1
|
Heckler C, Vale MG, Canales HDS, Stradiotto GC, Giordano ALPL, Schreiber AZ, Sant'Ana AS. Spore-forming bacteria in gelatin: Characterization, identification by 16S rRNA and MALDI-TOF mass spectrometry (MS), and presence of heat resistance and virulence genes. Int J Food Microbiol 2024; 422:110813. [PMID: 38970997 DOI: 10.1016/j.ijfoodmicro.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Gelatin, a versatile protein derived from collagen, is widely used in the food, pharmaceutical and medical sectors. However, bacterial contamination by spore-forming bacteria during gelatin processing represents a significant concern for product safety and quality. In this study, an investigation was carried out to explore the heat and chemical resistance, as well as the identification and characterization of spore-forming bacteria isolated from gelatin processing. The methodologies involved chemical resistance tests with drastic pH in microplates and thermal resistance tests in capillary tubes of various isolates obtained at different processing stages. In addition, phenotypic and genotypic analyses were carried out to characterize the most resistant isolates of spore-forming bacteria. The findings of this study revealed the presence of several species, including Bacillus cereus, Bacillus licheniformis, Bacillus sonorensis, Bacillus subtilis, Geobacillus stearothermophilus, and Clostridium sporogenes, with some isolates exhibiting remarkable chemical and heat resistances. In addition, a significant proportion of the most resistant isolates showed gelatinase activity (n = 19/21; 90.5 %) and the presence of heat resistance (n = 5/21; 23.8 %), and virulence genes (n = 11/21; 52.4 %). The results of this study suggest that interventions should be done in quality control practices and that process parameter adjustments and effective contamination reduction strategies should be implemented through gelatin processing.
Collapse
Affiliation(s)
- Caroline Heckler
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Matheus G Vale
- Department of Integrated Systems, Faculty of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Héctor D S Canales
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Graziele C Stradiotto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Luisa P L Giordano
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Angelica Z Schreiber
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Couvert O, Koullen L, Lochardet A, Huchet V, Thevenot J, Le Marc Y. Effects of carbon dioxide and oxygen on the growth rate of various food spoilage bacteria. Food Microbiol 2023; 114:104289. [PMID: 37290872 DOI: 10.1016/j.fm.2023.104289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 06/10/2023]
Abstract
The growth of six bacterial species (Carnobacterium maltaromaticum, Bacillus weihenstephanensis, Bacillus cereus, Paenibacillus spp., Leuconostoc mesenteroides and Pseudomonas fragi) was studied in various gas compositions. Growth curves were obtained at various oxygen concentrations (between 0.1 and 21%), or various carbon dioxide concentrations (between 0 and 100%). Decreasing the O2 concentration from 21% to about 3-5% has no effect on the bacterial growth rates, which are only affected by low oxygen levels. For each strain studied, the growth rate decreased linearly with carbon dioxide concentration, except for L. mesenteroides which remained insensible to this gas. Conversely, the most sensitive strain was totally inhibited by 50% of carbon dioxide in the gas phase at 8 °C. Predictive models were fitted, and the parameters characterizing the inhibitory effect of these two gases were estimated. This study provides new tools to help the food industry design suitable packaging for MAP storage.
Collapse
Affiliation(s)
- Olivier Couvert
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| | - Loona Koullen
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France
| | - Anne Lochardet
- Adria Food Technology Institute - UMT ACTIA 19.03 ALTER'iX, ZA Creac'h Gwen, F29196, Quimper, Cedex 1, France
| | - Véronique Huchet
- Adria Food Technology Institute - UMT ACTIA 19.03 ALTER'iX, ZA Creac'h Gwen, F29196, Quimper, Cedex 1, France
| | - Jonathan Thevenot
- Adria Food Technology Institute - UMT ACTIA 19.03 ALTER'iX, ZA Creac'h Gwen, F29196, Quimper, Cedex 1, France
| | - Yvan Le Marc
- Adria Food Technology Institute - UMT ACTIA 19.03 ALTER'iX, ZA Creac'h Gwen, F29196, Quimper, Cedex 1, France
| |
Collapse
|
3
|
Cui H, Lu J, Li C, Rashed MMA, Lin L. Antibacterial and physical effects of cationic starch nanofibers containing carvacrol@casein nanoparticles against Bacillus cereus in soy products. Int J Food Microbiol 2022; 364:109530. [PMID: 35026445 DOI: 10.1016/j.ijfoodmicro.2022.109530] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/06/2021] [Accepted: 01/02/2022] [Indexed: 02/05/2023]
Abstract
Bacillus cereus (B. cereus) is a recognized foodborne pathogen widely distributed in various protein-rich foods, which is a huge challenge to food safety. Herein, a novel enzyme-responsive nanomaterial based on cationic starch (CSt) nanofibers loaded with carvacrol@casein nanoparticles (CL@CSNPs) was constructed (CL@CS/CSt nanofiber) to prevent the contamination of B. cereus in soybean products. Considering the excellent antibacterial activity of carvacrol (CL) against B. cereus, CL@CSNPs were prepared by electrostatic adsorption and hydrophobic interaction and characterized by SEM and FTIR.CL@CS/CSt nanofibers with better performance were determined by comparing the physical properties of the electrospinning solution and the prepared nanofiber. Nanofibers were prepared by electrospinning technology and analyzed by SEM and AFM to investigate the size and structural morphology of fibers. FTIR analyses were done to confirm the successful embedding of CL@CSNPs in CSt nanofibers. Subsequently, the controlled release of CL was verified by GC-MS and disc diffusion method. The application experiment results indicated that the treatment based on CL@CS/CSt nanofibers reduced the B. cereus in soy products by 2 log CFU/g, which reflected a significant antibacterial activity. In addition, CL@CS/CSt nanofibers could also prevent texture and chroma changes under refrigeration and maintain the sensory quality of soy products. Thus, CL@CS/CSt nanofibers appear to have great potential in controlling the contamination of soybean products by B. cereus while maintaining the physical quality.
Collapse
Affiliation(s)
- Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingyu Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Marwan M A Rashed
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
4
|
Park KM, Kim HJ, Choi JY, Koo M. Antimicrobial Effect of Acetic Acid, Sodium Hypochlorite, and Thermal Treatments against Psychrotolerant Bacillus cereus Group Isolated from Lettuce ( Lactuca sativa L.). Foods 2021; 10:foods10092165. [PMID: 34574273 PMCID: PMC8467346 DOI: 10.3390/foods10092165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Various food products distributed throughout the cold chain can present a health risk for consumers due to the presence of psychrotolerant B. cereus group species that possess enterotoxin genes and antibiotic resistance. As these bacteria can grow at the low temperatures used in the food industry, this study evaluated the antimicrobial efficacy of acetic acid, sodium hypochlorite, and thermal treatments for inhibition of psychrotolerant strains and the effect that differences in activation temperature (30 °C and 10 °C) have on their efficacy. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bacterial growth assay of acetic acid and thermal treatment showed an equal or higher antimicrobial efficacy in isolates activated at 10 °C than in those activated at 30 °C. In particular, psychrotolerant strains from the B. cereus group were completely eliminated with 0.25% acetic acid, regardless of the activation temperature. The possibility of tolerance was determined by observing responses in cells activated at 10 and 30 °C when exposed to different concentrations of sodium hypochlorite. Five isolates activated at 10 °C exhibited enhanced survivability in sodium hypochlorite compared to isolates activated at 30 °C, and these isolates were able to grow in sodium hypochlorite at concentrations of 250 ppm or higher. Although a significant difference in antimicrobial efficacy was observed for psychrotolerant B. cereus group strains depending on the activation temperature, acetic acid may be the most effective antimicrobial agent against psychrotolerant B. cereus species isolated from food products distributed in a cold chain.
Collapse
Affiliation(s)
- Kyung-Min Park
- Department of Food Analysis Center, Korea Research Institute, Wanju-gun 55365, Jeollabuk-do, Korea; (K.-M.P.); (J.-Y.C.)
| | - Hyun-Jung Kim
- Department of Research Group of Consumer Safety, Korea Research Institute, Wanju-gun 55365, Jeollabuk-do, Korea;
- Food Biotechnology, University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
| | - Ji-Yoen Choi
- Department of Food Analysis Center, Korea Research Institute, Wanju-gun 55365, Jeollabuk-do, Korea; (K.-M.P.); (J.-Y.C.)
| | - Minseon Koo
- Department of Food Analysis Center, Korea Research Institute, Wanju-gun 55365, Jeollabuk-do, Korea; (K.-M.P.); (J.-Y.C.)
- Food Biotechnology, University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-63-219-9161
| |
Collapse
|
5
|
Interactions between refrigeration temperatures, energy consumption in a food plant and microbiological quality of the food product: Application to refrigerated stuffed pasta. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Le Marc Y, Buss da Silva N, Postollec F, Huchet V, Baranyi J, Ellouze M. A stochastic approach for modelling the effects of temperature on the growth rate of Bacillus cereus sensu lato. Int J Food Microbiol 2021; 349:109241. [PMID: 34022612 DOI: 10.1016/j.ijfoodmicro.2021.109241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
A stochastic model that predicts the maximum specific growth rate (μmax) of Bacillus cereus sensu lato as a function of temperature was developed. The model integrates the intra-species variability by incorporating distributions of cardinal parameters (Tmin, Topt, Tmax) in the model. Growth rate data were generated for 22 strains, covering 5 major phylogenetic groups of B. cereus, and their cardinal temperatures identified. Published growth rate data were also incorporated in the model fitting, resulting in a set of 33 strains. Based on their cardinal temperatures, we identified clusters of Bacillus cereus strains that show similar response to temperature and these clusters were considered separately in the stochastic model. Interestingly, the μopt values for psychrotrophic strains were found to be significantly lower than those obtained for mesophilic strains. The model developed within this work takes into account some correlations existing between parameters (μopt, Tmin, Topt, Tmax). In particular, the relationship highlighted between the b-slope of the Ratkowsky model and Tmin (doi: https://doi.org/10.3389/fmicb.2017.01890) was adapted to the case of the popular Cardinal Temperature Model. This resulted in a reduced model in which μopt is replaced by a function of Tmin, Topt and 2 strain-independent parameters. A correlation between the Tmin parameter and the experimental minimal growth temperature was also highlighted and integrated in the model for improved predictions near the temperature growth limits. Compared to the classical approach, the model developed in this study leads to improved predictions for temperatures around Tmin and more realistic tails for the predicted distributions of μmax. It can be useful for describing the variability of the Bacillus cereus Group in Quantitative Microbial Risk Assessment (QMRA). An example of application of the stochastic model to Reconstituted Infant Formulae (RIF) was proposed.
Collapse
Affiliation(s)
- Yvan Le Marc
- Adria Food Technology Institute, UMT ACTIA 19.03 ALTER'iX, Quimper, France.
| | - Nathália Buss da Silva
- Nestlé Research Center, Lausanne, Switzerland; Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Florence Postollec
- Adria Food Technology Institute, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - Véronique Huchet
- Adria Food Technology Institute, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - József Baranyi
- Institute of Nutrition, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
7
|
Jessberger N, Dietrich R, Granum PE, Märtlbauer E. The Bacillus cereus Food Infection as Multifactorial Process. Toxins (Basel) 2020; 12:E701. [PMID: 33167492 PMCID: PMC7694497 DOI: 10.3390/toxins12110701] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
The ubiquitous soil bacterium Bacillus cereus presents major challenges to food safety. It is responsible for two types of food poisoning, the emetic form due to food intoxication and the diarrheal form emerging from food infections with enteropathogenic strains, also known as toxico-infections, which are the subject of this review. The diarrheal type of food poisoning emerges after production of enterotoxins by viable bacteria in the human intestine. Basically, the manifestation of the disease is, however, the result of a multifactorial process, including B. cereus prevalence and survival in different foods, survival of the stomach passage, spore germination, motility, adhesion, and finally enterotoxin production in the intestine. Moreover, all of these processes are influenced by the consumed foodstuffs as well as the intestinal microbiota which have, therefore, to be considered for a reliable prediction of the hazardous potential of contaminated foods. Current knowledge regarding these single aspects is summarized in this review aiming for risk-oriented diagnostics for enteropathogenic B. cereus.
Collapse
Affiliation(s)
- Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Per Einar Granum
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway;
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| |
Collapse
|
8
|
Rasooly R, Do P, Hernlem B. Quantitative bioluminescence assay for measuring Bacillus cereus nonhemolytic enterotoxin complex. PLoS One 2020; 15:e0238153. [PMID: 32998160 PMCID: PMC7527251 DOI: 10.1371/journal.pone.0238153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022] Open
Abstract
Bacillus cereus is a foodborne pathogen causing emesis and diarrhea in those affected. It is assumed that the non-hemolytic enterotoxin (Nhe) plays a key role in B. cereus induced diarrhea. The ability to trace Nhe activity is important for food safety. While assays such as PCR and ELISA exist to detect Nhe, those methods cannot differentiate between active and inactive forms of Nhe. The existing rabbit ileal loop bioassay used to detect Nhe activity is ethically disfavored because it uses live experimental animals. Here we present a custom built low-cost CCD based luminometer and applied it in conjunction with a cell-based assay using Vero cells transduced to express the luciferase enzyme. The activity of Nhe was measured as its ability to inhibit synthesis of luciferase as quantified by reduction of light emission by the luciferase reaction. Emitted light intensity was observed to be inversely proportional to Nhe concentration over a range of 7 ng/ml to 125 ng/ml, with a limit of detection of 7 ng/ml Nhe.
Collapse
Affiliation(s)
- Reuven Rasooly
- Western Regional Research Center, Foodborne Toxin Detection & Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States of America
| | - Paula Do
- Western Regional Research Center, Foodborne Toxin Detection & Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States of America
| | - Bradley Hernlem
- Western Regional Research Center, Foodborne Toxin Detection & Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States of America
| |
Collapse
|
9
|
Ricci A, Martelli F, Razzano R, Cassi D, Lazzi C, Neviani E, Bernini V. Service temperature preservation approach for food safety: Microbiological evaluation of ready meals. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Park KM, Kim HJ, Jeong M, Koo M. Enterotoxin Genes, Antibiotic Susceptibility, and Biofilm Formation of Low-Temperature-Tolerant Bacillus cereus Isolated from Green Leaf Lettuce in the Cold Chain. Foods 2020; 9:foods9030249. [PMID: 32106606 PMCID: PMC7142467 DOI: 10.3390/foods9030249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
The prevalence and characteristics of low-temperature-tolerant Bacillus cereus (psychrotolerant B. cereus) in green leaf lettuce collected during cold chain were investigated. Among the 101 isolated B. cereus samples, only 18 were capable of growth at 7 °C, and these isolates shared potential health hazard characteristics with mesophilic isolates. Most psychrotolerant B. cereus isolates contained various combinations of nheA, nheB, nheC, hblA, hblA, hblC, hblD, cytK, and entFM. Most isolates of psychrotolerant B. cereus possessed at least two enterotoxin genes and 28% of isolates harbored tested nine enterotoxin genes. Additionally, the psychrotolerant B. cereus isolates showed resistance to tetracycline and rifampin and intermediate levels of resistance to clindamycin. A total of 23% of isolates among psychrotolerant B. cereus displayed a high level of biofilm formation at 7 °C than at 10 °C or 30 °C. The results of this study indicate that cold distribution and storage for green leaf lettuce may fail to maintain food safety due to the presence of enterotoxigenic, antibiotic-resistant, and strong biofilm forming psychrotolerant B. cereus isolates, which therefore poses a potential health risk to the consumer. Our findings provide the first account of the prevalence and characteristics of psychrotolerant B. cereus isolated from green leaf lettuce during cold storage, suggesting a potential hazard of psychrotolerant B. cereus isolates to public health and the food industry.
Collapse
Affiliation(s)
- Kyung Min Park
- Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Korea; (K.M.P.); (H.J.K.)
- Consumer Safety, Korea Food Research Institute, Wanju-gun 55365, Korea;
| | - Hyun Jung Kim
- Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Korea; (K.M.P.); (H.J.K.)
- Consumer Safety, Korea Food Research Institute, Wanju-gun 55365, Korea;
| | - Mooncheol Jeong
- Consumer Safety, Korea Food Research Institute, Wanju-gun 55365, Korea;
| | - Minseon Koo
- Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Korea; (K.M.P.); (H.J.K.)
- Food Analysis Center, Korea Food Research Institute, Wanju-gun 55365, Korea
- Correspondence: ; Tel.: +82-63-219-9161; Fax: +82-63-219-9876
| |
Collapse
|
11
|
Webb MD, Barker GC, Goodburn KE, Peck MW. Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends Food Sci Technol 2019; 93:94-105. [PMID: 31764911 PMCID: PMC6853023 DOI: 10.1016/j.tifs.2019.08.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022]
Abstract
BACKGROUND Spores of psychrotrophic Bacillus cereus may survive the mild heat treatments given to minimally processed chilled foods. Subsequent germination and cell multiplication during refrigerated storage may lead to bacterial concentrations that are hazardous to health. SCOPE AND APPROACH This review is concerned with the characterisation of factors that prevent psychrotrophic B. cereus reaching hazardous concentrations in minimally processed chilled foods and associated foodborne illness. A risk assessment framework is used to quantify the risk associated with B. cereus and minimally processed chilled foods. KEY FINDINGS AND CONCLUSIONS Bacillus cereus is responsible for two types of food poisoning, diarrhoeal (an infection) and emetic (an intoxication); however, no reported outbreaks of food poisoning have been associated with B. cereus and correctly stored commercially-produced minimally processed chilled foods. In the UK alone, more than 1010 packs of these foods have been sold in recent years without reported illness, thus the risk presented is very low. Further quantification of the risk is merited, and this requires additional data. The lack of association between diarrhoeal food poisoning and correctly stored commercially-produced minimally processed chilled foods indicates that an infectious dose has not been reached. This may reflect low pathogenicity of psychrotrophic strains. The lack of reported association of psychrotrophic B. cereus with emetic illness and correctly stored commercially-produced minimally processed chilled foods indicates that a toxic dose of the emetic toxin has not been formed. Laboratory studies show that strains form very small quantities of emetic toxin at chilled temperatures.
Collapse
Affiliation(s)
- Martin D. Webb
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Gary C. Barker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Kaarin E. Goodburn
- Chilled Food Associates, c/o 3 Weekley Wood Close, Kettering, NN14 1UQ, UK
| | - Michael W. Peck
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| |
Collapse
|
12
|
Guérin A, Dargaignaratz C, Clavel T, Broussolle V, Nguyen-the C. Impact of temperature and oxygen on the fate of Bacillus weihenstephanensis in a food-based medium. Food Microbiol 2019; 83:175-180. [DOI: 10.1016/j.fm.2019.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/30/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
|
13
|
Bacillus cereus cshA Is Expressed during the Lag Phase of Growth and Serves as a Potential Marker of Early Adaptation to Low Temperature and pH. Appl Environ Microbiol 2019; 85:AEM.00486-19. [PMID: 31076436 PMCID: PMC6606889 DOI: 10.1128/aem.00486-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
The spore-forming bacterium B. cereus is a major cause of foodborne outbreaks in Europe. Some B. cereus strains can grow at low temperatures and low pH in many processed foods. Modeling of the bacterial lag time is hampered by a lack of knowledge of the timing of events occurring during this phase. In this context, the identification of lag phase markers, not currently available, could be a real advance for the better prediction of lag time duration. Currently, no molecular markers of this phase are available. By determining that cshA was always expressed early during the lag phase, we provide a molecular marker of the early adaptation process of B. cereus cells when exposed to low temperature and pH. Bacterial adaptation is characterized by a lag phase during which cells do not multiply or modify their physiology to cope with the constraints of their environment. Our aim was to determine a sequence of events during the lag phase of growth at low temperature and pH for three Bacillus cereus strains. The onsets of expression of two genes, one of which is essential for stress adaptation (cshA, coding for a RNA helicase) and one of which is involved in the transition between lag phase and exponential phase (abrB, coding for a transition regulator), were determined using fluorescent transcriptional reporter systems. Regardless of the stressing conditions and the tested strains, the cshA promoter was active very early, while the biomass increased and always did so before the first cell division. At 12°C and pH 7.0, the onset of cshA promoter activity occurred at between 3 h and 7 h, while the bacterial counts started to increase at between 12 h and 13 h. At pH 5.0 and at 20°C or 30°C, the onset of cshA promoter activity occurred before 1 h and earlier than at pH 7.0. In contrast, the onset of abrB promoter activity depended on the strain and the stressing conditions. In the ATCC 14579 strain, the onset of abrB promoter activity always started at between 30 min and 3 h, before biomass increased and cell division occurred. For the other strains, it took place along with the first cell division at 12°C but did so much later during growth under the other tested conditions. IMPORTANCE The spore-forming bacterium B. cereus is a major cause of foodborne outbreaks in Europe. Some B. cereus strains can grow at low temperatures and low pH in many processed foods. Modeling of the bacterial lag time is hampered by a lack of knowledge of the timing of events occurring during this phase. In this context, the identification of lag phase markers, not currently available, could be a real advance for the better prediction of lag time duration. Currently, no molecular markers of this phase are available. By determining that cshA was always expressed early during the lag phase, we provide a molecular marker of the early adaptation process of B. cereus cells when exposed to low temperature and pH.
Collapse
|
14
|
Lv R, Wang D, Zou M, Wang W, Ma X, Chen W, Zhou J, Ding T, Ye X, Liu D. Analysis ofBacillus cereuscell viability, sublethal injury, and death induced by mild thermal treatment. J Food Saf 2018. [DOI: 10.1111/jfs.12581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ruiling Lv
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Danli Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Mingming Zou
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Wenjun Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Xiaobin Ma
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Weijun Chen
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Jianwei Zhou
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Tian Ding
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Zhejiang Hangzhou China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Zhejiang Hangzhou China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Zhejiang Hangzhou China
- Fuli Institute of Food ScienceZhejiang University Zhejiang Hangzhou China
| |
Collapse
|
15
|
Peng Q, Yuan Y. Characterization of a novel phage infecting the pathogenic multidrug-resistant Bacillus cereus and functional analysis of its endolysin. Appl Microbiol Biotechnol 2018; 102:7901-7912. [PMID: 30008020 DOI: 10.1007/s00253-018-9219-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/24/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023]
Abstract
Bacillus cereus is widely distributed food-borne pathogenic bacterium. Due to the harmness to human hearth and the generation of multidrug-resistant B. cereus, it is urgent to develop novel antimicrobial agents. Phage and phage endolysin were taken as novel antimicrobial substance for their specific lytic activity against pathogenic bacteria. In this study, a Myoviridae family phage, designated as vB_BceM-HSE3, infecting the pathogenic multidrug-resistant B. cereus strain was isolated and characterized along with its endolysin. Phage vB_BceM-HSE3 can specially infect the B. cereus group strains, including B. cereus, B. anthracis, and B. thuringiensis, and exhibits high temperature and pH tolerance, which endow it with high potential for been used in controlling pathogenic B. cereus group strains. Genomic analysis reveals that vB_BceM-HSE3 is a novel phage and only shows extremely low genome similarity with available phage genome. Functional analysis of endolysin PlyHSE3 encoding by vB_BceM-HSE3 shows that PlyHSE3 exhibits broader lytic spectrum than the phage and can lyse all the tested B. cereus group strains as well as the tested pathogenic strain of P. aeruginosa. PlyHSE3 also shows broad temperature and pH tolerance, and can efficiently lyse B. cereus strain at temperature at 4 °C and higher than 45 °C, which indicating that PlyHSE3 might can be used in controlling food-borne B. cereus during both the cold storage of food and the stage after the heat treatment of food. The findings of this study enrich our understanding of phage diversity as well as providing resources for developing phage therapy.
Collapse
Affiliation(s)
- Qin Peng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
16
|
Tirloni E, Ghelardi E, Celandroni F, Bernardi C, Stella S. Effect of dairy product environment on the growth of Bacillus cereus. J Dairy Sci 2017; 100:7026-7034. [DOI: 10.3168/jds.2017-12978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/27/2017] [Indexed: 11/19/2022]
|
17
|
Guérin A, Rønning HT, Dargaignaratz C, Clavel T, Broussolle V, Mahillon J, Granum PE, Nguyen-The C. Cereulide production by Bacillus weihenstephanensis strains during growth at different pH values and temperatures. Food Microbiol 2017; 65:130-135. [DOI: 10.1016/j.fm.2017.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/15/2022]
|
18
|
Guérin A, Dargaignaratz C, Clavel T, Broussolle V, Nguyen-The C. Heat-resistance of psychrotolerant Bacillus cereus vegetative cells. Food Microbiol 2017; 64:195-201. [PMID: 28213026 DOI: 10.1016/j.fm.2017.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
Spores of psychrotolerant strains of the foodborne pathogen Bacillus cereus can multiply during storage of cooked or pasteurized, refrigerated foods and can represent a risk if these cells are not eliminated during reheating of food product before consumption. We determined the heat-resistance of psychrotolerant B. cereus vegetative cells at different heating temperatures in laboratory medium and compared it with that of thermotolerant B. cereus vegetative cells. The z values, based on times for a 3 log10 reduction, of the vegetative cells of the three psychrotolerant phylogenetic groups of B. cereus varied between 3.02 °C and 4.84 °C. The temperature at which a 3 log10 reduction was achieved in 10 min varied between 47.6 °C and 49.2 °C for psychrotolerant vegetative cells and it was around 54.8 °C for thermotolerant vegetative cells. Moreover, 0.4 min at 60 °C would be sufficient for a 6 log10 CFU/ml reduction of the most heat resistant psychrotolerant B. cereus vegetative cells. These data clearly showed that psychrotolerant B. cereus vegetative cells can be rapidly eliminated by a mild heat treatment such as food reheating.
Collapse
Affiliation(s)
- Alizée Guérin
- UMR408 SQPOV « Sécurité et Qualité des Produits d'Origine Végétale », INRA, University of Avignon, 84000 Avignon, France
| | - Claire Dargaignaratz
- UMR408 SQPOV « Sécurité et Qualité des Produits d'Origine Végétale », INRA, University of Avignon, 84000 Avignon, France
| | - Thierry Clavel
- UMR408 SQPOV « Sécurité et Qualité des Produits d'Origine Végétale », INRA, University of Avignon, 84000 Avignon, France
| | - Véronique Broussolle
- UMR408 SQPOV « Sécurité et Qualité des Produits d'Origine Végétale », INRA, University of Avignon, 84000 Avignon, France
| | - Christophe Nguyen-The
- UMR408 SQPOV « Sécurité et Qualité des Produits d'Origine Végétale », INRA, University of Avignon, 84000 Avignon, France.
| |
Collapse
|