1
|
Delaunay L, Postollec F, Leguérinel I, Mathot AG. Detection of risk areas in dairy powder processes: The development of thermophilic spore forming bacteria taking into account their growth limits. Int J Food Microbiol 2024; 418:110716. [PMID: 38669747 DOI: 10.1016/j.ijfoodmicro.2024.110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anoxybacillus flavithermus, Geobacillus stearothermophilus and Bacillus licheniformis are the main contaminants found in dairy powders. These spore-forming thermophilic bacteria, rarely detected in raw milk, persist, and grow during the milk powder manufacturing process. Moreover, in the form of spores, these species resist and concentrate in the powders during the processes. The aim of this study was to determine the stages of the dairy powder manufacturing processes that are favorable to the growth of such contaminants. A total of 5 strains were selected for each species as a natural contaminant of dairy pipelines in order to determine the minimum and maximum growth enabling values for temperature, pH, and aw and their optimum growth rates in milk. These growth limits were combined with the environmental conditions of temperature, pH and aw encountered at each step of the manufacture of whole milk, skim milk and milk protein concentrate powders to estimate growth capacities using cardinal models and the Gamma concept. These simulations were used to theoretically calculate the population sizes reached for the different strains studied at each stage in between two successive cleaning in place procedures. This approach highlights the stages at which risk occurs for the development of spore-forming thermophilic bacterial species. During the first stages of production, i.e. pre-treatment, pasteurization, standardization and pre-heating before concentration, physico-chemical conditions encountered are suitable for the development and growth of A. flavithermus, G. stearothermophilus and B. licheniformis. During the pre-heating stage and during the first effects in the evaporators, the temperature conditions appear to be the most favorable for the growth of G. stearothermophilus. The temperatures in the evaporator during the last evaporator effects are favorable for the growth of B. licheniformis. In the evaporation stage, low water activity severely limits the development of A. flavithermus.
Collapse
Affiliation(s)
- Louis Delaunay
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29000 Quimper, France
| | - Florence Postollec
- ADRIA Food Technology Institute, UMT ACTIA 19.03 ALTER'iX, Z.A. de Creac'h Gwen, 29196, Quimper, Cedex, France
| | - Ivan Leguérinel
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29000 Quimper, France.
| | - Anne-Gabrielle Mathot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29000 Quimper, France
| |
Collapse
|
2
|
Neumann CJ, Mahnert A, Kumpitsch C, Kiu R, Dalby MJ, Kujawska M, Madl T, Kurath-Koller S, Urlesberger B, Resch B, Hall LJ, Moissl-Eichinger C. Clinical NEC prevention practices drive different microbiome profiles and functional responses in the preterm intestine. Nat Commun 2023; 14:1349. [PMID: 36906612 PMCID: PMC10008552 DOI: 10.1038/s41467-023-36825-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/13/2023] [Indexed: 03/13/2023] Open
Abstract
Preterm infants with very low birthweight are at serious risk for necrotizing enterocolitis. To functionally analyse the principles of three successful preventive NEC regimens, we characterize fecal samples of 55 infants (<1500 g, n = 383, female = 22) longitudinally (two weeks) with respect to gut microbiome profiles (bacteria, archaea, fungi, viruses; targeted 16S rRNA gene sequencing and shotgun metagenomics), microbial function, virulence factors, antibiotic resistances and metabolic profiles, including human milk oligosaccharides (HMOs) and short-chain fatty acids (German Registry of Clinical Trials, No.: DRKS00009290). Regimens including probiotic Bifidobacterium longum subsp. infantis NCDO 2203 supplementation affect microbiome development globally, pointing toward the genomic potential to convert HMOs. Engraftment of NCDO 2203 is associated with a substantial reduction of microbiome-associated antibiotic resistance as compared to regimens using probiotic Lactobacillus rhamnosus LCR 35 or no supplementation. Crucially, the beneficial effects of Bifidobacterium longum subsp. infantis NCDO 2203 supplementation depends on simultaneous feeding with HMOs. We demonstrate that preventive regimens have the highest impact on development and maturation of the gastrointestinal microbiome, enabling the establishment of a resilient microbial ecosystem that reduces pathogenic threats in at-risk preterm infants.
Collapse
Affiliation(s)
- Charlotte J Neumann
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine; Medical University of Graz, Graz, Styria, 8010, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine; Medical University of Graz, Graz, Styria, 8010, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine; Medical University of Graz, Graz, Styria, 8010, Austria
| | - Raymond Kiu
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Matthew J Dalby
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Magdalena Kujawska
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health; Technical University of Munich, Freising, Bavaria, 85354, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Styria, 8010, Austria
- BioTechMed, Graz, Styria, 8010, Austria
| | - Stefan Kurath-Koller
- Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Styria, 8036, Austria
| | - Berndt Urlesberger
- Division of Neonatology; Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Styria, 8036, Austria
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Medical University of Graz, Graz, Styria, 8036, Austria
| | - Bernhard Resch
- Division of Neonatology; Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Styria, 8036, Austria.
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Medical University of Graz, Graz, Styria, 8036, Austria.
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health; Technical University of Munich, Freising, Bavaria, 85354, Germany
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine; Medical University of Graz, Graz, Styria, 8010, Austria.
- BioTechMed, Graz, Styria, 8010, Austria.
| |
Collapse
|
3
|
Cui ZH, Ni WN, Tang T, He B, Zhong ZX, Fang LX, Chen L, Chen C, Cui CY, Liu YH, Liao XP, Sun J. Rapid detection of plasmid-mediated high-level tigecycline resistance in Escherichia coli and Acinetobacter spp. J Antimicrob Chemother 2021; 75:1479-1483. [PMID: 32091099 DOI: 10.1093/jac/dkaa029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/03/2019] [Accepted: 01/15/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The emergence and spread of plasmid-encoded tet(X3/X4) genes that confer high-level tigecycline and eravacycline resistance in Escherichia coli and Acinetobacter spp. pose serious threats to human and animal health. We developed a rapid and robust assay to detect Tet(X3/X4) in Gram-negative bacteria based on eravacycline degradation by the presence of the Tet(X) enzyme in the test strain. METHODS This tetracycline inactivation method (TIM) is based on the degradation of eravacycline by the Tet(X3/X4)-producing strain, which results in reduced eravacycline activity against an acid-producing thermophile Bacillus stearothermophilus indicator strain. For Tet(X)-negative strains, eravacycline retains its antimicrobial activity. Coupled with a pH-sensitive dye (bromocresol purple), the reduced colorimetric inhibition zone can be measured to determine the production of Tet(X3/X4). One hundred and eighteen isolates, including 30 tet(X4)-positive E. coli, 30 tet(X3)-positive Acinetobacter spp. and 58 tet(X)-negative E. coli and Acinetobacter spp., were examined to evaluate the performance of this TIM. RESULTS The sensitivity and specificity for E. coli carrying tet(X4) was 96.7% and 100%, respectively, and for Acinetobacter spp. carrying tet(X3) both were 100%. The TIM assay can be completed within 6.5 h. CONCLUSIONS The TIM is a simple, rapid and cost-effective method for the detection of plasmid-mediated high-level tigecycline resistance in E. coli and Acinetobacter spp.
Collapse
Affiliation(s)
- Ze-Hua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wei-Na Ni
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Tian Tang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Bing He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zi-Xing Zhong
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA
| | - Chong Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Chao-Yue Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
4
|
Viability of bacterial spores surviving heat-treatment is lost by further incubation at temperature and pH not suitable for growth. Food Microbiol 2020; 95:103690. [PMID: 33397631 DOI: 10.1016/j.fm.2020.103690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/21/2022]
Abstract
Spores from 21 strains from different genera were heat-treated and stored in different sets of process conditions (4 temperatures and 3 pH levels) defined to prevent growth. In these conditions, spores surviving the heat treatment progressively lost viability during storage. Different inactivation curve shapes (linear, shoulder and tailing) and different sensitivities to storage were observed. B. coagulans showed the fastest inactivation kinetics, with more than 4-log reduction of spore population within 24 h after heating and G. stearothermophilus displayed slower inactivation kinetics, whereas all the anaerobic strains studied (M. thermoacetica and Thermoanaerobacterium spp.) proved resistant to storage conditions, with no destruction detected during 90 days in most cases. Inactivation rates were relatively unaffected by sub-lethal pH but sharply accelerated by temperature: Inactivation became faster as temperature increased (in the 8 °C-55 °C temperature range), with growth blocked by low pH in sub-lethal temperatures. There were changes in surviving spore numbers after the heat-treatment phase. This has implications and applications in canned food industries, as the probability of a retorted sample testing as non-stable, meaning possible spoilage, may decrease with time. In simple terms, a batch of low-acid canned food that tests as non-shelf-stable after an incubation test i.e. positive growth conditions, may later become negative if stored at room temperature (below the minimal growth temperature for thermophilic spores), which may change the marketability of the batch.
Collapse
|
5
|
Dynamics of Geobacillus stearothermophilus and Bacillus cereus spores inoculated in different time intervals during simulated cocoa beans fermentation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Dettling A, Doll E, Wedel C, Hinrichs J, Scherer S, Wenning M. Accurate quantification of thermophilic spores in dairy powders. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Wang Y, Bi L, Liao Y, Lu D, Zhang H, Liao X, Liang JB, Wu Y. Influence and characteristics of Bacillus stearothermophilus in ammonia reduction during layer manure composting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:80-87. [PMID: 31078019 DOI: 10.1016/j.ecoenv.2019.04.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Ammonia emissions is an important issue during composting because it can cause secondary pollution and a significant of nitrogen loss. Based on research adding Bacillus stearothermophilus can reduce ammonia emissions during composting because it can use sugar in organic matter fermentation to produce organic acids over 50 °C. This study conducted the batch experiments by adding different concentrations of Bacillus stearothermophilus to reduce the ammonia emissions and find out its characteristic during layer manure composting by using an aerobic composting reactor with sawdust as a bulking agent. The results show that the application of Bacillus stearothermophilus can accelerate the rate of temperature and significantly decrease pH, the warming period was 2 days in the treatment with Bacillus stearothermophilus, while it was 4 days in the treatment without Bacillus stearothermophilus. Ammonia emissions were mainly occurred in warming and high temperature period during composting. The ammonia emissions in the treatment with 8.00 g/kg initial Bacillus stearothermophilus were significantly lower than the other lower Bacillus stearothermophilus treatment and control during composting (p < 0.05), and it can significantly increase ammonium-nitrogen and nitrate-nitrogen concentration, reduce pH (p < 0.05), but the average number of Bacillus stearothermophilus copies in treatment with different initial Bacillus stearothermophilus concentration had no significant difference (p > 0.05). MiSeq System Sequencing results find that the addition of Bacillus stearothermophilus changed the bacterial community structure under warming and high-temperature periods during composting, increased the relative abundance of lactic acid bacillus and nitrification bacteria. Therefore, the reason for the low ammonia emission in 8.00 g/kg initial Bacillus stearothermophilus treatments might be not only due to the Bacillus stearothermophilus itself, but also Bacillus stearothermophilus can change the indigenous microorganism community, including increase the relative content of lactic acid Bacillus and nitrification bacteria, thus reducing the pH and promoting nitrification, and reducing ammonia emissions.
Collapse
Affiliation(s)
- Yan Wang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Lulu Bi
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yanghui Liao
- College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Dongdong Lu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huaidan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xindi Liao
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Juan Boo Liang
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Yinbao Wu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
8
|
Zhou S, Zhang X, Liao X, Wu Y, Mi J, Wang Y. Effect of Different Proportions of Three Microbial Agents on Ammonia Mitigation during the Composting of Layer Manure. Molecules 2019; 24:molecules24132513. [PMID: 31324049 PMCID: PMC6651566 DOI: 10.3390/molecules24132513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023] Open
Abstract
Odor emissions represent one of the important issues of aerobic composting. The addition of microbial agents to compost is an important method for solving this problem, but this process is often unstable when a single microbial agent is added to the compost. Therefore, in this study, five treatments comprising different proportions of Bacillus stearothermophilus, Candida utilis, and Bacillus subtilis were tested to determine the best combination of the three microbial agents for ammonia reduction, as follows: control group (CK), 2:1:1 (A), 1:1:2 (B), 1:2:1 (C), and 1:1:1 (D). Compared with the CK group, the A, B, C, and D groups reduced ammonia emissions by 17.02, 9.68, 53.11, and 46.23%, respectively. The total ammonia emissions were significantly lower in C and D than in CK (p < 0.05). These two treatment groups had significantly increased nitrate nitrogen concentrations and decreased pH values and ammonium nitrogen concentrations (p < 0.05). Throughout the composting process, the total bacterial number was significantly higher in C and D than in CK (p < 0.05). Therefore, it is likely that B. stearothermophilus, C. utilis, and B. subtilis compounded from 1:2:1 (C) to 1:1:1 (D) reduced the ammonia emissions due to (1) a reduction in the pH and (2) the promotion of the growth of ammonia-oxidizing bacteria and the conversion of ammonium nitrogen to nitrate nitrogen. This study provides a theoretical basis and technical support for the odor problem of layer manure compost and promotes the development of composting technology.
Collapse
Affiliation(s)
- Shizheng Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China
| | - Xinyi Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China
| | - Xindi Liao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key lab of Chicken Genetics, Breeding and reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Yinbao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key lab of Chicken Genetics, Breeding and reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Jiandui Mi
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key lab of Chicken Genetics, Breeding and reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Yan Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key lab of Chicken Genetics, Breeding and reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| |
Collapse
|
9
|
Heat resistance of spores of 18 strains of Geobacillus stearothermophilus and impact of culturing conditions. Int J Food Microbiol 2019; 291:161-172. [DOI: 10.1016/j.ijfoodmicro.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/14/2018] [Accepted: 11/06/2018] [Indexed: 11/24/2022]
|
10
|
Investigating the influence of pH and selected heating media on thermal destruction kinetics of Geobacillus stearothermophilus (ATCC10149). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00046-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Gupta S, Anand S. Induction of pitting corrosion on stainless steel (grades 304 and 316) used in dairy industry by biofilms of common sporeformers. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12444] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Somil Gupta
- Midwest Dairy Foods Research Center; Dairy and Food Science Department; South Dakota State University; Brookings SD 57007 USA
| | - Sanjeev Anand
- Midwest Dairy Foods Research Center; Dairy and Food Science Department; South Dakota State University; Brookings SD 57007 USA
| |
Collapse
|
12
|
Sadiq FA, Li Y, Liu T, Flint S, Zhang G, Yuan L, Pei Z, He G. The heat resistance and spoilage potential of aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders. Int J Food Microbiol 2016; 238:193-201. [DOI: 10.1016/j.ijfoodmicro.2016.09.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/26/2016] [Accepted: 09/11/2016] [Indexed: 11/28/2022]
|
13
|
Die another day: Fate of heat-treated Geobacillus stearothermophilus ATCC 12980 spores during storage under growth-preventing conditions. Food Microbiol 2016; 56:87-95. [DOI: 10.1016/j.fm.2015.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/02/2015] [Accepted: 12/25/2015] [Indexed: 11/24/2022]
|
14
|
Effect of pH on Thermoanaerobacterium thermosaccharolyticum DSM 571 growth, spore heat resistance and recovery. Food Microbiol 2016; 55:64-72. [DOI: 10.1016/j.fm.2015.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/03/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022]
|
15
|
Wells-Bennik MH, Eijlander RT, den Besten HM, Berendsen EM, Warda AK, Krawczyk AO, Nierop Groot MN, Xiao Y, Zwietering MH, Kuipers OP, Abee T. Bacterial Spores in Food: Survival, Emergence, and Outgrowth. Annu Rev Food Sci Technol 2016; 7:457-82. [DOI: 10.1146/annurev-food-041715-033144] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marjon H.J. Wells-Bennik
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
| | - Robyn T. Eijlander
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
| | - Heidy M.W. den Besten
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Erwin M. Berendsen
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Alicja K. Warda
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, 6700 AA Wageningen, The Netherlands
| | - Antonina O. Krawczyk
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Masja N. Nierop Groot
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, 6700 AA Wageningen, The Netherlands
| | - Yinghua Xiao
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Marcel H. Zwietering
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Oscar P. Kuipers
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
16
|
Mtimet N, Trunet C, Mathot AG, Venaille L, Leguérinel I, Coroller L, Couvert O. Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries. Food Microbiol 2015; 48:153-62. [DOI: 10.1016/j.fm.2014.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/15/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
|