DBD plasma effectuated reductions of 0.11-1.14, 0.28-1.27 and 0.37-1.55 log CFU/cm2, respectively. Field emission scanning electron microscopy (FE-SEM) demonstrated that DBD plasma cuts off intercellular contact and induces cell decomposition to prevent the development of biological membranes. It was confirmed that the formed biofilms collapsed and separated into individual bacteria. Our findings suggest that DBD plasma can be used as an alternative non-heating sterilization technology in the food industry to reduce biofilm formation on bacterial targets.
Collapse
Affiliation(s)
- Min Gyu Song
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Pantu Kumar Roy
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - So Hee Kim
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Min Soo Heu
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jung-Suck Lee
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Jae-Suk Choi
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Jin-Soo Kim
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|
5
|
Barbuddhe SB, Rawool DB, Doijad SP, Vergis J, Malik SS, Chakraborty T. Ecology of Listeria monocytogenes and Listeria species in India: the occurrence, resistance to biocides, genomic landscape and biocontrol. Environ Microbiol 2021; 24:2759-2780. [PMID: 34693631 DOI: 10.1111/1462-2920.15819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Listeria monocytogenes, the causative agent of listeriosis, has been implicated in increasing foodborne outbreaks worldwide. The disease is manifested in various forms ranging from severe sepsis in immune-compromised individuals, febrile gastroenteritis, still birth, abortions and meningoencephalitis. In India, data from studies on the detection and molecular epidemiological analysis of L. monocytogenes are only recently emerging. The presence of Listeria in different ecological niches has been recorded from India, including foods, soil, vegetables, mangrove swamps, seafood, freshwater fishes, clinical cases, and also insects. The organism has also been isolated from women with spontaneous abortions, miscarriage or recurrent obstetric history, aborted foetuses, animal clinical cases and wildlife samples. A novel species of Listeria has also been characterized. Listeria monocytogenes strains isolated from clinical, environmental, and foods showed biofilm-forming abilities. Listeria monocytogenes serotype 4b isolates of ST328, a predominant and unique ST observed in India, was repeatedly isolated from different sources, times, and geographical locations. Here, we reviewed the occurrence of Listeria in different sources in India, its resistance to biocides, and provide epidemiological analysis on its genomic landscape.
Collapse
Affiliation(s)
| | - Deepak Bhiwa Rawool
- ICAR- National Research Centre on Meat, Chengicherla, Hyderabad, Telangana, 500092, India
| | - Swapnil Prakash Doijad
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, 35392, Germany.,German Center for Infection Research (DZIF), Giessen, 35392, Germany
| | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, Kerala, 673576, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243122, India
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, 35392, Germany.,German Center for Infection Research (DZIF), Giessen, 35392, Germany
| |
Collapse
|
6
|
Shedleur-Bourguignon F, Thériault WP, Longpré J, Thibodeau A, Fravalo P. Use of an Ecosystem-Based Approach to Shed Light on the Heterogeneity of the Contamination Pattern of Listeria monocytogenes on Conveyor Belt Surfaces in a Swine Slaughterhouse in the Province of Quebec, Canada. Pathogens 2021; 10:pathogens10111368. [PMID: 34832524 PMCID: PMC8625388 DOI: 10.3390/pathogens10111368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
The role of the accompanying microbiota in the presence of Listeria monocytogenes on meat processing surfaces is not yet understood, especially in industrial production conditions. In this study, 300 conveyor belt samples from the cutting room of a swine slaughterhouse were collected during production. The samples were subjected to the detection of L. monocytogenes. Recovered strains were characterized by serogrouping-PCR, InlA Sanger sequencing and for their ability to form biofilm. A selection of isolates was compared with core genome multi-locus sequence typing analysis (cgMLST). The sequencing of the V4 region of the 16S RNA gene of the microorganisms harvested from each sample was carried out in parallel using the Illumina MiSeq platform. Diversity analyses were performed and MaAsLin analysis was used to assess the link between L. monocytogenes detection and the surrounding bacteria. The 72 isolates collected showed a low genetic diversity and important persistence characteristics. L. monocytogenes isolates were not stochastically distributed on the surfaces: the isolates were detected on three out of six production lines, each associated with a specific meat cut: the half carcasses, the bostons and the picnics. MaAsLin biomarker analysis identified the taxa Veillonella (p ≤ 0.0397) as a bacterial determinant of the presence of L. monocytogenes on processing surfaces. The results of this study revealed a heterogenous contamination pattern of the processing surfaces by L. monocytogenes and targeted a bacterial indicator of the presence of the pathogen. These results could lead to a better risk assessment of the contamination of meat products.
Collapse
Affiliation(s)
- Fanie Shedleur-Bourguignon
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
| | - William P. Thériault
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
| | - Jessie Longpré
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada;
| | - Alexandre Thibodeau
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada;
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pôle Agroalimentaire, Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
- Correspondence:
| |
Collapse
|
7
|
Tosun ŞY. Investigating the effect of organic acids on the survival of
Listeria monocytogenes
and
Escherichia coli
O157:H7 in Atlantic salmon stored at 4 ± 1°C. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Şehnaz Yasemin Tosun
- Department of Fisheries and Seafood Processing Technology Faculty of Aquatic Sciences Istanbul University Istanbul Turkey
| |
Collapse
|
8
|
Sun Q, Cai S, Cheng J, Zhang Y, Lin R, Ye Q, Xue L, Zeng H, Lei T, Zhang S, Luo X, Wu K, Wu Q, Chen M, Zhang J. Distribution, contamination routes, and seasonal influence of persistent Listeria monocytogenes in a commercial fresh Hypsizigus marmoreus production facility. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Mazaheri T, Cervantes-Huamán BRH, Bermúdez-Capdevila M, Ripolles-Avila C, Rodríguez-Jerez JJ. Listeria monocytogenes Biofilms in the Food Industry: Is the Current Hygiene Program Sufficient to Combat the Persistence of the Pathogen? Microorganisms 2021; 9:microorganisms9010181. [PMID: 33467747 PMCID: PMC7830665 DOI: 10.3390/microorganisms9010181] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Biofilms contain microbial cells which are protected by a self-produced matrix and they firmly attach themselves to many different food industry surfaces. Due to this protection, microorganisms within biofilms are much more difficult to eradicate and therefore to control than suspended cells. A bacterium that tends to produce these structures and persist in food processing plants is Listeria monocytogenes. To this effect, many attempts have been made to develop control strategies to be applied in the food industry, although there seems to be no clear direction on how to manage the risk the bacteria poses. There is no standardized protocol that is applied equally to all food sectors, so the strategies for the control of this pathogen depend on the type of surface, the nature of the product, the conditions of the food industry environment, and indeed the budget. The food industry performs different preventive and corrective measures on possible L. monocytogenes-contaminated surfaces. However, a critical evaluation of the sanitization methods applied must be performed to discern whether the treatment can be effective in the long-term. This review will focus on currently used strategies to eliminate biofilms and control their formation in processing facilities in different food sectors (i.e., dairy, meat, fish, chilled vegetables, and ready-to-eat products). The technologies employed for their control will be exemplified and discussed with the objective of understanding how L. monocytogenes can be improved through food safety management systems.
Collapse
|
10
|
Li F, Ye Q, Chen M, Zhang J, Xue L, Wang J, Wu S, Zeng H, Gu Q, Zhang Y, Wei X, Ding Y, Wu Q. Multiplex PCR for the Identification of Pathogenic Listeria in Flammulina velutipes Plant Based on Novel Specific Targets Revealed by Pan-Genome Analysis. Front Microbiol 2021; 11:634255. [PMID: 33519795 PMCID: PMC7843925 DOI: 10.3389/fmicb.2020.634255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Listeria spp. is an important foodborne disease agent, often found in the fresh mushroom (Flammulina velutipes) and its production environment. The aim of this study was to develop multiplex PCR for rapid identification of Listeria monocytogenes and Listeria ivanovii, and nonpathogenic Listeria in F. velutipes plants. Pan-genome analysis was first used to identify five novel Listeria-specific targets: one for the Listeria genus, one for L. monocytogenes, and three for L. ivanovii. Primers for the novel targets were highly specific in individual reactions. The detection limits were 103-104 CFU/mL, meeting the requirements of molecular detection. A mPCR assay for the identification of pathogenic Listeria, with primers targeting the novel genes specific for Listeria genus (LMOSLCC2755_0944), L. monocytogenes (LMOSLCC2755_0090), and L. ivanovii (queT_1) was then designed. The assay specificity was robustly verified by analyzing nonpathogenic Listeria and non-Listeria spp. strains. The determined detection limits were 2.0 × 103 CFU/mL for L. monocytogenes and 3.4 × 103 CFU/mL for L. ivanovii, for pure culture analysis. Further, the assay detected 7.6 × 104 to 7.6 × 100 CFU/10 g of pathogenic Listeria spiked into F. velutipes samples following 4-12 h enrichment. The assay feasibility was evaluated by comparing with a traditional culture-based method, by analyzing 129 samples collected from different F. velutipes plants. The prevalence of Listeria spp. and L. monocytogenes was 58.1% and 41.1%, respectively. The calculated κ factors for Listeria spp., L. monocytogenes, and L. ivanovii were 0.97, 0.97, and 1, respectively. The results of the novel mPCR assay were highly consistent with those of the culture-based method. The new assay thus will allow rapid, specific, and accurate detection and monitoring of pathogenic Listeria in food and its production environment.
Collapse
Affiliation(s)
- Fan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haiyan Zeng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
|
12
|
Bahrami A, Davis S, Mousavi Khaneghah A, Williams L. The efficiency of technologies used for epidemiological characterization of Listeria monocytogenes isolates : an update. Crit Rev Food Sci Nutr 2020; 62:1079-1091. [PMID: 33092402 DOI: 10.1080/10408398.2020.1835816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The characterization of pathogenic bacteria by providing information regarding the identification and source-tracking of the causes of outbreaks is vital for the epidemiological investigations of foodborne diseases. The knowledge of transmission of Listeria monocytogenes (L. monocytogenes) strains from the environment, directly or indirectly (through food processing facilities) to the final food products, due to the complexity of evaluating numerous, affecting parameters is quite limited. The food trade globalization also adds difficulties in tracking the association between the infection occurrence and causative pathogens, aiming to prevent their spread. The occurrence of listeriosis, a notifiable disease throughout the world, can either be sporadic or outbreak-related. Due to the importance of foodborne outbreaks from a public health aspect and its correspondence enormous economic losses, cross-linked surveillance studies regarding the contamination of foods by L. monocytogenes, besides identifying clusters and tracing the sources of infections on an international-scale to prevent and control L. monocytogenes outbreaks sounds very crucial. Contrary to the conventional typing methods, molecular-based techniques, such as whole-genome sequencing, owing to the capacity to discriminate L. monocytogenes strains down to single nucleotide differences, provide an accurate characterization of strains and tracking the causes of outbreaks. However, routinely using molecular-based methods depends on the required improvements in the affordability, proper timing, and preparing reliable, standardized bioinformatics facilities. This work was conducted to critically review the practical potential of diverse typing methods have been used for the characterization of L. monocytogenes and discuss how they might change the future of efforts for control of listeriosis.
Collapse
Affiliation(s)
- Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Shurrita Davis
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Leonard Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| |
Collapse
|
13
|
Bacteriophage biocontrol to fight Listeria outbreaks in seafood. Food Chem Toxicol 2020; 145:111682. [PMID: 32805341 DOI: 10.1016/j.fct.2020.111682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is a well-known pathogen responsible for the severe foodborne disease listeriosis. The control of L. monocytogenes occurrence in seafood products and seafood processing environments is an important challenge for the seafood industry and the public health sector. However, bacteriophage biocontrol shows great potential to be used as safety control measure in seafood. This review provides an update on Listeria-specific bacteriophages, focusing on their application as a safe and natural strategy to prevent L. monocytogenes contamination and growth in seafood products and seafood processing environments. Furthermore, the main properties required from bacteriophages intended to be used as biocontrol tools are summarized and emerging strategies to overcome the current limitations are considered. Also, major aspects relevant for bacteriophage production at industrial scale, their access to the market, as well as the current regulatory status of bacteriophage-based solutions for Listeria biocontrol are discussed.
Collapse
|
14
|
El‐Liethy MA, Hemdan BA, El‐Taweel GE. Prevalence of
E. coli
,
Salmonella
, and
Listeria
spp. as potential pathogens: A comparative study for biofilm of sink drain environment. J Food Saf 2020. [DOI: 10.1111/jfs.12816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mohamed Azab El‐Liethy
- Environmental Microbiology Laboratory, Water Pollution Research DepartmentNational Research Centre Giza Egypt
| | - Bahaa A. Hemdan
- Environmental Microbiology Laboratory, Water Pollution Research DepartmentNational Research Centre Giza Egypt
| | - Gamila E. El‐Taweel
- Environmental Microbiology Laboratory, Water Pollution Research DepartmentNational Research Centre Giza Egypt
| |
Collapse
|
15
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Arason S, Bekaert K, García MR, Georgiadis M, Messens W, Mosbach‐Schulz O, Bover‐Cid S. The use of the so-called 'tubs' for transporting and storing fresh fishery products. EFSA J 2020; 18:e06091. [PMID: 32874299 PMCID: PMC7448070 DOI: 10.2903/j.efsa.2020.6091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
On-land transport/storage of fresh fishery products (FFP) for up to 3 days in 'tubs' of three-layered poly-ethylene filled with freshwater and ice was compared to the currently authorised practice (fish boxes of high-density poly-ethylene filled with ice). The impact on the survival and growth of biological hazards in fish and the histamine production in fish species associated with a high amount of histidine was assessed. In different modelling scenarios, the FFP are stored on-board in freshwater or seawater/ice (in tubs) and once on-land they are 'handled' (i.e. sorted or gutted and/or filleted) and transferred to either tubs or boxes. The temperature of the FFP was assumed to be the most influential factor affecting relevant hazards. Under reasonably foreseeable 'abusive' scenarios and using a conservative modelling approach, the growth of the relevant hazards (i.e. Listeria monocytogenes, Aeromonas spp. and non-proteolytic Clostridium botulinum), is expected to be < 0.2 log10 units higher in tubs than in boxes after 3 days when the initial temperature of the fish is 0°C ('keeping' process). Starting at 7°C ('cooling-keeping' process), the expected difference in the growth potential is higher (< 1 log10 for A. hydrophila and < 0.5 log10 for the other two hazards) due to the poorer cooling capacity of water and ice (tub) compared with ice (box). The survival of relevant hazards is not or is negligibly impacted. Histamine formation due to growth of Morganella psychrotolerans under the 'keeping' or 'cooling-keeping' process can be up to 0.4 ppm and 1.5 ppm higher, respectively, in tubs as compared to boxes after 3 days, without reaching the legal limit of 100 ppm. The water uptake associated with the storage of the FFP in tubs (which may be up to 6%) does not make a relevant contribution to the differences in microbial growth potential compared to boxes.
Collapse
|
16
|
Rodríguez-López P, Rodríguez-Herrera JJ, Cabo ML. Tracking bacteriome variation over time in Listeria monocytogenes-positive foci in food industry. Int J Food Microbiol 2019; 315:108439. [PMID: 31710972 DOI: 10.1016/j.ijfoodmicro.2019.108439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
The variation in microbial composition over time was assessed in biofilms formed in situ on selected non-food and food contact surfaces of meat and fish industries, previously identified as Listeria monocytogenes-positive foci. First, all samples were analysed for the detection and quantification of L. monocytogenes using ISO 11290-1 and ISO 11290-2 norms, respectively. Although the pathogen was initially detected in all samples, direct quantification was not possible. Psychrotrophic bacteria counts were among resident microbiota in meat industry samples (Meanmax = 6.14 log CFU/cm2) compared to those form fish industry (Meanmax = 5.85 log CFU/cm2). Visual analysis of the biofilms using epifluorescence microscopy revealed a trend to form microcolonies in which damaged/dead cells would act as anchoring structures. 16S rRNA gene metagenetic analysis demonstrated that, although Proteobacteria (71.37%) initially dominated the bacterial communities at one meat industry location, there was a dramatic shift in composition as the biofilms matured, where Actinobacteria (79.72%) became the major phylum present in later samples. This change was largely due to an increase of Nocardiaceae, Micrococcaceae and Microbacteriaceae. Nevertheless, for the other sampling location, the relative abundance of the dominating phylum (Firmicutes) remained consistent over the entire sampling period (Mean = 63.02%). In fish industry samples, Proteobacteria also initially dominated early on (90.69%) but subsequent sampling showed a higher diversity in which Bacteroidetes and Proteobacteria were the most abundant phyla accounting for the 48.04 and 37.98%, respectively by the last sampling period. Regardless of the location, the community profiles of the endpoint samples were similar to those reported previously. This demonstrated that in a given industrial setting there is a trend to establish a determinate biofilm structure due to the environmental factors and the constant incoming microbiota. This information could be used to improve the existing sanitisation protocols or for the design of novel strategies.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello, 6, 36208 Vigo, (Pontevedra), Spain; Department of Food and Drug, Università di Parma, Strada del Taglio, 10, 43126 Parma, (PR), Italy
| | - Juan José Rodríguez-Herrera
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello, 6, 36208 Vigo, (Pontevedra), Spain
| | - Marta López Cabo
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello, 6, 36208 Vigo, (Pontevedra), Spain.
| |
Collapse
|
17
|
Miotto M, Ossai SA, Meredith JE, Barretta C, Kist A, Prudencio ES, R. W. Vieira C, Parveen S. Genotypic and phenotypic characterization of Escherichia coli isolated from mollusks in Brazil and the United States. Microbiologyopen 2019; 8:e00738. [PMID: 30311420 PMCID: PMC6528596 DOI: 10.1002/mbo3.738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to determine the serogroups, antimicrobial resistance and genetic diversity of Escherichia coli isolates from samples of bivalve mollusks collected along Santa Catarina coast, Brazil, and from the Chesapeake Bay, Maryland, USA. One hundred forty-one E. coli isolates were characterized for serogroups with 181 specific O antisera and antimicrobial susceptibility using the disk diffusion method. The genetic diversity was assessed using pulsed-field gel electrophoresis (PFGE). The results showed that among the isolates, 19.9% were classified as multi-drug resistant (MDR) and resistance was most frequently observed to cephalothin, nitrofurantoin, and ampicillin. The predominant serogroups were O6, O8, and O38. Some serogroups were recognized as pathogenic E. coli. PFGE dendrograms indicated extensive genetic diversity among the isolates. Although characteristics of the E. coli isolates were highly variable, it is important to note that E. coli belonging to pathogenic serogroups and MDR isolates are present in mollusks of both study areas. This is the first report on the phenotypic and genotypic characterization of E. coli from mollusks from Santa Catarina and the Chesapeake Bay that should encourage studies focusing on comparison of isolates across countries.
Collapse
Affiliation(s)
- Marília Miotto
- Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianopolisSanta CatarinaBrazil
| | - Sylvia A. Ossai
- Food Science and Technology ProgramUniversity of Maryland Eastern ShorePrincess AnneMaryland
| | - Joan E. Meredith
- Food Science and Technology ProgramUniversity of Maryland Eastern ShorePrincess AnneMaryland
| | - Clarissa Barretta
- Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianopolisSanta CatarinaBrazil
| | - Airton Kist
- Laboratory of Computational and Applied Statistics, Department of Mathematics and StatisticsState University of Ponta GrossaPonta GrossaParanaBrazil
| | - Elane S. Prudencio
- Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianopolisSanta CatarinaBrazil
| | - Cleide R. W. Vieira
- Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianopolisSanta CatarinaBrazil
| | - Salina Parveen
- Food Science and Technology ProgramUniversity of Maryland Eastern ShorePrincess AnneMaryland
| |
Collapse
|
18
|
Elson R, Awofisayo-Okuyelu A, Greener T, Swift C, Painset A, Amar CFL, Newton A, Aird H, Swindlehurst M, Elviss N, Foster K, Dallman TJ, Ruggles R, Grant K. Utility of Whole Genome Sequencing To Describe the Persistence and Evolution of Listeria monocytogenes Strains within Crabmeat Processing Environments Linked to Two Outbreaks of Listeriosis. J Food Prot 2019; 82:30-38. [PMID: 30702931 DOI: 10.4315/0362-028x.jfp-18-206] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This article describes the identification and investigation of two extended outbreaks of listeriosis in which crabmeat was identified as the vehicle of infection. Comparing contemporary and retrospective typing data of Listeria monocytogenes isolates from clinical cases and from food and food processing environments allowed the detection of cases going back several years. This information, combined with the analysis of routinely collected enhanced surveillance data, helped to direct the investigation and identify the vehicle of infection. Retrospective whole genome sequencing (WGS) analysis of isolates provided robust microbiological evidence of links between cases, foods, and the environments in which they were produced and demonstrated that for some cases and foods, identified by fluorescent amplified fragment length polymorphism, the molecular typing method in routine use at the time, were not part of the outbreak. WGS analysis also showed that the strains causing illness had persisted in two food production environments for many years and in one producer had evolved into two strains over a period of around 8 years. This article demonstrates the value of reviewing L. monocytogenes typing data from clinical cases together with that from foods as a means of identifying potential vehicles and sources of infection in outbreaks of listeriosis. It illustrates the importance of reviewing retrospective L. monocytogenes typing alongside enhanced surveillance data to characterize extended outbreaks and inform control measures. Also, this article highlights the advantages of WGS analysis for strain discrimination and clarification of evolutionary relationships that refine outbreak investigations and improve our understanding of L. monocytogenes in the food chain.
Collapse
Affiliation(s)
- Richard Elson
- 1 Public Health England, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK.,2 National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, University of Liverpool, Liverpool L3 5TR, UK
| | - Adedoyin Awofisayo-Okuyelu
- 2 National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, University of Liverpool, Liverpool L3 5TR, UK
| | - Trevor Greener
- 3 North Tyneside Council, Public Protection Services, The Silverlink North, Cobalt Business Park, North Tyneside NE27 0BY, UK
| | - Craig Swift
- 1 Public Health England, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Anaïs Painset
- 1 Public Health England, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK.,2 National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, University of Liverpool, Liverpool L3 5TR, UK
| | | | - Autilia Newton
- 4 Public Health England UKOT Program IHR, 133-135, Wellington Road, London SE1 8UG, UK
| | - Heather Aird
- 5 Public Health England, National Infection Service, Food, Water and Environmental Microbiology Laboratory, National Agri-Food Innovation Campus, Block 10, Sand Hutton, York YO41 1LZ, UK
| | - Mark Swindlehurst
- 5 Public Health England, National Infection Service, Food, Water and Environmental Microbiology Laboratory, National Agri-Food Innovation Campus, Block 10, Sand Hutton, York YO41 1LZ, UK
| | - Nicola Elviss
- 5 Public Health England, National Infection Service, Food, Water and Environmental Microbiology Laboratory, National Agri-Food Innovation Campus, Block 10, Sand Hutton, York YO41 1LZ, UK
| | - Kirsty Foster
- 6 Public Health England, North East PHE Centre, Floor 2 Citygate, Gallowgate, Newcastle-upon-Tyne NE1 4WH, UK
| | - Timothy J Dallman
- 1 Public Health England, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK.,2 National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, University of Liverpool, Liverpool L3 5TR, UK
| | - Ruth Ruggles
- 1 Public Health England, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Kathie Grant
- 1 Public Health England, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK.,2 National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, University of Liverpool, Liverpool L3 5TR, UK
| |
Collapse
|
19
|
Rodríguez-López P, Bernárdez M, Rodríguez-Herrera JJ, Comesaña ÁS, Cabo ML. Identification and metagenetic characterisation of Listeria monocytogenes-harbouring communities present in food-related industrial environments. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
McDermott A, Whyte P, Brunton N, Bolton DJ. Thermal Inactivation of Listeria monocytogenes in Crab Meat. J Food Prot 2018; 81:2003-2006. [PMID: 30476441 DOI: 10.4315/0362-028x.jfp-18-276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is an important bacterial pathogen in seafood products, but limited information is currently available on the thermal resistance of relevant isolates in seafood. Thermal inactivation studies were undertaken (i) to provide much needed thermal inactivation data for L. monocytogenes in crab meat and (ii) to investigate whether tryptone soya broth (TSB) is representative of crab meat in thermal inactivation studies involving L. monocytogenes. D-values were obtained for a cocktail of two crab isolates (serotypes 1/2a and 4b) at 50, 55, and 60°C. In crab meat, D-values were 174.4, 28.2, and 1.6 min, respectively. Similar D-values of 176.4, 28.8, and 1.4 min were obtained in TSB. The corresponding z-values were 4.9°C (crab meat) and 4.8°C (TSB), respectively. The conclusions were that (i) current pasteurization conditions (e.g., 70°C for 2 min) would achieve complete destruction of any L. monocytogenes present in crab meat and (ii) TSB could be used as a model matrix for assessing the thermal inactivation of L. monocytogenes in crab meat.
Collapse
Affiliation(s)
- A McDermott
- 1 Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.,2 School of Veterinary Medicine
| | - P Whyte
- 2 School of Veterinary Medicine
| | - N Brunton
- 3 School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - D J Bolton
- 1 Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
21
|
Chen M, Cheng J, Wu Q, Zhang J, Chen Y, Xue L, Lei T, Zeng H, Wu S, Ye Q, Bai J, Wang J. Occurrence, Antibiotic Resistance, and Population Diversity of Listeria monocytogenes Isolated From Fresh Aquatic Products in China. Front Microbiol 2018; 9:2215. [PMID: 30283429 PMCID: PMC6157410 DOI: 10.3389/fmicb.2018.02215] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes is an important Gram-positive foodborne pathogen. However, limited information is available on the comprehensive investigation and potential risk of L. monocytogenes in fresh aquatic products, which are popular to consumers in China. This study aimed to determine the occurrence, virulence profiles, and population diversity of L. monocytogenes isolated from aquatic products in China. In total, 846 aquatic product samples were collected between July 2011 and April 2016 from 43 cities in China. Approximately 7.92% (67/846) aquatic product samples were positive for L. monocytogenes, 86.57% positive samples ranged from 0.3 to 10 MPN/g, whereas 5.97% showed over 110 MPN/g by the Most Probable Number method, which included two samples of products intended to be eaten raw. Serogroups I.1 (serotype 1/2a), I.2 (serotype 1/2b), and III (serotype 4c) were the predominant serogroups isolated, whereas serogroup II.1 (serotype 4b) was detected at much lower frequencies. Examination of antibacterial resistance showed that nine antibacterial resistance profiles were exhibited in 72 isolates, a high level susceptibility of 16 tested antibiotics against L. monocytogenes were observed, indicating these common antibacterial agents are still effective for treating L. monocytogenes infection. Multilocus sequence typing revealed that ST299, ST87, and ST8 are predominant in aquatic products, indicating that the rare ST299 (serotype 4c) may have a special ecological niche in aquatic products and associated environments. Except llsX and ptsA, the 72 isolates harbor nine virulence genes (prfA, actA, hly, plcA, plcB, iap, mpl, inlA, and inlB), premature stop codons (PMSCs) in inlA were found in four isolates, three of which belonged to ST9. A novel PMSC was found in 2929-1LM with a nonsense mutation at position 1605 (TGG→TGA). All ST87 isolates harbored the ptsA gene, whereas 8 isolates (11.11%) carried the llsX gene, and mainly belonged to ST1, ST3, ST308, ST323, ST330, and ST619. Taken together, these results first reported potential virulent L. monocytogenes isolates (ST8 and ST87) were predominant in aquatic products which may have implications for public health in China. It is thus necessary to perform continuous surveillance for L. monocytogenes in aquatic products in China.
Collapse
Affiliation(s)
- Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianheng Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yuetao Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Tao Lei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qinghua Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianling Bai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Okyere A, Bishoff D, Oyaro MO, Ajami NJ, Darkoh C. Analysis of Fish Commonly Sold in Local Supermarkets Reveals the Presence of Pathogenic and Multidrug-Resistant Bacterial Communities. Microbiol Insights 2018; 11:1178636118786925. [PMID: 30038503 PMCID: PMC6052494 DOI: 10.1177/1178636118786925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/21/2018] [Indexed: 11/17/2022] Open
Abstract
Fish has been an important source of proteins, essential vitamins, and low saturated fats for centuries. However, improperly handled fish can expose consumers to infectious bacteria, including difficult to treat multidrug-resistant pathogens. With the goal to investigate the existence of disease-causing and antibiotic-resistant bacteria, we examined bacterial communities present on various types of fish purchased from supermarkets in Houston, Texas, USA. The bacterial communities were characterized by selective phenotypic culture methods, 16S ribosomal RNA gene sequencing, and antibiotic susceptibility testing. The results revealed the presence of different bacterial communities on the fish samples examined. The bacterial communities were not significantly different between the supermarkets sampled. The following presumptive human pathogens were isolated on the fish samples: Escherichia coli (67%), enterohemorrhagic E. coli (31%), Shigella and Salmonella species (28%), Listeria species (29%), and Staphylococcus aureus (28%). Drug sensitivity assays showed resistance to commonly prescribed antibiotics ciprofloxacin, gentamicin, and vancomycin. Out of a total of 99 E. coli samples tested, 41.4% were resistant to ciprofloxacin, whereas 33.3% were resistant to gentamicin. Of the total of 31 S. aureus isolates tested, 87% were resistant to ciprofloxacin, whereas 61.3% were resistant to vancomycin. Moreover, some of the E. coli strains were resistant to both ciprofloxacin and gentamicin (28%), whereas 49% of the S. aureus isolates were resistant to both ciprofloxacin and vancomycin. These results highlight the prevalence of antimicrobial-resistant foodborne pathogens on fish purchased from the supermarkets and underscore the risk associated with improper handling of fish.
Collapse
Affiliation(s)
- Ama Okyere
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dayna Bishoff
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Micah O Oyaro
- School of Medicine, College of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Charles Darkoh
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA.,Microbiology and Infectious Diseases Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
23
|
Li H, Wang P, Lan R, Luo L, Cao X, Wang Y, Wang Y, Li H, Zhang L, Ji S, Ye C. Risk Factors and Level of Listeria monocytogenes Contamination of Raw Pork in Retail Markets in China. Front Microbiol 2018; 9:1090. [PMID: 29896170 PMCID: PMC5986919 DOI: 10.3389/fmicb.2018.01090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes can contaminate various foods via food processing environments and contamination of raw materials. There is a limited understanding of L. monocytogenes transmission in retail market and the role of insects in L. monocytogenes transmission in the retail environments. To better understand the risk factors of raw pork contamination, the prevalence of L. monocytogenes was examined in raw pork, retail environments and insects in a retail market over a 6-month period from March to August in 2016 in Beijing, China. A total of 2,789 samples were collected, including 356 raw pork samples, 1,392 meat contact surface swabs (MCS), 712 non-meat contact surface swabs (NMCS) and 329 insect samples. Overall, 424 (15.20%) of the samples were found to be contaminated by L. monocytogenes. Analyzed by serotyping, multilocus sequence typing and pulsed-field gel electrophoresis, the 424 L. monocytogenes isolates were divided into three serotypes (1/2c, 1/2a and 3a), 15 pulsotypes (PTs) and nine sequence types (STs), 1/2c/PT4/ST9 (244/424, 58%) was the most prevalent type of L. monocytogenes strains. The raw pork, MCS of the environments and insects were contaminated with higher levels of L. monocytogenes than NMCS of the environments, which suggested that cross contamination of L. monocytogenes between raw pork and the environment existed in the retail market, and long-term contaminated surfaces and vector insects would act as high risk factors to transmit L. monocytogenes to raw pork. Thus more effective strategies are needed to reduce the risk of retail pork meat contamination by L. monocytogenes and prevent foodborne human listeriosis.
Collapse
Affiliation(s)
- Hua Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Tongzhou District Center for Disease Control and Prevention, Beijing, China
| | - Pengfei Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lijuan Luo
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaolong Cao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Beijing Changping Institute for Tuberculosis Prevention and Treatment, Beijing, China
| | - Yi Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Microbiology, Guizhou Medical University, Guiyang, China
| | - Lu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shunshi Ji
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
24
|
Condón-Abanto S, Arroyo C, Álvarez I, Brunton N, Whyte P, Lyng JG. An assessment of the application of ultrasound in the processing of ready-to-eat whole brown crab (Cancer pagurus). ULTRASONICS SONOCHEMISTRY 2018; 40:497-504. [PMID: 28946451 DOI: 10.1016/j.ultsonch.2017.07.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/22/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
This study assesses the potential of incorporating ultrasound as a processing aid in the production of whole cooked brown crab (Cancer pagurus). The FDA recommended heat treatment to reduce Listeria monocytogenes by 6 log10 cycles in this product is a F707.5 of 2min. An equivalent F value was applied at 75°C in presence and absence of ultrasound in water alone or in water with 5% w/v NaCl added. Heat penetration, turbidity and conductivity of the cook water and also salt and moisture content of the crab meat (white and brown) were determined. Ultrasound assisted cooking allowed a reduction of the cooking time by up to 15% while still maintaining an F707.5 of 2min. Ultrasound also enhanced the rate and total amount of compounds released from the crab, which suggests that crabs cooked in the presence of ultrasound would be expected to be cleaner. Ultrasound also proved to be effective in reducing the salt content but hardly affected the final moisture content of the crab meat.
Collapse
Affiliation(s)
- S Condón-Abanto
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland; Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - C Arroyo
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - I Álvarez
- Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - N Brunton
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - P Whyte
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - J G Lyng
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
25
|
Parveen S, White C, Tamplin ML. A Predictive Model for the Growth of Listeria monocytogenes in Commercial Blue Crab (Callinectes sapidus). J Food Prot 2017; 80:1872-1876. [PMID: 29028360 DOI: 10.4315/0362-028x.jfp-17-062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/08/2017] [Indexed: 11/11/2022]
Abstract
During the processing and handling of commercial blue crab (Callinectes sapidus), Listeria monocytogenes can potentially contaminate cooked meat and grow to hazardous levels. To manage this risk, predictive models are useful tools for designing and implementing preventive controls; however, no model specific for blue crab meat has been published or evaluated. In this study, a cocktail of L. monocytogenes strains was added to pasteurized blue crab meat, which was incubated at storage temperatures from 0 to 35°C. At selected time intervals, L. monocytogenes was enumerated by direct plating onto modified Oxford agar. A primary model was fitted to kinetic data to estimate the lag-phase duration (LPD) and growth rate (GR). Listeria monocytogenes replicated from 0 to 35°C, with GR ranging from 0.004 to 0.518 log CFU/h. Overall, the LPD decreased with increasing temperature, displaying a maximum value of 187 h at 0°C; however, this trend was not consistent. The LPD was not detected at 10°C, and it occurred inconsistently from trial to trial. A secondary GR model (R2 = 0.9892) for pasteurized crab meat was compared with the L. monocytogenes GR in fresh crab meat, demonstrating bias and accuracy factors of 0.98 and 1.36, respectively. The model estimates varied from other published data and models, especially at temperatures ≥5°C, supporting the need for a specific predictive tool for temperature deviations.
Collapse
Affiliation(s)
- Salina Parveen
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, USA
| | - Channel White
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, USA
| | - Mark L Tamplin
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia 7001
| |
Collapse
|
26
|
Elbashir S, Parveen S, Schwarz J, Rippen T, Jahncke M, DePaola A. Seafood pathogens and information on antimicrobial resistance: A review. Food Microbiol 2017; 70:85-93. [PMID: 29173644 DOI: 10.1016/j.fm.2017.09.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 01/22/2023]
Abstract
Seafood-borne diseases are a major public health hazard in the United States and worldwide. Per capita, seafood consumption has increased globally during recent decades. Seafood importation and domestic aquaculture farming has also increased. Moreover, several recent outbreaks of human gastroenteritis have been linked to the consumption of contaminated seafood. Investigation of seafood-borne illnesses caused by norovirus, and Vibrio, and other bacteria and viruses require a concrete knowledge about the pathogenicity and virulence properties of the etiologic agents. This review explores pathogens that have been associated with seafood and resulting outbreaks in the U.S. and other countries as well as the presence of antimicrobial resistance in the reviewed pathogens. The spectrum of such resistance is widening due to the overuse, misuse, and sub-therapeutic application of antimicrobials in humans and animals.
Collapse
Affiliation(s)
- S Elbashir
- Food Science and Technology Ph.D. Program, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, 2116 Center for Food Science and Technology, Princess Anne, MD 21853, USA
| | - S Parveen
- Food Science and Technology Ph.D. Program, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, 2116 Center for Food Science and Technology, Princess Anne, MD 21853, USA.
| | - J Schwarz
- Food Science and Technology Ph.D. Program, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, 2116 Center for Food Science and Technology, Princess Anne, MD 21853, USA
| | - T Rippen
- Food Science and Technology Ph.D. Program, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, 2116 Center for Food Science and Technology, Princess Anne, MD 21853, USA
| | - M Jahncke
- Virginia Tech., Virginia Seafood Agricultural Research and Extension Center, 102 South King Street, Hampton, VA 23669, USA
| | - A DePaola
- Angelo DePaola Consulting, 12719 Dauphin Island Pkwy, Coden, AL 36523, USA
| |
Collapse
|
27
|
Lee DY, Ha JH, Lee MK, Cho YS. Antimicrobial susceptibility and serotyping of Listeria monocytogenes isolated from ready-to-eat seafood and food processing environments in Korea. Food Sci Biotechnol 2017; 26:287-291. [PMID: 30263540 DOI: 10.1007/s10068-017-0038-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022] Open
Abstract
We examined antimicrobial susceptibility and serotypes of 33 L. monocytogenes isolates collected from ready-to-eat seafood and food processing environments. The isolated strains belonged to the 1/2b (73%), 4b (15%), and 1/2a (12%) serotypes; 11 of the obtained environmental swab samples belonged to the 1/2b serogroup. Antimicrobial resistance to benzyl penicillin (100%), clindamycin (100%), oxacillin (100%), ampicillin (97%), and tetracycline (18%) was detected, and 27/33 isolates (82%) showed resistance to four antibiotics and 6/33 (18%) were resistant to five. Total typing by automated repetitive sequence-based PCR revealed that the 33 isolates grouped into four distinct clusters with significantly correlated serotypes. These findings provide important information about the safety of ready-to-eat seafood and suggest that control measures should be adopted in order to mitigate the risk to humans posed by L. monocytogenes contaminated seafood.
Collapse
Affiliation(s)
- Da Yeon Lee
- 1Food Analysis Center, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Jae Ho Ha
- World Institute of Kimchi, Gwangju, 61755 Korea
| | - Myung Ki Lee
- 3Traditional Food Research Group, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Yong Sun Cho
- 1Food Analysis Center, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| |
Collapse
|
28
|
Listeria monocytogenes behaviour and quality attributes during sausage storage affected by sodium nitrite, sodium lactate and thyme essential oil. FOOD SCI TECHNOL INT 2017; 23:277-288. [DOI: 10.1177/1082013216686464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of the addition of nitrite at 200 ppm (N), sodium lactate 1.5% (L) and thyme essential oil at 100 ppm (T1) on Listeria monocytogenes behaviour and ATPase activity inhibition were evaluated, as well as lipid oxidation through the quantification of malonaldehydes, in sausage stored at 8 ℃ for 41 days and at 30 ℃ for 14 days. The changes in the colour profile were performed during storage time at 8 ℃. Quantitative descriptive sensory analyses were performed after two days at 4 ℃. At 8 ℃, the treatments with the highest inhibition on L. monocytogenes were L and N, without significant differences. In turn, at 30 ℃, the bacterium was most inhibited with treatment L, followed by T1 and N, without significant differences. A 44.1% and 19% inhibition of ATPase activity was detected in L and T1 treatments, respectively. At 8 ℃ and 30 ℃, malonaldehydes content was not different between the treatments. N presented the highest values of a* and concentration of metmyoglobin after 41 days at 8 ℃. The panel detected differences between T1 and N for the aroma in the descriptors spices and herbal.
Collapse
|
29
|
Cho T, Kim N, Kim S, Song J, Rhee M. Survival of foodborne pathogens ( Escherichia coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus , Listeria monocytogenes , and Vibrio parahaemolyticus ) in raw ready-to-eat crab marinated in soy sauce. Int J Food Microbiol 2016; 238:50-55. [DOI: 10.1016/j.ijfoodmicro.2016.08.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 11/15/2022]
|
30
|
Korir RC, Parveen S, Hashem F, Bowers J. Microbiological quality of fresh produce obtained from retail stores on the Eastern Shore of Maryland, United States of America. Food Microbiol 2016; 56:29-34. [PMID: 26919815 DOI: 10.1016/j.fm.2015.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the microbiological quality of six types of fresh produce obtained from three retail stores located on the Eastern Shore of Maryland, USA. A total of 414 samples representing basil, cilantro, lettuce, scallion, spinach, and parsley were analyzed for total aerobic bacteria (APC), total coliforms, Escherichia coli, and three pathogenic bacteria (E. coli O157:H7, Listeria monocytogenes, and Salmonella), using standard methods. Presumptive pathogenic isolates were confirmed using BAX Polymerase Chain Reaction. Total aerobic populations varied widely between samples, while 38.41% were positive for total coliforms and only 10.15% for E. coli. Median abundance (log CFU/g) of total coliforms and E. coli were less than the limit of detection and that of APC ranged from 5.78 to 6.61 over the six produce types. There was a statistically significant difference in prevalence of total coliforms among the retail stores, but not for abundance of APC or prevalence of E. coli. E. coli O157:H7 and L. monocytogenes were detected in one spinach sample each, while one parsley and one cilantro sample were positive for Salmonella. There were no statistically significant differences in microbiological quality among produce types. Although the results of this study provided some indices of sanitary and/or spoilage level, no relationship was observed among the total aerobic bacteria, total coliforms, E. coli, and the presence of pathogenic bacteria in the samples tested.
Collapse
Affiliation(s)
- Robert Cheruiyot Korir
- Food Science and Technology Ph.D. Program, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Salina Parveen
- Food Science and Technology Ph.D. Program, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| | - Fawzy Hashem
- Food Science and Technology Ph.D. Program, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - John Bowers
- U. S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA
| |
Collapse
|
31
|
Fang C, Shan Y, Cao T, Xia Y, Xin Y, Cheng C, Song H, Li X, Fang W. Prevalence and Virulence Characterization of Listeria monocytogenes in Chilled Pork in Zhejiang Province, China. Foodborne Pathog Dis 2015; 13:8-12. [PMID: 26393675 DOI: 10.1089/fpd.2015.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen that can grow in refrigeration temperature and causes severe human infections. The aims of this work were to estimate the prevalence of L. monocytogenes in chilled pork in Zhejiang, China and to examine the virulence features of the isolates. Of 331 meat samples, 196 were positive for Listeria spp., with L. innocua accounting for 54.4%, L. monocytogenes for 11.5%, and L. welshimeri for 4.2%. The most prevalent L. monocytogenes serotype was 1/2c (60.5%), followed by serotypes 1/2a (28.9%), 1/2b (7.9%), and 4b (2.6%). All L. monocytogenes isolates contained virulence-associated genes examined. Adhesion and invasion ability of serotype 1/2c isolates was much lower than those of other serotypes. Only one isolate was defective in cell-to-cell spread. These findings are important for risk assessment of chilled pork as a source of potential transmission of L. monocytogenes to other food products, particularly to ready-to-eat food products.
Collapse
Affiliation(s)
- Chun Fang
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China
| | - Ying Shan
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China
| | - Tong Cao
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China
| | - Ye Xia
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China
| | - Yongping Xin
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China
| | - Changyong Cheng
- 2 College of Animal Science and Technology, Zhejiang A&F University , Lin'an, Zhejiang, China
| | - Houhui Song
- 2 College of Animal Science and Technology, Zhejiang A&F University , Lin'an, Zhejiang, China
| | - Xiaoliang Li
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China
| | - Weihuan Fang
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China .,2 College of Animal Science and Technology, Zhejiang A&F University , Lin'an, Zhejiang, China
| |
Collapse
|
32
|
Rodríguez-López P, Saá-Ibusquiza P, Mosquera-Fernández M, López-Cabo M. Listeria monocytogenes-carrying consortia in food industry. Composition, subtyping and numerical characterisation of mono-species biofilm dynamics on stainless steel. Int J Food Microbiol 2015; 206:84-95. [PMID: 26001376 DOI: 10.1016/j.ijfoodmicro.2015.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022]
Abstract
In order to find out how real Listeria monocytogenes-carrying biofilms are in industrial settings, a total of 270 environmental samples belonging to work surfaces from fish (n = 123), meat (n = 75) and dairy industries (n = 72) were analysed in order to detect L. monocytogenes. 12 samples were positive for L. monocytogenes and a total of 18 different species were identified as accompanying microbiota in fish and meat industry. No L. monocytogenes was found in samples from dairy industry. Molecular characterisation combining results of AscI and ApaI macrorestriction PFGE assays yielded 7 different subtypes of L. monocytogenes sharing in 71.43% of cases the same serogroup (1/2a-3a). Results from dynamic numerical characterisation between L. monocytogenes monospecies biofilms on stainless steel (SS) using MATLAB-based tool BIOFILMDIVER demonstrated that except in isolate A1, in which a significant increase in the percentage of covered area (CA), average diffusion distance (ADD) and maximum diffusion distance (MDD) was observed after 120 h of culture, no significant differences were observed in the dynamics of the rest of the L. monocytogenes isolates. Quantitative dual-species biofilm association experiments performed on SS indicated that L. monocytogenes cell counts presented lower values in mixed-species cultures with certain species at 24 and 48 h compared with mono-species culture. However, they remained unaltered after 72 h except when co-cultured with Serratia fonticola which presented differences in all sampling times and was also the dominant species within the dual-species biofilm. When considering frequency of appearance of accompanying species, an ecological distribution was demonstrated as Escherichia coli appeared to be the most abundant in fish industry and Carnobacterium spp. in meat industry.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- Department of Microbiology and Technology of Marine Products, Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain; Department of Genetics and Microbiology, Faculty of Biosciences, Autonomous University of Barcelona, Campus of Bellaterra, 08193 Bellaterra, Catalonia, Spain
| | - Paula Saá-Ibusquiza
- Department of Microbiology and Technology of Marine Products, Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain.
| | - Maruxa Mosquera-Fernández
- Department of Microbiology and Technology of Marine Products, Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain
| | - Marta López-Cabo
- Department of Microbiology and Technology of Marine Products, Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain.
| |
Collapse
|
33
|
Muhterem-Uyar M, Dalmasso M, Bolocan AS, Hernandez M, Kapetanakou AE, Kuchta T, Manios SG, Melero B, Minarovičová J, Nicolau AI, Rovira J, Skandamis PN, Jordan K, Rodríguez-Lázaro D, Stessl B, Wagner M. Environmental sampling for Listeria monocytogenes control in food processing facilities reveals three contamination scenarios. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.10.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Suklim K, Flick GJ, Vichitphan K. Effects of gamma irradiation on the physical and sensory quality and inactivation of Listeria monocytogenes in blue swimming crab meat (Portunas pelagicus). Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2014.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Jami M, Ghanbari M, Zunabovic M, Domig KJ, Kneifel W. Listeria monocytogenesin Aquatic Food Products-A Review. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12092] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mansooreh Jami
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
- Dept. of Fisheries; Faculty of Natural Resources; Univ. of Zabol; Zabol Iran
| | - Mahdi Ghanbari
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
- Dept. of Fisheries; Faculty of Natural Resources; Univ. of Zabol; Zabol Iran
| | - Marija Zunabovic
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
| | - Konrad J. Domig
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
| | - Wolfgang Kneifel
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
| |
Collapse
|
36
|
Cabrita P, Trigo MJ, Ferreira RB, Brito L. Is the exoproteome important for bacterial pathogenesis? Lessons learned from interstrain exoprotein diversity in Listeria monocytogenes grown at different temperatures. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:553-69. [PMID: 25127015 DOI: 10.1089/omi.2013.0151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial exoproteomes vary in composition and quantity among species and within each species, depending on the environmental conditions to which the cells are exposed. This article critically reviews the literature available on exoproteins synthesized by the foodborne pathogenic bacterium Listeria monocytogenes grown at different temperatures. The main challenges posed for exoproteome analyses and the strategies that are being used to overcome these constraints are discussed. Over thirty exoproteins from L. monocytogenes are considered, and the multifunctionality of some of them is discussed. Thus, at the host temperature of 37°C, good examples are provided by Lmo0443, a potential marker for low virulence, and by the virulence factors internalin C (InlC) and listeriolysin O (LLO). Based on the reported LLO-induced mucin exocytosis, a model is proposed for the involvement of extracellular LLO in optimizing the conditions for InlC intervention in the invasion of intestinal epithelial cells. At lower growth temperatures, exoproteins such as flagellin (FlaA) and oligopeptide permease (OppA) may explain the persistence of particular strains in the food industry environment, eventually allowing the development of new tools to eradicate L. monocytogenes, a major concern for public health.
Collapse
Affiliation(s)
- Paula Cabrita
- 1 CBAA/DRAT-Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon , Lisbon, Portugal
| | | | | | | |
Collapse
|
37
|
Chen M, Wu Q, Zhang J, Guo W, Wu S, Yang X. Prevalence and contamination patterns of Listeria monocytogenes in Flammulina velutipes plants. Foodborne Pathog Dis 2014; 11:620-7. [PMID: 24824447 DOI: 10.1089/fpd.2013.1727] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Four mushroom (Flammulina velutipes) production plants were sampled to investigate the prevalence and contamination source of Listeria monocytogenes. Among 295 samples, the prevalence of L. monocytogenes was 18.6%; the contamination appeared to originate from the mycelium-scraping machinery, contaminating both the product and upstream packaging equipment. Of 55 L. monocytogenes isolates, lineages I.1 (1/2a-3a) and II.2 (1/2b-3b-7) accounted for 65.5% and 34.5%, respectively. In addition, lineage I.1 formed significantly thicker biofilms than those within lineage II.2, as determined by crystal violet staining and scanning electron microscopy. Genotype analyses of L. monocytogenes isolates using enterobacteria repetitive intergenic consensus-polymerase chain reaction, and random amplified polymorphic DNA revealed that the surfaces of mycelium-scraping machinery may serve as the main source of L. monocytogenes contamination in three of the four plants. This study was the first report to explore the potential contamination sources of L. monocytogenes in the mushroom production chain, thereby providing baseline information for adopting prophylactic measures for critical control points during production in mushroom plants to avoid L. monocytogenes contamination.
Collapse
Affiliation(s)
- Moutong Chen
- 1 School of Bioscience and Bioengineering, South China University of Technology , Guangzhou, China
| | | | | | | | | | | |
Collapse
|
38
|
Chen M, Wu Q, Zhang J, Yan Z, Wang J. Prevalence and characterization of Listeria monocytogenes isolated from retail-level ready-to-eat foods in South China. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Cetinkaya F, Elal Mus T, Yibar A, Guclu N, Tavsanli H, Cibik R. Prevalence, Serotype Identification by Multiplex Polymerase Chain Reaction and Antimicrobial Resistance Patterns of L
isteria Monocytogenes
Isolated from Retail Foods. J Food Saf 2014. [DOI: 10.1111/jfs.12093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Figen Cetinkaya
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine; University of Uludag; Gorukle Campus Bursa 16059 Turkey
| | - Tulay Elal Mus
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine; University of Uludag; Gorukle Campus Bursa 16059 Turkey
| | - Artun Yibar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine; University of Uludag; Gorukle Campus Bursa 16059 Turkey
| | - Nedret Guclu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine; University of Uludag; Gorukle Campus Bursa 16059 Turkey
| | - Hakan Tavsanli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine; University of Uludag; Gorukle Campus Bursa 16059 Turkey
| | - Recep Cibik
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine; University of Uludag; Gorukle Campus Bursa 16059 Turkey
| |
Collapse
|
40
|
Inactivation of natural microflora and inoculated Listeria innocua on whole raw shrimp by ozonated water, antimicrobial coatings, and cryogenic freezing. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Momtaz H, Yadollahi S. Molecular characterization of Listeria monocytogenes isolated from fresh seafood samples in Iran. Diagn Pathol 2013; 8:149. [PMID: 24033984 PMCID: PMC3852293 DOI: 10.1186/1746-1596-8-149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 08/27/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Among all species of Listeria, Listeria monocytogenes (L. monocytogenes) is a major pathogenic microorganism of humans and animals and L. ivanovii is rarely pathogenic for humans. The objective of this study was to isolate and characterize Listeria species and to determine the frequencies of virulence genes in L. monocytogenes serotypes in fresh fish, shrimp, crab and lobster in Isfahan and Shahrekord, Iran. METHODS From September 2010 to April 2011, a total of 300 marine food samples were purchased from supermarkets of Isfahan and Shahrekord cities, Iran. All samples were cultured and the positive samples for L. monocytogenes were analyzed for presence of serotypes and virulence genes. RESULTS From the total 300 samples, 23 (10.45%) fresh fish and 1 (2.5%) shrimp samples were positive for Listeria spp., but there were no positive lobster and crab samples for Listeria species. Only L. monocytogenes was isolated from 17 fish (7.25%) and 1 shrimp (2.5%) samples while L. innocua, L. ivanovii and L. seeligeri only detected in fish samples (2 (0.9%), 3 (1.36%) and 1 (0.45%)), respectively. The plcA, prfA, actA, hlyA and iap virulence genes were detected in all of the 18 L. monocytogenes isolates. Totally, the 4b, 1/2a and 1/2b serotypes were detected in 66.66%, 5.55% and 27.77% bacterial isolates, respectively. CONCLUSIONS Consumption of these sea foods, either raw or undercooked, may contribute to food-borne illness due to L. monocytogenes in Iran. The hygienic quality of sea food products should be observe. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/3422944359800606.
Collapse
Affiliation(s)
- Hassan Momtaz
- Department of Microbiology, College of Veterinary Medicine, ShahreKord Branch, Islamic Azad University, ShahreKord, Iran
| | - Shole Yadollahi
- Post graduated of Master of Science of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Iran
| |
Collapse
|