1
|
Topalcengiz Z, Chandran S, Gibson KE. A comprehensive examination of microbial hazards and risks during indoor soilless leafy green production. Int J Food Microbiol 2024; 411:110546. [PMID: 38157635 DOI: 10.1016/j.ijfoodmicro.2023.110546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/26/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Produce grown under controlled environment agriculture (CEA) is often assumed to have a reduced risk of pathogen contamination due to the low chance of exposure to outdoor contaminant factors. However, the 2021 outbreak and numerous recalls of CEA-grown lettuce and microgreens demonstrate the possibility of pathogen introduction during indoor production when there is a failure in the implementation of food safety management systems. Indoor production of commercial leafy greens, such as lettuce and microgreens, is performed across a range of protective structures from primitive household setups to advanced and partially automatized growing systems. Indoor production systems include hydroponic, aquaponic, and aeroponic configurations. Hydroponic systems such as deep water culture and nutrient film technique comprised of various engineering designs represent the main system types used by growers. Depending on the type of leafy green, the soilless substrate, and system selection, risk of microbial contamination will vary during indoor production. In this literature review, science-based pathogen contamination risks and mitigation strategies for indoor production of microgreens and more mature leafy greens are discussed during both pre-harvest and post-harvest stages of production.
Collapse
Affiliation(s)
- Zeynal Topalcengiz
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA; Department of Food Engineering, Faculty of Engineering and Architecture, Muş Alparslan University, 49250 Muş, Türkiye
| | - Sahaana Chandran
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA.
| |
Collapse
|
2
|
Ortiz Y, Heredia N, García S. Boundaries That Prevent or May Lead Animals to be Reservoirs of Escherichia coli O104:H4. J Food Prot 2023; 86:100053. [PMID: 36916560 DOI: 10.1016/j.jfp.2023.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023]
Abstract
Escherichia coli O104:H4, a hybrid serotype carrying virulence factors from enteroaggregative (EAEC) and Shiga toxin-producing (STEC) pathotypes, is the reported cause of a multicountry outbreak in 2011. Evaluation of potential routes of human contamination revealed that this strain is a foodborne pathogen. In contrast to STEC strains, whose main reservoir is cattle, serotype O104:H4 has not been commonly isolated from animals or related environments, suggesting an inability to naturally colonize the gut in hosts other than humans. However, contrary to this view, this strain has been shown to colonize the intestines of experimental animals in infectious studies. In this minireview, we provide a systematic summary of reports highlighting potential evolutionary changes that could facilitate the colonization of new reservoirs by these bacteria.
Collapse
Affiliation(s)
- Yaraymi Ortiz
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - Norma Heredia
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - Santos García
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico.
| |
Collapse
|
3
|
Deng W, Gibson KE. Persistence and transfer of Tulane virus in a microgreen cultivation system. Int J Food Microbiol 2023; 387:110063. [PMID: 36577204 DOI: 10.1016/j.ijfoodmicro.2022.110063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Microgreens are niche salad greens which have increased in popularity among consumers in recent years. Due to similarities with sprouts and leafy greens-both attributed to numerous foodborne disease outbreaks-characterization of the food safety risks associated with microgreen production is warranted. The present study aimed to determine the fate and persistence of a human norovirus (HuNoV) surrogate, Tulane virus (TV), within a microgreen production system. Initially, the persistence of TV in two types of microgreen soil-free cultivation matrix (SFCM)-BioStrate® (biostrate) and peat-was determined. On day 0, water containing 7.6 log PFU of TV was applied to SFCM in growing trays, and the trays were maintained under microgreen growth conditions. TV persisted throughout the 10-day observation in biostrate and peat with overall reductions of 3.04 and 1.76 log plaque forming units (PFU) per tray, respectively. Subsequently, the transfer of TV to microgreen edible tissue was determined when planted on contaminated SFCM. Trays containing each type of SFCM were pre-inoculated with 7.6 log PFU of TV and equally divided into two areas. On day 0, sunflower (SF) or pea shoot (PS) seeds were planted on one-half of each tray, while the other half was left unplanted to serve as a control. The microgreens were harvested on day 10, and SFCM samples were collected from planted and unplanted areas of each tray. No TV were detected from the edible portion of either type of microgreen, yet TV were still present in the SFCM. TV concentrations were significantly lower in the root-containing planted area compared with the unplanted area for both biostrate (P = 0.0282) and peat (P = 0.0054). The mean differences of TV concentrations between unplanted and planted areas were 1.22 and 0.51 log PFU/g for biostrate and peat, respectively. In a subsequent investigation, TV transfer from day 7 inoculated SFCM to microgreens edible portion was not detected either. Overall, this study characterized the viral risk in a microgreen production system, which will help to understand the potential food safety risk related to HuNoV and to develop preventive measures.
Collapse
Affiliation(s)
- Wenjun Deng
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, United States of America; College of Life Science, Qingdao University, Qingdao, PR China
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, United States of America.
| |
Collapse
|
4
|
Wright KM, Wright PJ, Holden NJ. Plant species-dependent transmission of Escherichia coli O157:H7 from the spermosphere to cotyledons and first leaves. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:926-933. [PMID: 35968609 PMCID: PMC9804575 DOI: 10.1111/1758-2229.13115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The colonization of six edible plant species: alfalfa, broccoli, coriander, lettuce, parsley and rocket, by the human pathogen Shigatoxigenic Escherichia coli was investigated following two modes of artificial inoculation of seeds, by soaking or watering. The frequency and extent of colonization of cotyledons depended on the mode of inoculation, with three, rapidly germinating species being successfully colonized after overnight soaking, but slower germinating species requiring prolonged exposure to bacteria by watering of the surrounding growth media. Separate analysis of the cotyledons and leaves from individual plants highlighted that successful colonization of the true leaves was also species dependent. For three species, failure of transfer, or lack of nutrients or suitable microhabitat on the leaf surface resulted in infrequent bacterial colonization. Colonization of leaves was lower and generally in proportion to that in cotyledons, if present. The potential risks associated with consumption of leafy produce are discussed.
Collapse
Affiliation(s)
| | | | - Nicola Jean Holden
- The James Hutton InstituteInvergowrie, DundeeUK
- SRUC, Department of Rural Land Use, Craibstone EstateAberdeenUK
| |
Collapse
|
5
|
Sprouts Use as Functional Foods. Optimization of Germination of Wheat (Triticum aestivum L.), Alfalfa (Medicago sativa L.), and Radish (Raphanus sativus L.) Seeds Based on Their Nutritional Content Evolution. Foods 2022; 11:foods11101460. [PMID: 35627030 PMCID: PMC9141080 DOI: 10.3390/foods11101460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 01/17/2023] Open
Abstract
Wheat, alfalfa, and radish sprouts are well-renowned for their high nutritional content. However, their optimal imbibition and germination durations are rarely considered in the literature. In this study, reduced imbibition times of 3 h, 10 h, and 4 h were demonstrated for the wheat, alfalfa, and radish seeds, respectively. The evolution of their crude fat, proteins, polyphenols, antioxidant activity, and vitamins were investigated over 7 days of germination. The crude fat and protein loads of these sprouts slightly varied during germination, whereas the phenolic compounds and antioxidant activity maxed out at day 7, 5, and 6 for the wheat, alfalfa, and radish sprouts, respectively, with significant levels of catechin. The vitamins highly increased, showing noteworthy yet different peaks of growth depending on the seed and the vitamin analyzed. Interestingly, alfalfa and radish sprouts, taken at their optimal germination day, would decidedly contribute to meet our Recommended Daily Allowances (RDAs) of vitamins E, A, and B6. Overall, for a greater nutritional content and a potential use of these sprouts as nutraceutical ingredients, our results suggested to leave the wheat, alfalfa, and radish seeds to germinate only over 7, 4, and 6 days, respectively, after which their nutritional quality tended to decrease.
Collapse
|
6
|
Lenzi A, Baldi A, Lombardelli L, Truschi S, Marvasi M, Bruschi P. Contamination of microalgae by Salmonella enterica and Escherichia coli is influenced by selection breeding in chicory ( Cichorium intybus L.). FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
The aim of this study was to assess whether selection breeding in chicory (Cichorium intybus L.) led changes in the susceptibility to Salmonella enterica and Escherichia coli contamination and whether the anatomical traits of the leaves are involved in the possible changes.
Materials and Methods
Five chicory genotypes subjected to different intensities of selection were compared at the microgreen stage. Bacterial retention was evaluated after leaf incubation for 1.5 h on the surface of the bacterial suspension, followed by rinsing, grinding, plating on selective media, and CFU counting. The density of stomata and trichomes, total stomatal length and width, stomatal pit width, surface roughness and sharpness were evaluated.
Results
The intensively selected genotype (Witloof) was significantly more prone to contamination ((2.9±0.3) lg CFU/cm 2) as the average of the two bacteril types than the wild accession (Wild) ((2.3±0.4) lg CFU/cm 2) and the moderately selected genotypes (two leaf chicories, Catalogna type, and root chicory ‘Magdeburg’) (on average, (1.9±0.3) lg CFU/cm 2). Witloof microgreens also showed larger stomata (on average + 34% for stoma width and + 44% for pit width), which could justify, at least in part, the higher susceptibility to enterobacteria contamination. In fact, when contamination was performed in the dark (closed stomata), the bacterial retention in Witloof was significantly reduced in comparison with the opened stomata (-44%) and in Wild (-26%). Differences in retention between Witloof and Wild were still observed after UV treatment. The hierarchical clustering performed by grouping the leaf anatomical features was consistent with the chicory genetic groups.
Conclusions
Our results suggest that the domestication process can affect the safety of produce and that the micromorphological traits of the leaves may be involved.
Collapse
Affiliation(s)
- Anna Lenzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Ada Baldi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Letizia Lombardelli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Stefania Truschi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | | | - Piero Bruschi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| |
Collapse
|
7
|
Işık S, Aytemiş Z, Çetin B, Topalcengiz Z. Possible explanation for limited reduction of pathogens on radish microgreens after spray application of chlorinated water during growth with disperse contamination spread of abiotic surrogate on leaves. J Food Saf 2022. [DOI: 10.1111/jfs.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sefa Işık
- Department of Food Processing, Vocational School of Technical Sciences Muş Alparslan University Muş Turkey
- Department of Food Engineering, Faculty of Agriculture Atatürk University Erzurum Turkey
| | - Zeynep Aytemiş
- Department of Food Safety, Graduate School of Natural and Applied Sciences Muş Alparslan University Muş Turkey
| | - Bülent Çetin
- Department of Food Engineering, Faculty of Agriculture Atatürk University Erzurum Turkey
| | - Zeynal Topalcengiz
- Department of Food Engineering, Faculty of Engineering and Architecture Muş Alparslan University Muş Turkey
| |
Collapse
|
8
|
Sharma S, Shree B, Sharma D, Kumar S, Kumar V, Sharma R, Saini R. Vegetable microgreens: The gleam of next generation super foods, their genetic enhancement, health benefits and processing approaches. Food Res Int 2022; 155:111038. [DOI: 10.1016/j.foodres.2022.111038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/22/2023]
|
9
|
Fu Y, Bhunia AK, Yao Y. Alginate-based antimicrobial coating reduces pathogens on alfalfa seeds and sprouts. Food Microbiol 2022; 103:103954. [DOI: 10.1016/j.fm.2021.103954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/17/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022]
|
10
|
Dong M, Park HK, Wang Y, Feng H. Control Escherichia coli O157:H7 growth on sprouting brassicacae seeds with high acoustic power density (APD) ultrasound plus mild heat and calcium-oxide antimicrobial spray. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
A Novel Technique Using Advanced Oxidation Process (UV-C/H2O2) Combined with Micro-Nano Bubbles on Decontamination, Seed Viability, and Enhancing Phytonutrients of Roselle Microgreens. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microbial contamination commonly occurs in microgreens due to contaminated seeds. This study investigated the decontamination effects of water wash (control), 5% hydrogen peroxide (H2O2), UV-C (36 watts), advanced oxidation process (AOP; H2O2 + UV-C), and improved AOP by combination with microbubbles (MBs; H2O2 + MBs and H2O2 + UV-C + MBs) on microbial loads, seeds’ viability, and physio-biochemical properties of microgreens from corresponding roselle seeds. Results showed that H2O2 and AOP, with and without MBs, significantly reduced total aerobic bacteria, coliforms, Escherichia coli (E. coli), and molds and yeast log count in seeds as compared to the control. Improved AOP treatment of H2O2 + UV-C + MBs significantly augmented antimicrobial activity against total bacteria and E. coli (not detected,) as compared to control and other treatments due to the formation of the highest hydroxy radicals (5.25 × 10−13 M). Additionally, H2O2 and combined treatments promoted seed germination, improved microbiological quality, total phenolic, flavonoids, and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) activity of the grown microgreens. Ascorbic acid content was induced only in microgreens developed from H2O2-treated seeds. Single UV-C treatment was ineffective to inactivate the detected microorganism population in seeds. These findings demonstrated that improved AOP treatment (H2O2 + UV-C + MBs) could potentially be used as a new disinfection technology for seed treatment in microgreens production.
Collapse
|
12
|
Teng J, Liao P, Wang M. The role of emerging micro-scale vegetables in human diet and health benefits-an updated review based on microgreens. Food Funct 2021; 12:1914-1932. [PMID: 33595583 DOI: 10.1039/d0fo03299a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Increasing public concern about health has prompted humans to find new sources of food. Microgreens are young and immature plants that have been recently introduced as a new category of vegetables, adapting their production at the micro-scale. In this paper, the chemical compositions including micro-nutrients and some typical phytochemicals of microgreens are summarized. Their edible safety and potential health benefits are also reviewed. Microgreens play an increasingly vital role in health-promoting diets. They are considered good sources of nutritional and bioactive compounds, and show potential in the prevention of malnutrition and chronic diseases. Some strategies in the pre- or post-harvest stages of microgreens can be further applied to obtain better nutritional, functional, and sensorial quality with freshness and extended shelf life. This review provides valuable nutrient data and health information for microgreens, laying a theoretical foundation for people to consume microgreens more wisely, and providing great value for the development of functional products with microgreens.
Collapse
Affiliation(s)
- Jing Teng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P.R. China and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China.
| |
Collapse
|
13
|
Shoot Production and Mineral Nutrients of Five Microgreens as Affected by Hydroponic Substrate Type and Post-Emergent Fertilization. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As a new specialty crop with high market value, microgreens are vegetable or herb seedlings consumed at a young age, 7–21 days after germination. They are known as functional food with high concentrations of mineral nutrients and health beneficial phytochemicals. Microgreen industry lacks standardized recommendations on cultural practices including species/variety selection, substrate choice, and fertilization management. This study evaluated shoot growth and mineral nutrient concentrations in five microgreens including four Brassica and one Raphanus microgreens as affected by four hydroponic pad types and post-emergent fertilization in two experiments in January and February 2020. The five microgreens varied in their shoot height, fresh, dry shoot weights, and mineral nutrient concentrations with radish producing the highest fresh and dry shoot weights. Radish had the highest nitrogen (N) concentration and mustard had the highest phosphorus (P) concentrations when grown with three hydroponic pads except for hemp mat. Hydroponic pad type altered fresh, dry shoot weights, and mineral nutrients in tested microgreens. Microgreens in hemp mat showed the highest shoot height, fresh, dry shoot weights, and potassium (K) concentration, but the lowest N concentration in one or two experiments. One time post-emergent fertilization generally increased shoot height, fresh, dry shoot weights, and macronutrient concentrations in microgreens.
Collapse
|
14
|
Bolten S, Gu G, Gulbronson C, Kramer M, Luo Y, Zografos A, Nou X. Evaluation of DNA barcode abiotic surrogate as a predictor for inactivation of E. coli O157:H7 during spinach washing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Kruk M, Trząskowska M. Analysis of Biofilm Formation on the Surface of Organic Mung Bean Seeds, Sprouts and in the Germination Environment. Foods 2021; 10:foods10030542. [PMID: 33807767 PMCID: PMC7999400 DOI: 10.3390/foods10030542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to analyse the impact of sanitation methods on the formation of bacterial biofilms after disinfection and during the germination process of mung bean on seeds and in the germination environment. Moreover, the influence of Lactobacillus plantarum 299v on the growth of the tested pathogenic bacteria was evaluated. Three strains of Salmonella and E. coli were used for the study. The colony forming units (CFU), the crystal violet (CV), the LIVE/DEAD and the gram fluorescent staining, the light and the scanning electron microscopy (SEM) methods were used. The tested microorganisms survive in a small number. During germination after disinfection D2 (20 min H2O at 60 °C, then 15 min in a disinfecting mixture consisting of H2O, H2O2 and CH₃COOH), the biofilms grew most after day 2, but with the DP2 method (D2 + L. plantarum 299v during germination) after the fourth day. Depending on the method used, the second or fourth day could be a time for the introduction of an additional growth-limiting factor. Moreover, despite the use of seed disinfection, their germination environment could be favourable for the development of bacteria and, consequently, the formation of biofilms. The appropriate combination of seed disinfection methods and growth inhibition methods at the germination stage will lead to the complete elimination of the development of unwanted microflora and their biofilms.
Collapse
Affiliation(s)
- Marcin Kruk
- Faculty of Human Nutrition, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Monika Trząskowska
- Food Hygiene and Quality Management, Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Correspondence:
| |
Collapse
|
16
|
Yang M, Liu X, Luo Y, Pearlstein AJ, Wang S, Dillow H, Reed K, Jia Z, Sharma A, Zhou B, Pearlstein D, Yu H, Zhang B. Machine learning-enabled non-destructive paper chromogenic array detection of multiplexed viable pathogens on food. NATURE FOOD 2021; 2:110-117. [PMID: 37117406 DOI: 10.1038/s43016-021-00229-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 01/18/2021] [Indexed: 04/30/2023]
Abstract
Fast and simultaneous identification of multiple viable pathogens on food is critical to public health. Here we report a pathogen identification system using a paper chromogenic array (PCA) enabled by machine learning. The PCA consists of a paper substrate impregnated with 23 chromogenic dyes and dye combinations, which undergo colour changes on exposure to volatile organic compounds emitted by pathogens of interest. These colour changes are digitized and used to train a multi-layer neural network (NN), endowing it with high-accuracy (91-95%) strain-specific pathogen identification and quantification capabilities. The trained PCA-NN system can distinguish between viable Escherichia coli, E. coli O157:H7 and other viable pathogens, and can simultaneously identify both E. coli O157:H7 and Listeria monocytogenes on fresh-cut romaine lettuce, which represents a realistic and complex environment. This approach has the potential to advance non-destructive pathogen detection and identification on food, without enrichment, culturing, incubation or other sample preparation steps.
Collapse
Affiliation(s)
- Manyun Yang
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Xiaobo Liu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Yaguang Luo
- Environmental Microbial and Food Safety Lab, US Department of Agriculture, Agriculture Research Service, Beltsville, MD, USA.
| | - Arne J Pearlstein
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shilong Wang
- Department of Electrical and Computer Engineering, University of Massachusetts, Lowell, MA, USA
| | - Hayden Dillow
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Kevin Reed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Zhen Jia
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Arnav Sharma
- Department of Biological Sciences, University of Connecticut, Farmington, CT, USA
| | - Bin Zhou
- Environmental Microbial and Food Safety Lab, US Department of Agriculture, Agriculture Research Service, Beltsville, MD, USA
| | - Dan Pearlstein
- Environmental Microbial and Food Safety Lab, US Department of Agriculture, Agriculture Research Service, Beltsville, MD, USA
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts, Lowell, MA, USA
| | - Boce Zhang
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA.
| |
Collapse
|
17
|
Lenzi A, Marvasi M, Baldi A. Agronomic practices to limit pre- and post-harvest contamination and proliferation of human pathogenic Enterobacteriaceae in vegetable produce. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Misra G, Gibson KE. Survival of Salmonella enterica subsp. enterica serovar Javiana and Listeria monocytogenes is dependent on type of soil-free microgreen cultivation matrix. J Appl Microbiol 2020; 129:1720-1732. [PMID: 32396260 DOI: 10.1111/jam.14696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
Abstract
AIMS This study measured the survival of Listeria monocytogenes and Salmonella enterica subsp. enterica serovar Javiana over a 10-day period on four soil-free cultivation matrix (SFCM) types in the absence of microgreens and fertilizers. METHODS AND RESULTS Coco coir (CC), a Sphagnum peat/vermiculite mix, Biostrate® and hemp mat samples were inoculated with 3 × 106 CFU per ml bacteria, incubated at room temperature, and analysed on day 0, 1, 3, 6, and 10. Statistically significant differences in pathogen survival were observed across multiple time points for hemp and Biostrate compared to CC, peat and bacteria in phosphate buffered saline (PBS) (P < 0·05). S. Javiana showed greater overall survival compared to Listeria (P < 0·0002). By day 10, S. Javiana persisted at the initial inoculum concentration for hemp and Biostrate while declining by 1-2 log CFU per ml in CC, peat and PBS. Listeria also persisted at the initial concentration in hemp and Biostrate but decreased to 1 log CFU per ml in peat and below the detection limit in CC and PBS. CONCLUSIONS Overall, there are survival differences between bacterial pathogens in SFCM used in microgreen production systems. To our knowledge, this is the first comparison of survival among SFCM involving a S. enterica serovar and L. monocytogenes, and the first study comparing CC, Biostrate and hemp. SIGNIFICANCE AND IMPACT OF THE STUDY Microgreens production systems predominantly utilize soil alternatives, and it is not well-understood how pathogen transmission risk may be affected by the type of SFCM. The results of this study impact the microgreen industry as media selection may be used to reduce the risk of bacterial pathogen proliferation and transmission to the plant potentially resulting in potential foodborne illness.
Collapse
Affiliation(s)
- G Misra
- Division of Agriculture, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - K E Gibson
- Division of Agriculture, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
19
|
Işık H, Topalcengiz Z, Güner S, Aksoy A. Generic and Shiga toxin-producing Escherichia coli (O157:H7) contamination of lettuce and radish microgreens grown in peat moss and perlite. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Turner ER, Luo Y, Buchanan RL. Microgreen nutrition, food safety, and shelf life: A review. J Food Sci 2020; 85:870-882. [PMID: 32144769 DOI: 10.1111/1750-3841.15049] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/15/2019] [Accepted: 12/16/2019] [Indexed: 02/02/2023]
Abstract
Microgreens have gained increasing popularity as food ingredients in recent years because of their high nutritional value and diverse sensorial characteristics. Microgreens are edible seedlings including vegetables and herbs, which have been used, primarily in the restaurant industry, to embellish cuisine since 1996. The rapidly growing microgreen industry faces many challenges. Microgreens share many characteristics with sprouts, and while they have not been associated with any foodborne illness outbreaks, they have recently been the subject of seven recalls. Thus, the potential to carry foodborne pathogens is there, and steps can and should be taken during production to reduce the likelihood of such incidents. One major limitation to the growth of the microgreen industry is the rapid quality deterioration that occurs soon after harvest, which keeps prices high and restricts commerce to local sales. Once harvested, microgreens easily dehydrate, wilt, decay and rapidly lose certain nutrients. Research has explored preharvest and postharvest interventions, such as calcium treatments, modified atmopsphere packaging, temperature control, and light, to maintain quality, augment nutritional value, and extend shelf life. However, more work is needed to optimize both production and storage conditions to improve the safety, quality, and shelf life of microgreens, thereby expanding potential markets.
Collapse
Affiliation(s)
- Ellen R Turner
- Food Quality Laboratory, Agricultural Research Service, U.S. Dept. of Agriculture, Beltsville, MD, 20705, U.S.A.,Environmental Microbiology and Food Safety Laboratory, Agricultural Research Service, U.S. Dept. of Agriculture, Beltsville, MD, 20705, U.S.A.,Dept. of Nutrition and Food Science, Univ. of Maryland, College Park, MD, 20740, U.S.A
| | - Yaguang Luo
- Food Quality Laboratory, Agricultural Research Service, U.S. Dept. of Agriculture, Beltsville, MD, 20705, U.S.A.,Environmental Microbiology and Food Safety Laboratory, Agricultural Research Service, U.S. Dept. of Agriculture, Beltsville, MD, 20705, U.S.A
| | - Robert L Buchanan
- Dept. of Nutrition and Food Science, Univ. of Maryland, College Park, MD, 20740, U.S.A.,Center for Food Safety and Security Systems, Univ. of Maryland, College Park, MD, 20742, U.S.A
| |
Collapse
|
21
|
Merget B, Dobrindt U, Forbes KJ, Strachan NJC, Brennan F, Holden NJ. Variability in growth responses of non-O157 EHEC isolates in leafy vegetables, sprouted seeds and soil extracts occurs at the isolate level. FEMS Microbiol Lett 2020; 367:5739917. [DOI: 10.1093/femsle/fnaa030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
Foods of plant origin are recognised as a major source of foodborne pathogens, in particular for Shigatoxigenic Escherichia coli (STEC). Most work for STEC and plant-based fresh produce has focused on the most prevalent outbreak serogroup, O157. However, non-O157 STEC is an emerging hazard, and as such it is important to characterise aspects within this group that reflect their ability to colonise alternative hosts and habitats relevant to horticultural production. Growth kinetics were quantified for a diverse set of clinical enterohaemorrhagic E. coli isolates in extracts made from different tissues of spinach, lettuce or sprouted seeds, or from soil, to represent association with ready-to-eat fresh produce production. For leafy vegetables, spinach apoplast supported the fastest rates of growth and lettuce root extracts generated the slowest growth rates. Growth rates were similar for the majority of isolates in fenugreek or alfalfa sprouted seed extracts. Monosaccharides were the major driver of bacterial growth. No correlations were found for growth rates between different serotypes or for Shigatoxin gene carriage. Thus, growth rates varied in a plant-dependent and isolate-dependent manner, for all plant or soil extracts tested, indicative of isolate-specific differences in metabolic flexibility. These findings are relevant for risk assessment of non-O157 STEC.
Collapse
Affiliation(s)
- Bernhard Merget
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- School of Biological Sciences, The University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - Ulrich Dobrindt
- Institute for Hygiene, University of Münster, Mendelstraße 7, 48149 Münster, Germany
| | - Ken J Forbes
- School of Medicine and Dentistry, The University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Norval J C Strachan
- School of Biological Sciences, The University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - Fiona Brennan
- Teagasc, Johnstown Castle, Wexford, Y35 Y521, Republic of Ireland
| | - Nicola J Holden
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| |
Collapse
|
22
|
Bergšpica I, Ozola A, Miltiņa E, Alksne L, Meistere I, Cibrovska A, Grantiņa-Ieviņa L. Occurrence of Pathogenic and Potentially Pathogenic Bacteria in Microgreens, Sprouts, and Sprouted Seeds on Retail Market in Riga, Latvia. Foodborne Pathog Dis 2020; 17:420-428. [PMID: 31895586 DOI: 10.1089/fpd.2019.2733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microgreens and sprouts have been used for raw consumption for a long time and are generally viewed as a healthy food. However, several serious outbreaks of foodborne illness have been recorded in European countries, Japan, and North America. Many companies in Latvia nowadays are producing this type of products. The aim of this study was to characterize the incidence of Shiga toxin-producing Escherichia coli (STEC), Salmonella spp., and Listeria spp. in microgreens, sprouts, and seeds intended for domestic production of microgreens on retail market in Riga, Latvia, from January to April 2019. The background microflora was identified as well. A total of 45 samples were purchased, including fresh and processed sprouts, microgreens, baby greens, as well as seeds intended for domestic production of microgreens and sprouts. The samples were processed according to the methods set by the International Organization for Standardization (ISO)-ISO/TS 13136:2012 for STEC, ISO 6579-1:2017 for Salmonella spp., and ISO 11290-1:2017 for Listeria spp. Molecular detection of Salmonella spp. was also performed using real-time polymerase chain reaction. The typical and atypical colonies isolated from selective plates were identified with matrix-assisted laser desorption and ionization time-of-flight mass spectrometry. Listeria monocytogenes was not detected in any of the tested samples. However, the presence of Listeria innocua was detected in two (4.4%) of the samples. Three (6.7%) samples of dried sprouts were positive for the STEC virulence genes. Salmonella spp. was detected in one (2.2%) sample of common sunflower seeds. Altogether, 46 different background bacterial species were identified. The majority were environmental bacteria characteristic to soil, water, and plants, including coliform bacteria. The results provide evidence that microgreens and seeds available for Latvian consumers are generally safe, however, attention has to be paid to dried sprouts.
Collapse
Affiliation(s)
- Ieva Bergšpica
- Institute of Food Safety, Animal Health, and Environment "BIOR," Riga, Latvia
| | - Aija Ozola
- Institute of Food Safety, Animal Health, and Environment "BIOR," Riga, Latvia
| | - Elizabete Miltiņa
- Institute of Food Safety, Animal Health, and Environment "BIOR," Riga, Latvia
| | - Laura Alksne
- Institute of Food Safety, Animal Health, and Environment "BIOR," Riga, Latvia
| | - Irēna Meistere
- Institute of Food Safety, Animal Health, and Environment "BIOR," Riga, Latvia
| | - Alla Cibrovska
- Institute of Food Safety, Animal Health, and Environment "BIOR," Riga, Latvia
| | | |
Collapse
|
23
|
Microbial quality of raw and ready-to-eat mung bean sprouts produced in Italy. Food Microbiol 2019; 82:371-377. [DOI: 10.1016/j.fm.2019.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/23/2022]
|
24
|
Rossi F, Lathrop A. Effects of Lactobacillus plantarum, Pediococcus acidilactici, and Pediococcus pentosaceus on the Growth of Listeria monocytogenes and Salmonella on Alfalfa Sprouts. J Food Prot 2019; 82:522-527. [PMID: 30810377 DOI: 10.4315/0362-028x.jfp-18-391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The germination conditions of sprouted vegetables consisting of relatively high temperatures and humidity, low light, and abundance of nutrients are ideal for pathogen survival and growth. The continual occurrence of outbreaks and recalls associated with sprout vegetables indicate additional measures are needed to improve product safety. The objective of this study was to evaluate the efficacy of a mixture of Lactobacillus plantarum, Pediococcus acidilactici, and Pediococcus pentosaceus (LPP) against Listeria monocytogenes and Salmonella on alfalfa sprouts during 5 days of sprouting at 20°C and its influence on sprout quality. Alfalfa seeds were inoculated with L. monocytogenes or Salmonella (each at 1 and 3 log CFU/g) and LPP (7 log CFU/g). Populations of LPP were maintained at 7.5 to 8.0 log CFU/g throughout sprouting. LPP had a significant effect on the growth of L. monocytogenes and Salmonella ( P < 0.05). After 5 days of sprouting, populations of L. monocytogenes at an initial concentration of 1 and 3 log CFU/g of seeds treated with LPP were approximately 4.5 and 1.0 log CFU/g less than the untreated seeds, respectively. Populations of Salmonella at an initial concentration of 1 and 3 log CFU/g were 1.0 log CFU/g less than the control. LPP did not compromise the yield, seedling length, or pH of the sprouts.
Collapse
Affiliation(s)
- Franca Rossi
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California 93407, USA
| | - Amanda Lathrop
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California 93407, USA
| |
Collapse
|
25
|
Riggio GM, Wang Q, Kniel KE, Gibson KE. Microgreens-A review of food safety considerations along the farm to fork continuum. Int J Food Microbiol 2018; 290:76-85. [PMID: 30308448 DOI: 10.1016/j.ijfoodmicro.2018.09.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 01/24/2023]
Abstract
The food safety implications of microgreens, an emerging salad crop, have been studied only minimally. The farm to fork continuum of microgreens and sprouts has some overlap in terms of production, physical characteristics, and consumption. This review describes the food safety risk of microgreens as compared to sprouts, potential control points for microgreen production, what is known to date about pathogen transfer in the microgreen production environment, and where microgreens differ from sprouts and their mature vegetable counterparts. The synthesis of published research to date may help to inform Good Agricultural Practices (GAPs) and Good Handling Practices (GHPs) for the emerging microgreen industry.
Collapse
Affiliation(s)
- Gina M Riggio
- University of Arkansas, Dept. of Food Science, 2650 Young Ave, Fayetteville, AR 72704, United States of America.
| | - Qing Wang
- University of Delaware, College of Agriculture and Natural Resources, Newark, DE 19711, United States of America.
| | - Kalmia E Kniel
- University of Delaware, College of Agriculture and Natural Resources, Newark, DE 19711, United States of America.
| | - Kristen E Gibson
- University of Arkansas, Dept. of Food Science, 2650 Young Ave, Fayetteville, AR 72704, United States of America.
| |
Collapse
|
26
|
Jang H, Matthews KR. Survival and interaction of Escherichia coli O104:H4 on Arabidopsis thaliana and lettuce (Lactuca sativa) in comparison to E. coli O157:H7: Influence of plant defense response and bacterial capsular polysaccharide. Food Res Int 2018; 108:35-41. [PMID: 29735067 DOI: 10.1016/j.foodres.2018.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) has been associated with illnesses and outbreaks linked to fresh vegetables, prompting a growing public health concern. Most studies regarding interactions of STEC on fresh produce focused on E. coli O157:H7. Limited information is available about survival or fitness of E. coli O104:H4, non-O157 pathogen that was linked to one of the largest outbreaks of hemolytic uremic syndrome in 2011. In this study, survival of E. coli O104:H4 was evaluated on Arabidopsis thaliana plant and lettuce for 5 days compared with E. coli O157:H7, and expression of pathogenesis-realted gene (PR1; induction of plant defense response) was examined by reverse transcription quantitative PCR, and potential influence of capsular polysaccharide (CPS) on the bacterial fitness on plant was investigated. Populations of E. coli O104:H4 strains (RG1, C3493, and LpfA) on Arabidopsis and lettuce were significantly (P < 0.05) greater than those of E. coli O157:H7 strains (7386 and sakai) at day 5 post-inoculation, indicating E. coli O104:H4 may have better survival ability on the plants. In addition, the E. coli O104:H4 strains produced significantly (P < 0.05) higher amounts of CPS compared with the E. coli O157:H7 strains. RG1 strain (1.5-fold) initiated significantly (P < 0.05) lower expression of PR1 gene indicating induction of plant defense response compared with E. coli O157:H7 strains 7386 (2.9-fold) and sakai (2.7-fold). Collectively, the results in this study suggests that different level of CPS production and plant defense response initiated by each STEC strain might influence the bacterial survival or persistence on plants. The present study provides better understanding of survival behavior of STEC, particularly E. coli O104:H4, using a model plant and vegetable under pre-harvest conditions with plant defense response.
Collapse
Affiliation(s)
- Hyein Jang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Karl R Matthews
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
27
|
Wright KM, Holden NJ. Quantification and colonisation dynamics of Escherichia coli O157:H7 inoculation of microgreens species and plant growth substrates. Int J Food Microbiol 2018; 273:1-10. [DOI: 10.1016/j.ijfoodmicro.2018.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 02/02/2023]
|
28
|
Plant-Microbe and Abiotic Factors Influencing Salmonella Survival and Growth on Alfalfa Sprouts and Swiss Chard Microgreens. Appl Environ Microbiol 2018; 84:AEM.02814-17. [PMID: 29453267 DOI: 10.1128/aem.02814-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 11/20/2022] Open
Abstract
Microgreens, like sprouts, are relatively fast-growing products and are generally consumed raw. Moreover, as observed for sprouts, microbial contamination from preharvest sources may also be present in the production of microgreens. In this study, two Salmonella enterica serovars (Hartford and Cubana), applied at multiple inoculation levels, were evaluated for survival and growth on alfalfa sprouts and Swiss chard microgreens by using the most-probable-number (MPN) method. Various abiotic factors were also examined for their effects on Salmonella survival and growth on sprouts and microgreens. Community-level physiological profiles (CLPPs) of sprout/microgreen rhizospheres with different levels of S. enterica inoculation at different growth stages were characterized by use of Biolog EcoPlates. In the seed contamination group, the ability of S. enterica to grow on sprouting alfalfa seeds was affected by both seed storage time and inoculation level but not by serovar. However, the growth of S. enterica on Swiss chard microgreens was affected by serovar and inoculation level. Seed storage time had little effect on the average level of Salmonella populations in microgreens. In the irrigation water contamination group, the growth of Salmonella on both alfalfa sprouts and microgreens was largely affected by inoculation level. Surprisingly, the growth medium was found to play an important role in Salmonella survival and growth on microgreens. CLPP analysis showed significant changes in the microbial community metabolic diversity during sprouting for alfalfa sprouts, but few temporal changes were seen with microgreens. The data suggest that the change in rhizosphere bacterial functional diversity was dependent on the host but independent of Salmonella contamination.IMPORTANCE Sprouts and microgreens are considered "functional foods," i.e., foods containing health-promoting or disease-preventing properties in addition to normal nutritional values. However, the microbial risk associated with microgreens has not been well studied. This study evaluated Salmonella survival and growth on microgreens compared to those on sprouts, as well as other abiotic factors that could affect Salmonella survival and growth on microgreens. This work provides baseline data for risk assessment of microbial contamination of sprouts and microgreens. Understanding the risks of Salmonella contamination and its effects on rhizosphere microbial communities enables a better understanding of host-pathogen dynamics in sprouts and microgreens. The data also contribute to innovative preventive control strategies for Salmonella contamination of sprouts and microgreens.
Collapse
|
29
|
Park SH, Ahn JB, Kang DH. Inactivation of foodborne pathogens on alfalfa and radish seeds by sequential treatment with chlorine dioxide gas and dry heat. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Di Gioia F, De Bellis P, Mininni C, Santamaria P, Serio F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1212-1219. [PMID: 27311947 DOI: 10.1002/jsfa.7852] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Peat-based mixes and synthetic mats are the main substrates used for microgreens production. However, both are expensive and non-renewable. Recycled fibrous materials may represent low-cost and renewable alternative substrates. Recycled textile-fiber (TF; polyester, cotton and polyurethane traces) and jute-kenaf-fiber (JKF; 85% jute, 15% kenaf-fibers) mats were characterized and compared with peat and Sure to Grow® (Sure to Grow, Beachwood, OH, USA; http://suretogrow.com) (STG; 100% polyethylene-terephthalate) for the production of rapini (Brassica rapa L.; Broccoletto group) microgreens. RESULTS All substrates had suitable physicochemical properties for the production of microgreens. On average, microgreens fresh yield was 1502 g m-2 in peat, TF and JKF, and was 13.1% lower with STG. Peat-grown microgreen shoots had a higher concentration of K+ and SO42- and a two-fold higher NO3- concentration [1959 versus 940 mg kg-1 fresh weight (FW)] than those grown on STG, TF and JKF. At harvest, substrates did not influence microgreens aerobic bacterial populations (log 6.48 CFU g-1 FW). Peat- and JKF-grown microgreens had higher yeast-mould counts than TF- and STG microgreens (log 2.64 versus 1.80 CFU g-1 FW). Peat-grown microgreens had the highest population of Enterobacteriaceae (log 5.46 ± 0.82 CFU g-1 ) and Escherichia coli (log 1.46 ± 0.15 CFU g-1 ). Escherichia coli was not detected in microgreens grown on other media. CONCLUSION TF and JKF may be valid alternatives to peat and STG because both ensured a competitive yield, low nitrate content and a similar or higher microbiological quality. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francesco Di Gioia
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
- University of Florida, Institute of Food and Agricultural Sciences, South West Florida Research and Education Center, Immokalee, FL 34142, USA
| | - Palmira De Bellis
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, 70126 Bari, Italy
| | - Carlo Mininni
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, 70126 Bari, Italy
| | - Pietro Santamaria
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Francesco Serio
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
31
|
Kyriacou MC, De Pascale S, Kyratzis A, Rouphael Y. Microgreens as a Component of Space Life Support Systems: A Cornucopia of Functional Food. FRONTIERS IN PLANT SCIENCE 2017; 8:1587. [PMID: 28955372 PMCID: PMC5600955 DOI: 10.3389/fpls.2017.01587] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 05/08/2023]
Affiliation(s)
- Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research InstituteNicosia, Cyprus
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico IIPortici, Italy
| | - Angelos Kyratzis
- Department of Vegetable Crops, Agricultural Research InstituteNicosia, Cyprus
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico IIPortici, Italy
- *Correspondence: Youssef Rouphael
| |
Collapse
|
32
|
|
33
|
Renna M, Di Gioia F, Leoni B, Mininni C, Santamaria P. Culinary Assessment of Self-Produced Microgreens as Basic Ingredients in Sweet and Savory Dishes. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2016. [DOI: 10.1080/15428052.2016.1225534] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Massimiliano Renna
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Di Gioia
- Associazione ORTINNOVA, Bari, Italy
- University of Florida, Institute of Food and Agricultural Sciences, South West Florida Research and Education Center, Immokalee, Florida, USA
| | - Beniamino Leoni
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Pietro Santamaria
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
34
|
Different Cellular Origins and Functions of Extracellular Proteins from Escherichia coli O157:H7 and O104:H4 as Determined by Comparative Proteomic Analysis. Appl Environ Microbiol 2016; 82:4371-4378. [PMID: 27208096 DOI: 10.1128/aem.00977-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Extracellular proteins play important roles in bacterial interactions with the environmental matrices. In this study, we examined the extracellular proteins from Escherichia coli O157:H7 and O104:H4 by tandem mass spectrometry. We identified 500 and 859 proteins from the growth media of E. coli O157:H7 and O104:H4, respectively, including 371 proteins common to both strains. Among proteins that were considered specific to E. coli O157:H7 or present at higher relative abundances in O157:H7 medium, most (57 of 65) had secretion signal sequences in their encoding genes. Noticeably, the proteins included locus of enterocyte effacement (LEE) virulence factors, proteins required for peptidyl-lipoprotein accumulation, and proteins involved in iron scavenging. In contrast, a much smaller proportion of proteins (37 of 150) that were considered specific to O104:H4 or presented at higher relative abundances in O104:H4 medium had signals targeting them for secretion. These proteins included Shiga toxin 2 subunit B and O104:H4 signature proteins, including AAF/1 major fimbrial subunit and serine protease autotransporters. Most of the abundant proteins from the growth medium of E. coli O104:H4 were annotated as having functions in the cytoplasm. We provide evidence that the extensive presence of cytoplasmic proteins in E. coli O104:H4 growth medium was due to biological processes independent of cell lysis, indicating alternative mechanisms for this potent pathogen releasing cytoplasmic contents into the growth milieu, which could play a role in interaction with the environmental matrices, such as pathogenesis and biofilm formation. IMPORTANCE In this study, we compared the extracellular proteins from two of the most prominent foodborne pathogenic E. coli organisms that have caused severe outbreaks in the United States and in Europe. E. coli O157:H7 is a well-studied Shiga toxigenic foodborne pathogen of the enterohemorrhagic pathotype that has caused numerous outbreaks associated with various contaminated foods worldwide. E. coli O104:H4 is a newly emerged Shiga toxigenic foodborne pathogen of the enteroaggregative pathotype that gained notoriety for causing one of the most deadly foodborne outbreaks in Europe in 2011. Comparison of proteins in the growth medium revealed significant differences in the compositions of the extracellular proteins for these two pathogens. These differences may provide valuable information regarding the cellular responses of these pathogens to their environment, including cell survival and pathogenesis.
Collapse
|
35
|
Long-term survival of the Shiga toxin-producing Escherichia coli O104:H4 outbreak strain on fenugreek seeds. Food Microbiol 2016; 59:190-5. [PMID: 27375259 DOI: 10.1016/j.fm.2016.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/22/2022]
Abstract
A major outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 occurred in Germany in 2011. The epidemiological investigation revealed that a contaminated batch of fenugreek seeds (Trigonella foenum-graecum) was the most probable source of the pathogen. It was suggested that the most probable point of contamination was prior to leaving the importer, meaning that the seed contamination with STEC O104:H4 should have happened more than one year before the seeds were used for sprout production. Here, we investigated the capacity of STEC O104:H4 and closely related pathogenic as well as non-pathogenic Escherichia coli strains for long-term survival on dry fenugreek seeds. We did not observe a superior survival capacity of STEC O104:H4 on dry seeds. For none of the strains tested cultivatable cells were found without enrichment on contaminated seeds after more than 24 weeks of storage. Our findings suggest that contamination previous to the distribution from the importer may be less likely than previously assumed. We show that seeds contaminated with E. coli in extremely high numbers can be completely sterilized by a short treatment with bleach. This simple and cheap procedure does not affect the germination capacity of the seeds and could significantly improve safety in sprout production.
Collapse
|
36
|
Xiao Z, Bauchan G, Nichols-Russell L, Luo Y, Wang Q, Nou X. Proliferation of Escherichia coli O157:H7 in Soil-Substitute and Hydroponic Microgreen Production Systems. J Food Prot 2015; 78:1785-90. [PMID: 26408126 DOI: 10.4315/0362-028x.jfp-15-063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radish (Raphanus sativus var. longipinnatus) microgreens were produced from seeds inoculated with Escherichia coli O157:H7 by using peat moss-based soil-substitute and hydroponic production systems. E. coli populations on the edible and inedible parts of harvested microgreen plants (7 days postseeding) and in growth medium were examined. E. coli O157:H7 was shown to survive and proliferate significantly during microgreen growth in both production systems, with a higher level in the hydroponic production system. At the initial seed inoculation level of 3.7 log CFU/g, E. coli O157:H7 populations on the edible part of microgreen plants reached 2.3 and 2.1 log CFU/g (overhead irrigation and bottom irrigation, respectively) for microgreens from the soil-substitute production system and reached 5.7 log CFU/g for those hydroponically grown. At a higher initial inoculation of 5.6 log CFU/g seeds, the corresponding E. coli O157:H7 populations on the edible parts of microgreens grown in these production systems were 3.4, 3.6, and 5.3 log CFU/g, respectively. Examination of the spatial distribution of bacterial cells on different parts of microgreen plants showed that contaminated seeds led to systematic contamination of whole plants, including both edible and inedible parts, and seed coats remained the focal point of E. coli O157:H7 survival and growth throughout the period of microgreen production.
Collapse
Affiliation(s)
- Zhenlei Xiao
- Environmental Microbial and Food Safety Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA; Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20740, USA
| | - Gary Bauchan
- Electron and Confocal Microscopy Unit, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Lydia Nichols-Russell
- Environmental Microbial and Food Safety Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Yaguang Luo
- Environmental Microbial and Food Safety Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20740, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA.
| |
Collapse
|
37
|
Kim YB, Kim HW, Song MK, Rhee MS. Decontamination method using heat and relative humidity for radish seeds achieves a 7-log reduction of Escherichia coli O157:H7 without affecting product quality. Int J Food Microbiol 2015; 201:42-6. [PMID: 25732001 DOI: 10.1016/j.ijfoodmicro.2015.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 10/24/2022]
Abstract
We developed a novel decontamination method to inactivate Escherichia coli O157:H7 on radish seeds without adversely affecting seed germination or product quality. The use of heat (55, 60, and 65 °C) combined with relative humidity (RH; 25, 45, 65, 85, and 100%) for 24h was evaluated for effective microbial reduction and preservation of seed germination rates. A significant two-way interaction of heat and RH was observed for both microbial reduction and germination rate (P<0.0001). Increases in heat and RH were associated with corresponding reductions in E. coli O157:H7 and in germination rate (P<0.05). The order of lethality for the different treatments was generally as follows: no treatment <55 °C/25-65% RH ≒60 °C/25-45% RH ≒65 °C/25% RH <55 °C/85% RH =60 °C/65% RH <55 °C/100% RH =60 °C/85-100% RH =65 °C/45-100% RH. The most effective condition, 65 °C/45% RH, completely inactivated E. coli O157:H7 on the seeds (7.0 log CFU/g reduction) and had no significant effect on the germination rate (85.4%; P>0.05) or product quality. The method uses only heat and relative humidity without chemicals, and is thus applicable as a general decontamination procedure in spout producing plants where the use of growth chambers is the norm.
Collapse
Affiliation(s)
- Y B Kim
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - H W Kim
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - M K Song
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - M S Rhee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|