1
|
Chu Y, Wang J, Xie J. Exploring the correlation of microbial community diversity and succession with protein degradation and impact on the production of volatile compounds during cold storage of grouper (Epinephelus coioides). Food Chem 2024; 460:140469. [PMID: 39029368 DOI: 10.1016/j.foodchem.2024.140469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Microorganisms, proteins, and lipids play crucial and intricate roles in the aroma generation of aquatic products. To explore the impact of the interaction between microorganisms and proteins on the volatile compounds (VOCs) in grouper, this study employed whey protein isolate (WPI) to inhibit lipid oxidation and reduce mutual interference. Changes in bacterial profiles, metabolites, and VOCs were detected. Eighteen key VOCs associated with the overall flavor of grouper were identified, and the potential relationships among microorganisms, proteins, and VOCs were explored using a correlation network. Five microorganisms (Vibrio, Vagococcus, Pseudomonas, Psychrobacter, and Shewanella) closely related to characteristic flavor compounds were identified. Additionally, 30 differential metabolites related to proteins and six metabolic pathways were screened. Therefore, this study unveils the potential interaction between microorganisms and proteins in flavor formation and provides new insights into the relationships among microorganisms, proteins, and VOCs.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jinfeng Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China.
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
2
|
Luqman M, Hassan HU, Ghaffar RA, Bilal M, Kanwal R, Raza MA, Kabir M, Fadladdin YAJ, Ali A, Rafiq N, Ibáñez-Arancibia E, Ríos-Escalante PDL, Siddique MAM. Post-harvest bacterial contamination of fish, their assessment and control strategies. BRAZ J BIOL 2024; 84:e282002. [PMID: 39292138 DOI: 10.1590/1519-6984.282002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/31/2024] [Indexed: 09/19/2024] Open
Abstract
Healthy fish populations lead to healthy aquatic ecosystems and it is our responsibility to be a part of the solution. Fish is one of the most favored foods and is suitable for people of all ages. Fish is an essential source of protein, vitamins, and minerals and a source of income for millions of people. Human population growth and climate change are putting a strain on our food system, demanding the development of sustainable services to enhance global food production and its security. Food safety is an intricate problem in both developed and developing countries. Fresh fish is a highly perishable food with a limited life span; as a result, it must be delivered and kept carefully to minimize deterioration and assure safety. Fish spoilage is linked to biochemical changes that occur post-harvest, such as storage and transportation. These modifications can account for fish spoilage by altering the taste, texture, and appearance. Fish harvesting, distribution, and post-harvest handling are all unhygienic, resulting in poor and unpredictable fish quality in the market. Many innovative and effective control measurements of various bacteria in fish have been proposed and evaluated. This review is a systematic approach to investigating post-harvest fish spoilage, its assessment, and control strategies.
Collapse
Affiliation(s)
- M Luqman
- Kohat University of Science and Technology, Department of Zoology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - H Ul Hassan
- University of Karachi, Department of Zoology, Karachi, Pakistan
- Ministry of National Food Security and Research, Fisheries Development Board, Islamabad, Pakistan
| | - R A Ghaffar
- Kohat University of Science and Technology, Department of Zoology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - M Bilal
- Government College University Lahore, Department of Zoology, Lahore, Pakistan
| | - R Kanwal
- Kohat University of Science and Technology, Department of Zoology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - M A Raza
- Government Postgraduate College Satellite Town, Department of Biology, Gujranwala, Pakistan
| | - M Kabir
- Thal University Bhakkar (University of Sargodha, Ex-Sub Campus Bhakkar), Department of Biological Sciences, Bhakkar-30000, Punjab, Pakistan
| | - Y A J Fadladdin
- King Abdulaziz University, Faculty of Sciences, Department of Biological Sciences, Jeddah, Saudi Arabia
| | - A Ali
- University of Karachi, Center of Excellence in Marine Biology, Karachi, Pakistan
| | - N Rafiq
- Abdul Wali Khan University Mardan, Department of Zoology, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - E Ibáñez-Arancibia
- Universidad de la Frontera, Programa de Doctorado en Biología Celular y Molecular Aplicada, Casilla, Temuco, Chile
- Universidad Católica de Temuco, Facultad de Recursos Naturales, Departamento de Ciencias Biológicas y Químicas, Temuco, Chile
| | - P D L Ríos-Escalante
- Universidad Católica de Temuco, Facultad de Recursos Naturales, Departamento de Ciencias Biológicas y Químicas, Temuco, Chile
| | - M A M Siddique
- University of South Bohemia in České Budějovice, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, Laboratory of Reproductive Physiology, Vodňany, Czech Republic
| |
Collapse
|
3
|
Wu P, Yang J, Meng X, Weng Y, Lin Y, Li R, Lv X, Ni L, Han JZ, Fu C. The inhibitory action of lactocin 63 on deterioration of seabass (Lateolabrax japonicus) during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4015-4027. [PMID: 38294304 DOI: 10.1002/jsfa.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND The bacteriocins, particularly derived from lactic acid bacteria, currently exhibit potential as a promising food preservative owing to their low toxicity and potent antimicrobial activity. This study aimed to evaluate the efficacy of lactocin 63, produced by Lactobacillus coryniformis, in inhibiting the deterioration of Lateolabrax japonicas during chilled storage, while also investigating its underlying inhibitory mechanism. The measurement of total viable count, biogenic amines, and volatile organic compounds were conducted, along with high-throughput sequencing and sensory evaluation. RESULTS The findings demonstrated that treatment with lactocin 63 resulted in a notable retardation of bacterial growth in L. japonicas fish fillet during refrigerated storage compared with the water-treated and nisin-treated groups. Moreover, lactocin 63 effectively maintained the microbial flora balance in the fish fillet and inhibited the proliferation and metabolic activity of specific spoilage microorganisms, particularly Shewanella, Pseudomonas, and Acinetobacter. Furthermore, the production of unacceptable volatile organic compounds (e.g. 1-octen-3-ol, hexanal, nonanal), as well as the biogenic amines derived from the bacterial metabolism, could be hindered, thus preventing the degradation in the quality of fish fillets and sustaining relatively high sensory quality. CONCLUSION The results of this study provide valuable theoretical support for the development and application of lactocin 63, or other bacteriocins derived from lactic acid bacteria, as potential bio-preservatives in aquatic food. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peifen Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jie Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xiaojie Meng
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yanlin Weng
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yayi Lin
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ruili Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jin-Zhi Han
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Caili Fu
- Fujian Key Laboratory of Inspection and Quarantine Technology Research, Fuzhou, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Liu S, Zhang L, Li Z, Chen J, Zhang Y, Yang X, Chen Q, Cai H, Hong P, Zhu C, Zhong S. The Cryoprotective Effect of an Antifreeze Collagen Peptide Complex Obtained by Enzymatic Glycosylation on Tilapia. Foods 2024; 13:1319. [PMID: 38731690 PMCID: PMC11083813 DOI: 10.3390/foods13091319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Antifreeze peptides have become effective antifreeze agents for frozen products, but their low quantity of active ingredients and high cost limit large-scale application. This study used the glycosylation of fish collagen peptides with glucosamine hydrochloride catalyzed by transglutaminase to obtain a transglutaminase-catalyzed glycosylation product (TGP) and investigate its antifreeze effect on tilapia. Compared with the blank group, the freshness (pH value of 6.31, TVB-N value of 21.7 mg/100 g, whiteness of 46.28), textural properties (especially hardness and elasticity), and rheological properties of the TGP groups were significantly improved. In addition, the protein structures of the samples were investigated using UV absorption and fluorescence spectroscopy. The results showed that the tertiary structure of the TGP groups changed to form a dense polymer. Therefore, this approach can reduce the denaturation and decomposition of muscle fibers and proteins in fish meat more effectively and has a better protective effect on muscle structure and protein aggregation, improving the stability of fish meat. This study reveals an innovative method for generating antifreeze peptides by enzymatic glycosylation, and glycosylated fish collagen peptide products can be used as new and effective green antifreeze agents in frozen foods.
Collapse
Affiliation(s)
- Shouchun Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524004, China; (L.Z.); (H.C.); (C.Z.)
| | - Luyao Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524004, China; (L.Z.); (H.C.); (C.Z.)
| | - Zhuyi Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
| | - Jing Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
| | - Yinyu Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
| | - Xuebo Yang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
| | - Qiuhan Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
| | - Hongying Cai
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524004, China; (L.Z.); (H.C.); (C.Z.)
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524004, China; (L.Z.); (H.C.); (C.Z.)
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524004, China; (L.Z.); (H.C.); (C.Z.)
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
| |
Collapse
|
5
|
Yu H, Lin J, Wang M, Ying S, Yuan S, Guo Y, Xie Y, Yao W. Molecular and proteomic response of Pseudomonas fluorescens biofilm cultured on lettuce (Lactuca sativa L.) after ultrasound treatment at different intensity levels. Food Microbiol 2024; 117:104387. [PMID: 37919011 DOI: 10.1016/j.fm.2023.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Ultrasonic treatment is widely used for surface cleaning of vegetables in the processing of agricultural products. In the present study, the molecular and proteomic response of Pseudomonas fluorescens biofilm cultured on lettuce was investigated after ultrasound treatment at different intensity levels. The results show that the biofilm was efficiently removed after ultrasound treatment with intensity higher than 21.06 W/cm2. However, at an intensity of less than 18.42 W/cm2, P. fluorescens was stimulated by ultrasound leading to promoted bacterial growth, extracellular protease activity, extracellular polysaccharide secretion (EPS), and synthesis of acyl-homoserine lactones (AHLs) as quorum-sensing signaling molecules. The expression of biofilm-related genes, stress response, and dual quorum sensing system was upregulated during post-treatment ultrasound. Proteomic analysis showed that ultrasound activated proteins in the flagellar system, which led to changes in bacterial tendency; meanwhile, a large number of proteins in the dual-component system began to be regulated. ABC transporters accelerated the membrane transport of substances inside and outside the cell membrane and equalized the permeability conditions of the cell membrane. In addition, the expression of proteins related to DNA repair was upregulated, suggesting that bacteria repair damaged DNA after ultrasound exposure.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| | - Jiang Lin
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Mengru Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Su Ying
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| |
Collapse
|
6
|
Sequino G, Valentino V, Esposito A, Volpe S, Torrieri E, De Filippis F, Ercolini D. Microbiome dynamics, antibiotic resistance gene patterns and spoilage-associated genomic potential in fresh anchovies stored in different conditions. Food Res Int 2024; 175:113788. [PMID: 38129066 DOI: 10.1016/j.foodres.2023.113788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Fresh fish is a highly perishable product and is easily spoiled by microbiological activity and chemical oxidation of lipids. However, microbial spoilage is the main factor linked with the rapid fish sensorial degradation due to the action of specific spoilage organisms (SSOs) that have the ability to dominate over other microorganisms and produce metabolites responsible for off-flavours. We explored the microbial dynamics in fresh anchovies stored in different packaging (air, modified atmosphere, under vacuum) and temperatures (0, 4 and 10 °C) using shotgun metagenomics, highlighting the selection of different microbial species according to the packaging type. Indeed, Pseudoalteromonas nigrifaciens, Psychrobacter cryohalolentis and Ps. immobilis, Pseudomonas deceptionensis and Vibrio splendidus have been identified as the main SSOs in aerobically stored anchovies, while Shewanella baltica, Photobacterium iliopiscarium, Ps. cryohalolentis and Ps. immobilis prevailed in VP and MAP. In addition, we identified the presence of spoilage-associated genes, leading to the potential production of biogenic amines and different off-flavors (H2S, TMA). In particular, the abundance of microbial genes leading to BA biosynthesis increased at higher storage temperature, while those related to H2S and TMA production were enriched in aerobically and VP packed anchovies, suggesting that MAP could be an effective strategy in delaying the production of these compounds. Finally, we provided evidence of the presence of a wide range of antibiotic resistance genes conferring resistance to different classes of antibiotic (β-lactams, tetracyclines, polymyxins, trimethoprims and phenicols) and highlighted that storage at higher temperature (4 and 10 °C) boosted the abundance of ARG-carrying taxa, especially in aerobically and MAP packed fish.
Collapse
Affiliation(s)
- Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Alessia Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Stefania Volpe
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elena Torrieri
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy.
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy
| |
Collapse
|
7
|
Moser B, Steininger-Mairinger T, Jandric Z, Zitek A, Scharl T, Hann S, Troyer C. Spoilage markers for freshwater fish: A comprehensive workflow for non-targeted analysis of VOCs using DHS-GC-HRMS. Food Res Int 2023; 172:113123. [PMID: 37689889 DOI: 10.1016/j.foodres.2023.113123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Changes of volatile organic compounds (VOCs) patterns during 6 days of storage at +4 °C were investigated in different freshwater fish species, namely carp and trout, using dynamic headspace gas chromatography time-of-flight mass spectrometry (DHS-GC-TOFMS). DHS parameters were systematically optimized to establish optimum extraction and pre-concentration of VOCs. Moreover, different sample preparation methods were tested: mincing with a manual meat grinder, as well as mincing plus homogenization with a handheld homogenizer both without and with water addition. The addition of water during sample preparation led to pronounced changes of the volatile profiles, depending on the molecular structure and lipophilicity of the analytes, resulting in losses of up to 98 % of more lipophilic compounds (logP > 3). The optimized method was applied to trout and carp. Trout samples of different storage days were compared using univariate (Mann-Whitney U test, fold change calculation) and multivariate (OPLS-DA) statistics. 37 potential spoilage markers were selected; for 11 compounds identity could be confirmed via measurement of authentic standards and 10 compounds were identified by library spectrum match. 22 compounds were also found to be statistically significant spoilage markers in carp. Merging results of the different statistical approaches, the list of 37 compounds could be narrowed down to the 14 most suitable for trout spoilage assessment. This study comprises a systematic evaluation of the capabilities of DHS-GC coupled to high-resolution (HR) MS for studying spoilage in different freshwater fish species, including a comprehensive data evaluation workflow.
Collapse
Affiliation(s)
- Bernadette Moser
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria; FFoQSI GmbH, Technopark 1D, 3430 Tulln an der Donau, Austria
| | - Teresa Steininger-Mairinger
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Zora Jandric
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria; VinoStellar OG, Keplerplatz 13, Vienna, Austria
| | - Andreas Zitek
- FFoQSI GmbH, Technopark 1D, 3430 Tulln an der Donau, Austria
| | - Theresa Scharl
- University of Natural Resources and Life Sciences, Department of Landscape, Spatial and Infrastructure Sciences, Institute of Statistics, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria; FFoQSI GmbH, Technopark 1D, 3430 Tulln an der Donau, Austria
| | - Christina Troyer
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
8
|
A visual bi-layer indicator based on mulberry anthocyanins with high stability for monitoring Chinese mitten crab freshness. Food Chem 2023; 411:135497. [PMID: 36696720 DOI: 10.1016/j.foodchem.2023.135497] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
In this study, a bilayer film (BIF) was fabricated to improve the stability of an anthocyanin-based freshness indicator film. The sensor layer consists of gellan gum (GG) and mulberry anthocyanin (MAE) for freshness indication. The oxygen barrier layer was constructed from chitosan (CS), polyvinyl alcohol (PVA), sodium alginate (SA), and pullulan (Pu) to the protection of MAE from oxidation. The highest antioxidant activity of BIF was 91.28 %. BIF was used to monitor the Chinese mitten crab freshness. The total volatile basic nitrogen (TVB-N) level was increased to 31.23 mg/100 g on day 8, and the color of the indicator presented a visible change from pink to dark green. The acquired results revealed a good correlation between TVB-N, pH, and color change of the indicator. The research indicated that the BIF was applied for freshness monitoring of Chinese mitten crab and displayed significant color changes that would be effective in commercial environments.
Collapse
|
9
|
Chen L, Mardiansyah ST, Kuuliala L, Somrani M, Walgraeve C, Demeestere K, Devlieghere F. Selected-ion flow-tube mass spectrometry for the identification of volatile spoilage markers for fresh pork packaged under modified atmospheres. Food Chem 2023; 423:136318. [PMID: 37210876 DOI: 10.1016/j.foodchem.2023.136318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
Microbial behavior during meat storage leads to the generation of volatile organic compounds (VOCs) and unpleasant off-odors. This study focused on a novel real-time analytical method, selected-ion flow-tube mass spectrometry (SIFT-MS), to monitor VOC quality and identify spoilage indicators for fresh pork stored under different packaging atmospheres (air, 70/0/30, 70/30/0, 5/30/65, 0/30/70 - v/v% O2/CO2/N2) at 4 °C. A comprehensive selection methodology was used to identify compounds with good instrumental data quality as well as a strong relationship with microbial growth and olfactory rejection. Based on the volatolome quantified by SIFT-MS, storage periods and conditions can be discriminated using multivariate statistics. Acetoin (or ethyl acetate) represented a significant pork quality marker for high-O2 conditions, whereas ethanol, 3-methylbutanal and sulfur compounds can indicate the anaerobic storage progress. Considering the applicability in monitoring different VOC profiles, SIFT-MS is expected to be promising in many storage scenarios to improve analytical efficiency and ensure reliability.
Collapse
Affiliation(s)
- Linyun Chen
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Stefanus Tri Mardiansyah
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Lotta Kuuliala
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Research Unit Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Part of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Mariem Somrani
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
| | - Christophe Walgraeve
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Kristof Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
10
|
He Y, Xie Z, Xu Y, Guo C, Zhao X, Yang H. Effect of slightly acid electrolysed water ice on metabolite and volatilome profile of shrimp (Penaeus vannamei) during cold storage. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
The impact of marine and terrestrial based extracts on the freshness quality of modified atmosphere packed sea bass fillets. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
12
|
Chu Y, Ding Z, Wang J, Xie J. Exploration of the evolution and production of volatile compounds in grouper (Epinephelus coioides) during cold storage. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
13
|
Microbiota profile of filleted gilthead seabream (Sparus aurata) during storage at various conditions by 16S rRNA metabarcoding analysis. Food Res Int 2023; 164:112312. [PMID: 36737906 DOI: 10.1016/j.foodres.2022.112312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
The aim of the present work was to study the microbiota profile of gilthead seabream (Sparus aurata) fillets stored either aerobically or under Modified Atmosphere Packaging (MAP) conditions at 0, 4, 8 and 12 °C, via 16S rRNA metabarcoding sequencing. Throughout storage, sensory assessment was also applied to estimate fillets' end of shelf-life. Results indicated that storage conditions strongly influenced the shelf-life of the fillets, since the sensorial attributes of air-stored samples deteriorated earlier than that of MAP-stored fillets, while higher temperatures also contributed to a more rapid products' end of shelf-life. Metataxonomic analysis indicated that Pseudomonas was by far the dominant genus at the end of fillet's shelf-life, in the vast majority of treatments, even though a sporadic but noteworthy presence of other genera (e.g, Shewanella, Carnobacterium, Brochothrix etc.) at the middle stages of MAP-stored fillets is also worth mentioning. On the other hand, a completely different profile as well as a more abundant bacterial diversity was observed at the end of shelf-life of MAP-stored fillets at 12 °C, in which Serratia was the most dominant bacterium, followed by Kluyvera, Hafnia, Rahnella and Raoultella, while Pseudomonas was detected in traces. The findings of the present work are very important, providing useful information about the spoilage status of gilthead seabream fillets during several storage conditions, triggering in parallel the need for further studies to enrich the current knowledge and help stakeholders develop innovative strategies that delay the growth of key spoiler players and consequently, retard spoilage course.
Collapse
|
14
|
Nanou E, Kotsiri M, Kogiannou D, Katsouli M, Grigorakis K. Consumer Perception of Freshness and Volatile Composition of Fresh Gilthead Seabream and Seabass in Active Packaging with and without CO 2-Emitting Pads. Foods 2023; 12:foods12030505. [PMID: 36766034 PMCID: PMC9914307 DOI: 10.3390/foods12030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Active packaging with CO2-emitters (pads) has recently been used for shelf-life extension of fresh fish. The aim of this study was to identify consumer attitudes towards fresh fish packaging, to examine whether Greek consumers prefer active packaging with pad over active packaging without pad, to investigate any perceived differences in the sensory freshness of the fish, and to relate consumer perception to volatile composition of fish fillets. In total, 274 consumers participated in the study which included freshness sensory evaluation of gilthead seabream (Sparus aurata) and seabass (Dicentrarchuslabrax), whole-gutted and filleted, raw and cooked, at high quality and at the end of high-quality shelf-life. Samples were packed under modified atmosphere either with a pad or without. Results showed that consumers preferred packages with pads, especially at the end of high quality shelf-life. They perceived raw samples packed with a pad to be fresher and closer to the ideal product, and also had a higher purchase intention towards them. Cooked samples were not perceived differently. Consumers' perception was in accordance with the GC-MS findings in the volatile compounds that function as freshness or spoilage indicators. Most participants were positive towards fresh fish packaging although they usually buy unpacked fresh fish. Our results suggest that active packaging with CO2 emitters contribute to freshness preservation and that it has a positive potential in the Greek market.
Collapse
Affiliation(s)
- Evangelia Nanou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave., 19013 Attiki, Greece
| | - Mado Kotsiri
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave., 19013 Attiki, Greece
| | - Dimitra Kogiannou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave., 19013 Attiki, Greece
| | - Maria Katsouli
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National TechnicalUniversity of Athens (NTUA), 15780 Athens, Greece
| | - Kriton Grigorakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave., 19013 Attiki, Greece
- Correspondence:
| |
Collapse
|
15
|
Parlapani FF, Anagnostopoulos DA, Karamani E, Mallouchos A, Haroutounian SA, Boziaris IS. Growth and Volatile Organic Compound Production of Pseudomonas Fish Spoiler Strains on Fish Juice Agar Model Substrate at Different Temperatures. Microorganisms 2023; 11:microorganisms11010189. [PMID: 36677482 PMCID: PMC9861217 DOI: 10.3390/microorganisms11010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Microbial spoilage is the main cause of quality deterioration in seafood. Several strains of psychotropic Pseudomonas have been found to dominate in such products, producing a plethora of volatile organic compounds (VOC). Herein, we investigated the growth of and VOC production by seven strains of Pseudomonas associated with spoiled fish after inoculation as single and mixed cultures on model fish substrate and storage at 0, 4 and 8 °C. The results indicated a strain-dependent VOC profile that was also affected by the storage temperature. Hierarchical cluster analysis (HCA) successfully grouped the strains based on VOC profile at each studied temperature, while some potential Chemical Spoilage Indices (CSI) were revealed. The findings of the present work will contribute to the understanding of the metabolic activity of particular strains of Pseudomonas and to reveal any potential CSI for rapid evaluation of fish spoilage/freshness status.
Collapse
Affiliation(s)
- Foteini F. Parlapani
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| | - Dimitrios A. Anagnostopoulos
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| | - Evangelia Karamani
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| | - Athanasios Mallouchos
- Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Serkos A. Haroutounian
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Ioannis S. Boziaris
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece
- Correspondence: ; Tel.: +30-24210-93153
| |
Collapse
|
16
|
Bou R, Guerrero L, López M, Claret A, López-Mas L, Castellari M. Effect of Vacuum Impregnation and High Hydrostatic Pressure Treatments on Shelf Life, Physicochemical, and Sensory Properties of Seabream Fillets. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractMarination is commonly used to preserve fish, which, in combination with other non-thermal technologies, such as vacuum impregnation and high hydrostatic pressure, may help to preserve freshness and extend shelf life. In addition, marination may mask changes in physicochemical properties and the sensory attributes of fish resulting from intense pressurization treatments. In this study, we evaluated the effects of vacuum impregnation (50 mbar for 5 min) alone or in combination with a moderate pressurization treatment (250 MPa for 6 min) on the physicochemical properties, microbiological and oxidative stability, and sensory properties of refrigerated seabream fillets. Compared to conventional marination, vacuum impregnation alone had no effect on the aforementioned properties, except for a higher perception of lemon aroma (0.9 vs. 1.6). However, vacuum impregnation with pressurization reduced the total viable mesophilic aerobic bacteria to counts below 4 log colony forming units (CFU)/g after 16 days of storage at ≤ 2 °C, compared to 6 log CFU/g with conventional marination. Additionally, the color and texture were affected by the pressurization treatment. However, color was more susceptible, and at the beginning of storage, lightness was higher in the pressurized samples than in the control (52 vs. 78). Regardless, this whitening effect and other minor changes in texture and sensory properties compared to conventional marination with vacuum impregnation with pressurization can be considered of little relevance considering the increase in shelf life, the lack of lipid oxidation (maintained at low and similar levels as those of the non-pressurized samples), and the intrinsic whitening effects of certain marinades.
Collapse
|
17
|
The effect of high oxygen modified atmospheres on the quality degradation of packed live blue mussels (Mytilus edulis). Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Saelens G, Houf K. Systematic review and critical reflection on the isolation and identification methods for spoilage associated bacteria in fresh marine fish. J Microbiol Methods 2022; 203:106599. [PMID: 36243229 DOI: 10.1016/j.mimet.2022.106599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Consumers demand more fresh, safe, and high-quality food. As this is partiallycorrelated to the microbial profile, several microbiological examination tools are available. Incontrast to meat, no microbiological normalized methods to assess the microbiological quality of fresh marine fish have been agreed on. As a result, studies on the detection and diversity of spoilage associated organisms (SAOs) in fish often apply various detection, isolation, and identification techniques. This complicates the comparison and interpretation of data reported, and often results in different or inconclusive results. Therefore, the present review aimed to present a critical overview of the isolation/cultivation and detection techniques currently applied in fish microbiology. After a comprehensive search in the PubMed, Web of Science and Scopus databases, a total of 111 studies fulfilled the review selection criteria. Results revealed that when relying on culture media for the isolation of SAOs in fish, it is essential to include a salt-containing medium next to plate count agar that is currently used as the reference medium for the enumeration of bacteria on fish. In terms of identification, MALDI-TOF MS and 16S rRNA gene sequencing are currently the most promising tools, though other housekeeping genes should be targeted as well, and, the biggest challenge at this point is still the lack of comprehensive proteomic and sequence databases for SAOs. A full replacement of cultivation by next generation sequencing is difficult to recommend due to the absence of a standardized experimental methodology, especially for fish, and the relatively high sequencing costs. Additionally, a discrepancy between culture-dependent and independent methods in revealing the bacterial diversity, and abundancy, from marine fish was demonstrated by several authors. It is therefore recommended to consider both approaches as complements of one another, rather than substitutes, and to include them simultaneously to yield more complete results regarding the SAOs in fresh marine fish. As such, a thorough understanding of the biology of spoilage organisms and process will be obtained to prolong the shelf-life and deliver a high-quality product.
Collapse
Affiliation(s)
- Ganna Saelens
- Laboratory of Foodborne Parasites, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
19
|
Microbiota Succession of Whole and Filleted European Sea Bass ( Dicentrarchus labrax) during Storage under Aerobic and MAP Conditions via 16S rRNA Gene High-Throughput Sequencing Approach. Microorganisms 2022; 10:microorganisms10091870. [PMID: 36144472 PMCID: PMC9505548 DOI: 10.3390/microorganisms10091870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
In the present work, the profiles of bacterial communities of whole and filleted European sea bass (Dicentrarchus labrax), during several storage temperatures (0, 4, 8 and 12 °C) under aerobic and Modified Atmosphere Packaging (MAP) conditions, were examined via the 16S rRNA High-Throughput Sequencing (HTS) approach. Sensorial attributes were also assessed to determine products’ shelf-life. Results indicated that shelf-life was strongly dependent on handling, as well as on temperature and atmosphere conditions. HTS revealed the undisputed dominance of Pseudomonas from the very beginning and throughout storage period in the majority of treatments. However, a slightly different microbiota profile was recorded in MAP-stored fillets at the middle stages of storage, which mainly referred to the sporadic appearance of some bacteria (e.g., Carnobacterium, Shewanella, etc.) that followed the dominance of Pseudomonas. It is noticeable that a major difference was observed at the end of shelf-life of MAP-stored fillets at 12 °C, where the dominant microbiota was constituted by the genus Serratia, while the relative abundance of Pseudomonas and Brochothrix was more limited. Furthermore, at the same temperature under aerobic storage of both whole and filleted fish, Pseudomonas almost co-existed with Acinetobacter, while the presence of both Erwinia and Serratia in whole fish was noteworthy. Overall, the present study provides useful information regarding the storage fate and spoilage status of whole and filleted European sea bass, suggesting that different handling and storage conditions influence the shelf-life of sea bass by favoring or delaying the dominance of Specific Spoilage Organisms (SSOs), affecting in parallel to some extent the formation of their consortium that is responsible for products’ sensorial deterioration. Such findings enrich the current knowledge and should be used as a benchmark to develop specific strategies aiming to delay spoilage and thus increase the products’ added value.
Collapse
|
20
|
Katsouli M, Semenoglou I, Kotsiri M, Gogou E, Tsironi T, Taoukis P. Active and Intelligent Packaging for Enhancing Modified Atmospheres and Monitoring Quality and Shelf Life of Packed Gilthead Seabream Fillets at Isothermal and Variable Temperature Conditions. Foods 2022; 11:foods11152245. [PMID: 35954012 PMCID: PMC9367868 DOI: 10.3390/foods11152245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
The study investigated the effect of active modified atmosphere packaging (20% CO2–60% N2–20% O2) with CO2 emitters (MAP-PAD) and conventional MAP (MAP) on the quality and shelf-life of gilthead seabream fillets during chill storage, while the most appropriate enzymatic Time Temperature Integrators (TTI) were selected for monitoring their shelf-life at isothermal and variable temperature storage conditions (Teff = 4.8 °C). The concentration of CO2 and O2 in the headspace of the package, volatile compounds and of the microbial population were monitored during storage. The kinetic parameters for bacterial growth were estimated at 0–10 °C using the Baranyi growth model. The MAP-PAD samples presented significantly lower microbial growth rates and longer lag phases compared to the MAP samples, leading to significant shelf-life extension: 2 days of extension at 2.5 °C and 5 °C, while 50% extension at variable conditions (Teff = 4.8 °C). CO2 emitters in the package improved the chemical freshness (K-values) and volatile compounds (characterizing freshness). The responses of different enzymatic TTI were modeled as the function of enzyme concentration, temperature and storage time. The activation energy (Ea) ranged from 97 to 148 kJ mol−1, allowing the selection of appropriate TTIs for the shelf-life monitoring of each fish product: LP-150U for the MAP and M-25U for the MAP-PAD samples. The validation experiment at Teff = 4.8 °C confirmed the applicability of Arrhenius-type models, as well as the use of TTIs as effective chill chain management tools during distribution and storage.
Collapse
Affiliation(s)
- Maria Katsouli
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens (NTUA), 15780 Athens, Greece; (M.K.); (I.S.); (E.G.); (T.T.)
| | - Ioanna Semenoglou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens (NTUA), 15780 Athens, Greece; (M.K.); (I.S.); (E.G.); (T.T.)
| | - Mado Kotsiri
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 Athens-Sounio Ave, 19013 Attiki, Greece;
| | - Eleni Gogou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens (NTUA), 15780 Athens, Greece; (M.K.); (I.S.); (E.G.); (T.T.)
- Department of Food Science and Nutrition, University of Thessaly, End N. Temponera, 43100 Karditsa, Greece
| | - Theofania Tsironi
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens (NTUA), 15780 Athens, Greece; (M.K.); (I.S.); (E.G.); (T.T.)
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens (NTUA), 15780 Athens, Greece; (M.K.); (I.S.); (E.G.); (T.T.)
- Correspondence: ; Tel.: +30-2107723171
| |
Collapse
|
21
|
Yavuzer E, Köse M. Prediction of fish quality level with machine learning. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emre Yavuzer
- Department of Food Engineering, Faculty of Engineering and Architecture Kırşehir Ahi Evran University 40100 Kırşehir Turkey
| | - Memduh Köse
- Department of Electrical Electronics Engineering, Faculty of Engineering and Architecture Kırşehir Ahi Evran University 40100 Kırşehir Turkey
| |
Collapse
|
22
|
Wen X, Zhang D, Li X, Ding T, Liang C, Zheng X, Yang W, Hou C. Dynamic changes of bacteria and screening of potential spoilage markers of lamb in aerobic and vacuum packaging. Food Microbiol 2022; 104:103996. [DOI: 10.1016/j.fm.2022.103996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
|
23
|
Determining spoilage of whiteleg shrimp (Litopanaeus vannemei) during refrigerated storage using colorimetric strips. Food Chem X 2022; 14:100263. [PMID: 35243329 PMCID: PMC8881655 DOI: 10.1016/j.fochx.2022.100263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/19/2022] [Indexed: 11/22/2022] Open
Abstract
Colorimetric strips were found to be applicable to determine the spoilage level of the commonly consumed crustacean (shrimp). The strips are relatively easy to use and offer a cost-efficient alternative to sensory and laborious laboratory methodology for seafood quality assessment. Strip results aligned well with the current sensory seafood grading system used by FDA/NOAA for inspection and possibly could serve as a replacement for sensory analysis.
A reliable spoilage assessment method is needed to ensure sufficient quality control of shrimp. Colorimetric dye-based indicators that change color in response to pH changes can monitor food quality changes in a simple, quick, and accurate way and generate easy-to-interpret results. Significant positive correlations with storage time were observed for the results of the bromophenol blue (BPB) strips (r = 0.8513, p < 0.0001) and the rose bengal strips (r = 0.8981, p < 0.0001). The results of both colorimetric methods significantly correlated with sensory and chemical quality indicators, including sensory attributes “salty water-like”, “natto water-like” and “sour milk-like”, and volatile compounds such as 3-methyl-3-butenol, 2-methyl-1-butanol, 3-methyl-1-butanol, hexanol, 2-methyl-1-butanal, and 3-methyl-1-butanal. The BPB strips and rose bengal strips have the potential to be used as objective, accurate, and cost-efficient methods to evaluate shrimp quality and lead to consistent and easy-to-interpret results.
Collapse
|
24
|
Surface Decontamination and Shelf-Life Extension of Gilthead Sea Bream by Alternative Washing Treatments. SUSTAINABILITY 2022. [DOI: 10.3390/su14105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efficacy of washing and the investigation of alternative sanitizing treatments for the reduction of microbial population are major issues for fresh fish and seafood. Limited work on the effect of alternative washing media on fish, particularly gilthead sea bream, one of the important popular fish species, has been published and no industrial scaling-up has been reported. The objective of this study was to systematically evaluate the effect of surface decontamination treatments on the microbial load of fish and the quality and shelf life during subsequent chilled storage. Citric acid (200 ppm for 0–10 min), lactic acid (200 ppm for 0–10 min), and peracetic acid (0–200 ppm for 0–4 min) were tested as alternative washing media by immersion of gutted gilthead sea bream by evaluating their effect on microbial growth and physicochemical and organoleptic degradation of fish. The results of the study indicated that washing with citric (200 ppm, 10 min) and peracetic acid (200 ppm, 4 min) significantly delayed the growth of spoilage microorganisms (total viable count, Pseudomonas spp., Enterobacteriaceae spp., and H2S-producting bacteria) in gutted fish and extended the shelf life to 18 days at 0 °C, compared to 11 days without washing treatment. Appropriate handling and processing of fish and shelf-life extension may enable longer transportation and thus open new distant markets, as well as contribute to reduce food waste during transportation and storage.
Collapse
|
25
|
Wang W, Dong H, Zhang Y, Zhao Y, Peng J, He Q. Frozen kinetics for the effects of a functional glazing on physical, chemical, and microbial properties of tilapia during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenxia Wang
- School of Public Health Southern Medical University Guangzhou China
- School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou China
| | - Hao Dong
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Yalan Zhang
- School of Public Health Southern Medical University Guangzhou China
| | - Yihui Zhao
- School of Public Health Southern Medical University Guangzhou China
| | - Jian Peng
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods ,Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing Guangzhou China
| | - Qi He
- School of Public Health Southern Medical University Guangzhou China
| |
Collapse
|
26
|
Zhang Y, Ma X, Li X, Bi J, Zhang G, Hao H, Hou H. Study on microbial community and physicochemical properties of braised chicken during processing and storage microbial community of braised chicken. J Food Saf 2022. [DOI: 10.1111/jfs.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yanan Zhang
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| | - Xinxiu Ma
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| | - Xinyu Li
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| | - Jingran Bi
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| | - Gongliang Zhang
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| | - Hongman Hou
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| |
Collapse
|
27
|
Pinto de Rezende L, Barbosa J, Teixeira P. Analysis of Alternative Shelf Life-Extending Protocols and Their Effect on the Preservation of Seafood Products. Foods 2022; 11:foods11081100. [PMID: 35454688 PMCID: PMC9025290 DOI: 10.3390/foods11081100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/25/2022] Open
Abstract
Seafood is essential to a healthy and varied diet due to its highly nutritious characteristics. However, seafood products are highly perishable, which results in financial losses and quality concerns for consumers and the industry. Due to changes in consumer concerns, demand for healthy products has increased. New trends focusing on reducing synthetic preservatives require innovation and the application of additional or alternative strategies to extend the shelf life of this type of product. Currently, refrigeration and freezing storage are the most common methods for fish preservation. However, refrigeration alone cannot provide long shelf-life periods for fish, and freezing worsens sensorial characteristics and consumer interest. Therefore, the need to preserve seafood for long periods without exposing it to freezing temperatures exists. This review focuses on the application of other approaches to seafood products, such as biodegradable films and coating technology; superchilling; irradiation; high-pressure processing; hyperbaric storage; and biopreservation with lactic acid bacteria, bacteriocins, or bacteriophages. The efficiency of these techniques is discussed based on their impact on microbiological quality, sensorial degradation, and overall preservation of the product’s nutritional properties. Although these techniques are already known, their use in the industrial processing of seafood is not widespread. Thus, the novelty of this review is the aggregation of recent studies on shelf life extension approaches, which provide useful information for the selection of the most appropriate technology and procedures and industrial innovation. Despite the fact that all techniques inhibit or delay bacterial proliferation and product decay, an undesirable sensory impact may occur depending on the treatment conditions. Although no technique appears to replace refrigeration, the implementation of additional treatments in the seafood processing operation could reduce the need for freezing, extending the shelf life of fresh unfrozen products.
Collapse
|
28
|
Lemos ÁT, Goodfellow BJ, Delgadillo I, Saraiva JA. NMR metabolic composition profiling of high pressure pasteurized milk preserved by hyperbaric storage at room temperature. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Dynamic analysis of physicochemical characteristics and microbial communities of Aspergillus-type douchi during fermentation. Food Res Int 2022; 153:110932. [DOI: 10.1016/j.foodres.2021.110932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022]
|
30
|
Volatile Organic Compounds and 16S Metabarcoding in Ice-Stored Red Seabream Pagrus major. Foods 2022; 11:foods11050666. [PMID: 35267299 PMCID: PMC8909714 DOI: 10.3390/foods11050666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023] Open
Abstract
The profiles of bacterial communities and volatile organic compounds (VOCs) of farmed red seabream (Pagrus major) from two batches during ice storage were studied using 16S metabarcoding (culture independent approach) and headspace Solid Phase Micro-Extraction—Gas Chromatography/Mass Spectrometry (SPME-GC/MS) analysis, respectively. Sensory attributes and microbiological parameters were also evaluated. At Day 12 (shelf-life for both batches based on sensory evaluation), using classical microbiological analysis, Total Viable Counts (TVC) were found at the levels of 7–8 log cfu/g, and Pseudomonas and/or H2S producing bacteria dominated. On the other hand, the culture independent 16S metabarcoding analysis showed that Psychrobacter were the most abundant bacteria in fish tissue from batch 1, while Pseudomonas and Psychrobacter (at lower abundance) were the most abundant in fish from batch 2. Differences were also observed in VOC profiles between the two batches. However, combining the VOC results of the two batches, 15 compounds were found to present a similar trend during fish storage. Of them, 2-methylbutanal, 3-methylbutanal, 3-methyl-1-butanol, ethanol, 2,4 octadiene (2 isomers), ethyl lactate, acetaldehyde and (E)-2-penten-1-ol could be used as potential spoilage markers of red seabream because they increased during storage, mainly due to Psychrobacter and/or Pseudomonas activity and/or chemical activity (e.g., oxidation). Additionally, VOCs such as propanoic acid, nonanoic acid, decanoic acid, 1-propanol, 3,4-hexanediol and hexane decreased gradually with time, so they could be proposed as freshness markers of red seabream. Such information will be used to develop intelligent approaches for the rapid evaluation of spoilage course in red seabream during ice storage.
Collapse
|
31
|
Chakraborty P, Nath D, Hoque M, Sarkar P, Hati S, Mishra BK. Biopolymer‐based antimicrobial coatings for aquatic food products: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Priyanka Chakraborty
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| | - Debarshi Nath
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Monjurul Hoque
- Teagasc Ashtown Food Research Centre Teagasc Ashtown Dublin 15 Ireland
- School of Food and Nutritional Sciences University College Cork T12 R229 Cork Ireland
| | - Preetam Sarkar
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Subrota Hati
- Department of Dairy Microbiology SMC College of Dairy Science Anand Agricultural University India
| | - Birendra Kumar Mishra
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| |
Collapse
|
32
|
Iacumin L, Jayasinghe AS, Pellegrini M, Comi G. Evaluation of Different Techniques, including Modified Atmosphere, under Vacuum Packaging, Washing, and Latilactobacillus sakei as a Bioprotective Agent, to Increase the Shelf-Life of Fresh Gutted Sea Bass ( Dicentrarchus labrax) and Sea Bream ( Sparus aurata) Stored at 6 ± 2 °C. BIOLOGY 2022; 11:biology11020217. [PMID: 35205084 PMCID: PMC8869610 DOI: 10.3390/biology11020217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/26/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary A method of increasing the shelf life of gutted sea bass and sea bream packaged under vacuum and stored at 6 ± 2 °C (simulating supermarkets and consumer fridges) through the use of bioprotective starter cultures was studied. An increase in the shelf life up until 14 days was observed by washing the gutted fish in water supplemented with a culture of Latilactobacillus sakei and dextrose (0.1%). L. sakei reduced the growth of specific spoilage microorganisms and consequently reduced the production of total volatile nitrogen and oxidized compounds. Abstract Fish meat is very perishable because of indigenous and microbial enzymes, which determine spoilage and shelf life. The deterioration processes, which lead to an important, sequential, and progressive modification of the initial state of freshness, are fast and depend on rearing, harvesting, slaughtering, handling, and storage conditions. Usually, the shelf life of gutted fish stored at 4 ± 2 °C under vacuum packaging (VP—1.0 bar) and modified atmosphere packaging (MAP, 70% N2, <1% O2, 30% CO2) is approximately 9 days. The aim of this work was to improve the shelf life and preserve the microbiological and sensory quality of farmed gutted sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) using different methods, including VP, MAP, and bioprotective culture containing Latilactobacillus sakei, until 12–14 days. Microbiological, physicochemical, and sensory quality indices were monitored to confirm the effectiveness of biopreservation on product quality during proper refrigeration (4 ± 2 °C) or abuse (6 ± 2 °C, simulating supermarkets and consumer fridges) storage period. Considering the quality indexes represented by Enterobacteriaceae, total volatile nitrogen (TVB-N), and malonaldehyde concentrations (TBARS) and the sensorial analysis, the VP samples were more acceptable than the MAP fish, even though the shelf-life of the VP and MAP fish was similar at about 12 days. The second phase of the work was to evaluate the shelf-life of both VP fish stored at 6 ± 2 °C, which simulates the normal abuse temperature of supermarkets or consumer fridges. Data confirmed the previous results and demonstrated, despite the abuse temperature of storage, a shelf-life of about 12 days. Finally, the third phase consisted of prolonging the shelf life until 14 days of storage at 6 ± 2 °C by washing the gutted sea bass and sea bream in a suspension of bioprotective starter (7 log CFU/mL) with or without the addition of dextrose (0.1%) and by VP packaging. The bioprotective culture reduced the growth of spoilage microorganisms. Consequently, the total volatile nitrogen (TVB-N) concentration in both fish species was low (<35 mg N/100 g). Nonprofessional and untrained evaluators confirmed the acceptability of the inoculated samples by sensorial analysis.
Collapse
Affiliation(s)
| | | | | | - Giuseppe Comi
- Correspondence: ; Tel.: +39-0432-558129 or +39-338-9918561; Fax: +39-0432-558130
| |
Collapse
|
33
|
An Active Peptide-Based Packaging System to Improve the Freshness and Safety of Fish Products: A Case Study. Foods 2022; 11:foods11030338. [PMID: 35159493 PMCID: PMC8834512 DOI: 10.3390/foods11030338] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Fresh fish are highly perishable, owing mainly to their moisture content, high amount of free amino acids and polyunsaturated fatty acids. Microorganisms and chemical reactions cause the spoilage, leading to loss in quality, human health risks and a market value reduction. Therefore, the fishing industry has always been willing to explore new technologies to increase quality and safety of fish products through a decrease of the microbiological and biochemical damage. In this context, antimicrobial active packaging is one such promising solution to meet consumer demands. The main objective of this study was to evaluate the effects of an active polypropylene-based packaging functionalized with the antimicrobial peptide 1018K6 on microbial growth, physicochemical properties and the sensory attributes of raw salmon fillets. The results showed that application of 1018K6-polypropylene strongly inhibited the microbial growth of both pathogenic and specific spoilage organisms (SSOs) on fish fillets after 7 days. Moreover, salmon also kept its freshness as per volatile chemical spoilage indices (CSIs) during storage. Similar results were obtained on hamburgers of Sarda sarda performing the same analyses. This work provides further evidence that 1018K6-polymers have good potential as antimicrobial packaging for application in the food market to enhance quality and preserve the sensorial properties of fish products.
Collapse
|
34
|
Liu Z, Liu Q, Wei S, Sun Q, Xia Q, Zhang D, Shi W, Ji H, Liu S. Quality and volatile compound analysis of shrimp heads during different temperature storage. Food Chem X 2021; 12:100156. [PMID: 34825167 PMCID: PMC8603020 DOI: 10.1016/j.fochx.2021.100156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
This study aimed to investigate volatile compounds and quality traits of shrimp heads stored at 20 °C, 4 °C, -3 °C, and -18 °C. With increased storage time, sensory scores gradually decreased, while pH and TVB-N content showed a gradually increase trend. L* showed a decreasing and then increasing tendency. The radar chart and principal component analysis showed variation changes. Three compounds including 2-decanone, dimethyl disulphide and dimethyl tetrasulphide, four compounds including 2-pentanone, 3-methyl-1-butanol, 2-methylbutyric acid, and 2,3,5-trimethylpyrazine, and 3-methylbutyraldehyde were the characteristic volatiles for the samples stored at 20 °C, 4 °C, and -3 °C, respectively. Twenty-five volatile compounds were key volatile compounds, among which nine were potential classification compounds with high variable importance in projection values. Trimethylamine and 2-nonanol were selected as potential markers of spoilage. The study provides the theoretical basis for quality and volatile compound investigations for shrimp heads with further high-quality utilization.
Collapse
Affiliation(s)
- Zhenyang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qiumei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Di Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
35
|
Syropoulou F, Parlapani FF, Anagnostopoulos DA, Stamatiou A, Mallouchos A, Boziaris IS. Spoilage Investigation of Chill Stored Meagre ( Argyrosomus regius) Using Modern Microbiological and Analytical Techniques. Foods 2021; 10:3109. [PMID: 34945660 PMCID: PMC8702202 DOI: 10.3390/foods10123109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022] Open
Abstract
Spoilage status of whole and filleted chill-stored meagre caught in January and July was evaluated using sensory, microbiological, 16S metabarcoding and Volatile Organic Compounds (VOCs) analysis. Based on the sensory analysis, shelf-life was 15 and 12 days for the whole fish taken in January and July, respectively, while 7 days for fish fillets of both months. For the whole fish, Total Viable Counts (TVC) at the beginning of storage was 2.90 and 4.73 log cfu/g for fish caught in January and July respectively, while it was found about 3 log cfu/g in fish fillets of both months. The 16S metabarcoding analysis showed different profiles between the two seasons throughout the storage. Pseudomonas (47%) and Psychrobacter (42.5%) dominated in whole meagre of January, while Pseudomonas (66.6%) and Shewanella (10.5%) dominated in fish of July, at the end of shelf-life. Regarding the fillets, Pseudomonas clearly dominated at the end of shelf-life for both months. The volatile profile of meagre was predominated by alcohols and carbonyl compounds. After univariate and multivariate testing, we observed one group of compounds (trimethylamine, 3-methylbutanoic acid, 3-methyl-1-butanol) positively correlating with time of storage and another group with a declining trend (such as heptanal and octanal). Furthermore, the volatile profile seemed to be affected by the fish culturing season. Our findings provide insights into the spoilage mechanism and give information that helps stakeholders to supply meagre products of a high-quality level in national and international commerce.
Collapse
Affiliation(s)
- Faidra Syropoulou
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (F.S.); (F.F.P.); (D.A.A.)
| | - Foteini F. Parlapani
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (F.S.); (F.F.P.); (D.A.A.)
| | - Dimitrios A. Anagnostopoulos
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (F.S.); (F.F.P.); (D.A.A.)
| | - Anastasios Stamatiou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Athanasios Mallouchos
- Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Ioannis S. Boziaris
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (F.S.); (F.F.P.); (D.A.A.)
| |
Collapse
|
36
|
Bassey AP, Chen Y, Zhu Z, Odeyemi OA, Gao T, Olusola OO, Ye K, Li C, Zhou G. Evaluation of spoilage indexes and bacterial community dynamics of modified atmosphere packaged super-chilled pork loins. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
37
|
Jiang Q, Gao P, Liu J, Yu D, Xu Y, Yang F, Wang B, Yu P, Xia W. Endogenous proteases in giant freshwater prawn (
Macrobrachium rosenbergii
): changes and its impacts on texture deterioration during frozen storage. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Qixing Jiang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Jiatong Liu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Bin Wang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Peipei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| |
Collapse
|
38
|
Scieuzo C, Nardiello M, Farina D, Scala A, Cammack JA, Tomberlin JK, Vogel H, Salvia R, Persaud K, Falabella P. Hermetia illucens (L.) (Diptera: Stratiomyidae) Odorant Binding Proteins and Their Interactions with Selected Volatile Organic Compounds: An In Silico Approach. INSECTS 2021; 12:814. [PMID: 34564254 PMCID: PMC8469849 DOI: 10.3390/insects12090814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), has considerable global interest due to its outstanding capacity in bioconverting organic waste to insect biomass, which can be used for livestock, poultry, and aquaculture feed. Mass production of this insect in colonies requires the development of methods concentrating oviposition in specific collection devices, while the mass production of larvae and disposing of waste may require substrates that are more palatable and more attractive to the insects. In insects, chemoreception plays an essential role throughout their life cycle, responding to an array of chemical, biological and environmental signals to locate and select food, mates, oviposition sites and avoid predators. To interpret these signals, insects use an arsenal of molecular components, including small proteins called odorant binding proteins (OBPs). Next generation sequencing was used to identify genes involved in chemoreception during the larval and adult stage of BSF, with particular attention to OBPs. The analysis of the de novo adult and larval transcriptome led to the identification of 27 and 31 OBPs for adults and larvae, respectively. Among these OBPs, 15 were common in larval and adult transcriptomes and the tertiary structures of 8 selected OBPs were modelled. In silico docking of ligands confirms the potential interaction with VOCs of interest. Starting from the information about the growth performance of H. illucens on different organic substrates from the agri-food sector, the present work demonstrates a possible correlation between a pool of selected VOCs, emitted by those substrates that are attractive for H. illucens females when searching for oviposition sites, as well as phagostimulants for larvae. The binding affinities between OBPs and selected ligands calculated by in silico modelling may indicate a correlation among OBPs, VOCs and behavioural preferences that will be the basis for further analysis.
Collapse
Affiliation(s)
- Carmen Scieuzo
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marisa Nardiello
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
| | - Donatella Farina
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andrea Scala
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
| | - Jonathan A. Cammack
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.A.C.); (J.K.T.)
| | - Jeffery K. Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.A.C.); (J.K.T.)
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany;
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Krishna Persaud
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
39
|
Khaled AY, Parrish CA, Adedeji A. Emerging nondestructive approaches for meat quality and safety evaluation-A review. Compr Rev Food Sci Food Saf 2021; 20:3438-3463. [PMID: 34151512 DOI: 10.1111/1541-4337.12781] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
Meat is one of the most consumed agro-products because it contains proteins, minerals, and essential vitamins, all of which play critical roles in the human diet and health. Meat is a perishable food product because of its high moisture content, and as such there are concerns about its quality, stability, and safety. There are two widely used methods for monitoring meat quality attributes: subjective sensory evaluation and chemical/instrumentation tests. However, these methods are labor-intensive, time-consuming, and destructive. To overcome the shortfalls of these conventional approaches, several researchers have developed fast and nondestructive techniques. Recently, electronic nose (e-nose), computer vision (CV), spectroscopy, hyperspectral imaging (HSI), and multispectral imaging (MSI) technologies have been explored as nondestructive methods in meat quality and safety evaluation. However, most of the studies on the application of these novel technologies are still in the preliminary stages and are carried out in isolation, often without comprehensive information on the most suitable approach. This lack of cohesive information on the strength and shortcomings of each technique could impact their application and commercialization for the detection of important meat attributes such as pH, marbling, or microbial spoilage. Here, we provide a comprehensive review of recent nondestructive technologies (e-nose, CV, spectroscopy, HSI, and MSI), as well as their applications and limitations in the detection and evaluation of meat quality and safety issues, such as contamination, adulteration, and quality classification. A discussion is also included on the challenges and future outlooks of the respective technologies and their various applications.
Collapse
Affiliation(s)
- Alfadhl Y Khaled
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Chadwick A Parrish
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Akinbode Adedeji
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
40
|
Assessment of quality characteristics and bacterial community of modified atmosphere packaged chilled pork loins using 16S rRNA amplicon sequencing analysis. Food Res Int 2021; 145:110412. [PMID: 34112415 DOI: 10.1016/j.foodres.2021.110412] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 11/20/2022]
Abstract
Modified atmosphere packaging (MAP) is widely applied in packaging meat and meat products. While most studies had employed culture-dependent microbiological analyses or polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), the recent application of high-throughput sequencing (HTS) has been effective and reliable in detecting the microbial consortium associated with food spoilage. Since MAP application is limited in China, applying HTS in assessing the microbial consortium of meat and meat products in the country becomes imperative. In this study, quality indexes and bacterial enumeration often used as spoilage indicators were employed to assess MAP fresh pork under chilled (4 °C) storage for 21 d. The results indicated that 70%O2/30%CO2 (Group A) retained more redness (a*) content, while 70%N2/30%CO2 (Group B) markedly reduced spoilage indicators compared to the control group. Notably, high-throughput sequencing indicated that Group B and 20%O2/60%N2/20%CO2 (Group C) inhibited the growth of abundant spoilers, Pseudomonas spp. and Brochothrix spp. Thus, MAP (Group B and C) has promising potential in inhibiting predominant meat spoilers during chilled storage. This study provides valuable information to food industries on the potential application of MAP to control meat spoilage in Chinese markets.
Collapse
|
41
|
Critical review on the use of essential oils against spoilage in chilled stored fish: A quantitative meta-analyses. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Huang J, Zhou Y, Chen M, Huang J, Li Y, Hu Y. Evaluation of negative behaviors for single specific spoilage microorganism on little yellow croaker under modified atmosphere packaging: Biochemical properties characterization and spoilage-related volatiles identification. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Primary Processing and Storage Affect the Dominant Microbiota of Fresh and Chill-Stored Sea Bass Products. Foods 2021; 10:foods10030671. [PMID: 33809877 PMCID: PMC8004183 DOI: 10.3390/foods10030671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
The cultivable microbiota isolated from three sea bass products (whole, gutted, and filleted fish from the same batch) during chilled storage and the effect of primary processing on microbial communities in gutted and filleted fish were studied. Microbiological and sensory changes were also monitored. A total of 200 colonies were collected from TSA plates at the beginning and the end of fish shelf-life, differentiated by High Resolution Sequencing (HRM) and identified by sequencing analysis of the V3-V4 region of the 16S rRNA gene. Pseudomonas spp. followed by potential pathogenic bacteria were initially found, while Pseudomonasgessardii followed by other Pseudomonas or Shewanella species dominated at the end of fish shelf-life. P. gessardii was the most dominant phylotype in the whole sea bass, P. gessardii and S. baltica in gutted fish, while P. gessardii and P. fluorescens were the most dominant bacteria in sea bass fillets. To conclude, primary processing and storage affect microbial communities of gutted and filleted fish compared to the whole fish. HRM analysis can easily differentiate bacteria isolated from fish products and reveal the contamination due to handling and/or processing, and so help stakeholders to immediately tackle problems related with microbial quality or safety of fish.
Collapse
|
44
|
Bao X, Wang F, Yang R, Zhang Y, Fu L, Wang Y. Ornithine Decarboxylation System of Shewanella baltica Regulates Putrescine Production and Acid Resistance. J Food Prot 2021; 84:303-309. [PMID: 33003195 DOI: 10.4315/jfp-20-227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023]
Abstract
ABSTRACT Shewanella baltica, one of the dominant spoilers of seafoods, can synthesize putrescine from ornithine under acidic conditions, which could result in food spoilage and health problems. We identified three regulatory enzymes (SpeC, SpeF, and PotE) in the ornithine decarboxylation (ODC) pathway of S. baltica by searching the NCBI database and exploring their functional roles through gene knock-out technology. The ornithine decarboxylase SpeC is an auxiliary adjustor of the ODC system, whereas the ornithine-putrescine transporter SpeE and ornithine decarboxylase SpeF participate in the production of extracellular putrescine. Exogenous addition of ornithine and putrescine promotes the extracellular secretion of putrescine by upregulating the expression of speF and potE. The putrescine biosynthesis and alkalization of cytoplasm is enhanced at weak acidic pH compared with neutral pH, especially at pH 6.0. The maximum upregulation of ODC genes and the optimum decarboxylation activity of SpeF are achieved in a weak acidic environment (pH 6.0), suggesting that the ODC pathway plays an important role in putrescine production and the cytoplasmic acid counteraction of S. baltica. This study contributes to a wider understanding of spoilage mechanisms in food systems and provides theoretical support for developing novel seafood preservation methods. HIGHLIGHTS
Collapse
Affiliation(s)
- Xingyue Bao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Feifei Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Rendi Yang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Shijiazhuang 050091, People's Republic of China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
45
|
Quest of Intelligent Research Tools for Rapid Evaluation of Fish Quality: FTIR Spectroscopy and Multispectral Imaging Versus Microbiological Analysis. Foods 2021; 10:foods10020264. [PMID: 33525540 PMCID: PMC7912049 DOI: 10.3390/foods10020264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 11/26/2022] Open
Abstract
The aim of the present study was to assess the microbiological quality of farmed sea bass (Dicentrarchus labrax) fillets stored under aerobic conditions and modified atmosphere packaging (MAP) (31% CO2, 23% O2, 46% Ν2,) at 0, 4, 8, and 12 °C using Fourier transform infrared (FTIR) spectroscopy and multispectral imaging (MSI) in tandem with data analytics, taking into account the results of conventional microbiological analysis. Fish samples were subjected to microbiological analysis (total viable counts (TVC), Pseudomonas spp., H2S producing bacteria, Brochothrix thermosphacta, lactic acid bacteria (LAB), Enterobacteriaceae, and yeasts) and sensory evaluation, together with FTIR and MSI spectral data acquisition. Pseudomonas spp. and H2S-producing bacteria were enumerated at higher population levels compared to other microorganisms, regardless of storage temperature and packaging condition. The developed partial least squares regression (PLS-R) models based on the FTIR spectra of fish stored aerobically and under MAP exhibited satisfactory performance in the estimation of TVC, with coefficients of determination (R2) at 0.78 and 0.99, respectively. In contrast, the performances of PLS-R models based on MSI spectral data were less accurate, with R2 values of 0.44 and 0.62 for fish samples stored aerobically and under MAP, respectively. FTIR spectroscopy is a promising tool to assess the microbiological quality of sea bass fillets stored in air and under MAP that could be effectively employed in the future as an alternative method to conventional microbiological analysis.
Collapse
|
46
|
Liu W, Mei J, Xie J. Effect of locust bean gum-sodium alginate coatings incorporated with daphnetin emulsions on the quality of Scophthalmus maximus at refrigerated condition. Int J Biol Macromol 2020; 170:129-139. [PMID: 33338530 DOI: 10.1016/j.ijbiomac.2020.12.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
In this study, the microbiological, physicochemical, and flavor changes of turbot (Scophthalmus maximus) coated with a composite active coating of locust bean gum (LBG) and sodium alginate (SA) supplemented with daphnetin emulsions (0.16, 0.32, 0.64 mg·mL-1) were determined during 18 days of refrigerated storage (4 ± 1 °C). Results showed that LBG-SA coatings containing 0.32 mg·mL-1 daphnetin emulsions could significantly lower the total viable count (TVC), psychrophiles, Pseudomonas spp. and H2S-producing bacteria counts, and inhibit the productions of off-flavor compounds including the total volatile basic nitrogen (TVB-N), trimethylamine (TMA) and ATP-related compounds. 32 volatile compounds were identified by solid phase microextraction combined with gas chromatography-mass spectrometer method (SPME-GC/MS) during refrigerated storage and the treated turbot samples significantly lowered the relative content of fishy flavor compounds. Further, the LBG-SA coatings containing daphnetin could also delay the myofibril degradation of the turbot samples. These results indicated that the LBG-SA coatings with 0.32 mg·mL-1 daphnetin were a potential alternative way to improve the quality of turbot during refrigerated storage.
Collapse
Affiliation(s)
- Wenru Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
47
|
Fan Y, Odabasi A, Sims C, Schneider K, Gao Z, Sarnoski P. Utilization of Descriptive Sensory Analysis and Volatile Analysis to Determine Quality Indicators of Aquacultured Whiteleg Shrimp (Litopanaeus vannemei) during Refrigerated Storage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1799470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ying Fan
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, USA
| | - Asli Odabasi
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, USA
| | - Charles Sims
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, USA
| | - Keith Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, USA
| | - Zhifeng Gao
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, USA
| | - Paul Sarnoski
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, USA
| |
Collapse
|
48
|
Syropoulou F, Parlapani FF, Bosmali I, Madesis P, Boziaris IS. HRM and 16S rRNA gene sequencing reveal the cultivable microbiota of the European sea bass during ice storage. Int J Food Microbiol 2020; 327:108658. [DOI: 10.1016/j.ijfoodmicro.2020.108658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
|
49
|
High-CO 2 Modified Atmosphere Packaging with Superchilling (-1.3 °C) Inhibit Biochemical and Flavor Changes in Turbot ( Scophthalmus maximus) during Storage. Molecules 2020; 25:molecules25122826. [PMID: 32575384 PMCID: PMC7356536 DOI: 10.3390/molecules25122826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The effects of modified atmosphere packaging (MAP) in combination with superchilling (−1.3 °C) on the physicochemical properties, flavor retention, and organoleptic evaluation of turbot samples were investigated during 27 days storage. Results showed that high-CO2 packaging (70% or 60% CO2) combined with superchilling could reduce the productions of off-flavor compounds, including total volatile basic nitrogen (TVB-N) and ATP-related compounds. Twenty-four volatile organic compounds were determined by gas chromatography–mass spectrometry (GC/MS) during storage, including eight alcohols, 11 aldehydes, and five ketones. The relative content of off-odor volatiles, such as 1-octen-3-ol, 1-penten-3-ol, (E)-2-octenal, octanal, and 2,3-octanedione, was also reduced by high-CO2 packaging during superchilling storage. Further, 60% CO2/10% O2/30% N2 with superchilling (−1.3 °C) could retard the water migration on the basis of the water holding capacity, low field NMR, and MRI results, and maintain the quality of turbot according to organoleptic evaluation results during storage
Collapse
|
50
|
Parlapani FF, Ferrocino I, Michailidou S, Argiriou A, Haroutounian SA, Kokokiris L, Rantsiou K, Boziaris IS. Microbiota and volatilome profile of fresh and chill-stored deepwater rose shrimp (Parapenaeus longirostris). Food Res Int 2020; 132:109057. [DOI: 10.1016/j.foodres.2020.109057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/27/2019] [Accepted: 01/31/2020] [Indexed: 11/28/2022]
|