1
|
Hooda R, Esseili MA. Human Norovirus Surrogate Is Highly Stable in Berry Smoothies and under In Vitro Simulated Digestion. Foods 2024; 13:1066. [PMID: 38611370 PMCID: PMC11012112 DOI: 10.3390/foods13071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Human noroviruses are major causes of foodborne outbreaks linked to berries. The overall goal of this study was to investigate the persistence of a human norovirus surrogate, Tulane virus (TV), in berry smoothies and under simulated digestion through the gastrointestinal track. Two types of smoothies were prepared from blueberries and strawberries. Tulane virus was spiked into each smoothie and incubated either at 37 or 4 °C for 2, 60, and 120 min. Furthermore, the virus-spiked smoothies were subjected to sequential oral (2 min), gastric (10 and 60 min), and intestinal (15 and 120 min) digestion according to the standardized INFOGEST model. Quantification of infectious TV was carried out using the TCID50 assay. At 4 °C, in both berry smoothies, TV infectivity did not show significant changes throughout the 120 min period. At 37 °C, TV infectivity showed significant reduction (~0.5 log TCID50/mL) only in blueberry smoothies starting at 60 min. During the oral, gastric, and intestinal digestion phases, the mean log reduction in TV infectivity in blueberry did not exceed ~0.5 log, while infectious TV in strawberry smoothies under all phases was stable. Given the notable stability of infectious viruses in berry smoothies and the gastrointestinal tract, prevention of norovirus contamination of berries is paramount to reduce virus outbreaks linked to berries.
Collapse
Affiliation(s)
| | - Malak A. Esseili
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, USA
| |
Collapse
|
2
|
Joshi SS, Dice L, Ailavadi S, D'Souza DH. Antiviral Effects of Quillaja saponaria Extracts Against Human Noroviral Surrogates. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:167-175. [PMID: 36920726 DOI: 10.1007/s12560-023-09550-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/15/2023] [Indexed: 06/13/2023]
Abstract
Aqueous extracts of Quillaja saponaria Molina are US FDA approved as food additives in beverages with known antiviral activity. Due to lack of commercially available vaccines against human noroviruses (HNoVs), alternate methods to prevent their spread and the subsequent emergence of variant strains are being researched. Furthermore, HNoVs are not yet culturable at high enough titers to determine inactivation, therefore surrogates continue to be used. This research analyzed the effect of aqueous Quillaja saponaria extracts (QE) against HNoV surrogates, Tulane virus (TV), murine norovirus (MNV-1), and feline calicivirus (FCV-F9) at room temperature (RT) and 37 °C. Viruses (~ 5 log PFU/mL) were individually treated with 1:1 or 1:5 (v/v) diluted QE (pH ~ 3.75), malic acid control (pH 3.0) or phosphate-buffered saline (pH 7.2, as control) at 37 °C or RT for up to 6 h. Individual treatments were replicated three times using duplicate plaque assays for each treatment. FCV-F9 at ~ 5 log PFU/mL was not detectable after 15 min by 1:1 QE at 37 °C and RT. At RT, 1:5 QE lowered FCV-F9 titers by 2.05, 2.14 and 2.74 log PFU/mL after 0.5 h, 1 h and 2 h, respectively. MNV-1 showed marginal reduction of < 1 log PFU/mL after 15 min with 1:1 or 1:5 QE at 37 °C without any significant reduction at RT, while TV titers decreased by 2.2 log PFU/mL after 30 min and were undetectable after 3 h at 37 °C. Longer incubation with higher QE concentrations may be required for improved antiviral activity against MNV-1 and TV.
Collapse
Affiliation(s)
- Snehal S Joshi
- Department of Food Science, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Lezlee Dice
- Department of Food Science, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Sukriti Ailavadi
- Department of Food Science, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Doris H D'Souza
- Department of Food Science, University of Tennessee-Knoxville, Knoxville, TN, USA.
| |
Collapse
|
3
|
Maffei ME, Salata C, Gribaudo G. Tackling the Future Pandemics: Broad-Spectrum Antiviral Agents (BSAAs) Based on A-Type Proanthocyanidins. Molecules 2022; 27:8353. [PMID: 36500445 PMCID: PMC9736452 DOI: 10.3390/molecules27238353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (-)-epicatechin, connected through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits of many plants, and are thought to exert protective natural roles against microbial pathogens, insects, and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects, through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been observed in fact to inhibit replication of many different human viruses, and both enveloped and non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins essential for viral attachment and entry. As viral infections and new virus outbreaks are a major public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that can be rapidly deployable even against future emerging viruses is an urgent priority. This review summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be deployed as BSAAs against present and future viral infections.
Collapse
Affiliation(s)
- Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| |
Collapse
|
4
|
Wonisch W, Stanger O, Tatzber F, Lindschinger M, Murkovic M, Cvirn G. Stability of bioactive components in smoothies within an extended period of one year. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Bernier C, Goetz C, Jubinville E, Jean J. The New Face of Berries: A Review of Their Antiviral Proprieties. Foods 2021; 11:102. [PMID: 35010229 PMCID: PMC8750760 DOI: 10.3390/foods11010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022] Open
Abstract
Due to rising consumer preference for natural remedies, the search for natural antiviral agents has accelerated considerably in recent years. Among the natural sources of compounds with potential antiviral proprieties, berries are interesting candidates, due to their association with health-promoting properties, including antioxidant, antimutagenic, anticancer, antimicrobial, anti-inflammatory, and neuroprotective properties. The past two decades have witnessed a flurry of new findings. Studies suggest promising antiviral proprieties against enveloped and non-enveloped viruses, particularly of cranberries, blueberries, blackcurrants, black raspberries, and pomegranates. The aim of this review is to assemble these findings, to list the implied mechanisms of action, and thereby point out promising subjects for research in this field, in the hope that compounds obtainable from natural sources such as berries may be used someday to treat, or even prevent, viral infections.
Collapse
Affiliation(s)
| | | | | | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada; (C.B.); (C.G.); (E.J.)
| |
Collapse
|
6
|
Chojnacka K, Skrzypczak D, Izydorczyk G, Mikula K, Szopa D, Witek-Krowiak A. Antiviral Properties of Polyphenols from Plants. Foods 2021; 10:foods10102277. [PMID: 34681326 PMCID: PMC8534698 DOI: 10.3390/foods10102277] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are active substances against various types of viral infections. Researchers have characterized methods of how to isolate polyphenols without losing their potential to formulate pharmaceutical products. Researchers have also described mechanisms against common viral infections (i.e., influenza, herpes, hepatitis, rotavirus, coronavirus). Particular compounds have been discussed together with the plants in the biomass in which they occur. Quercetin, gallic acid and epigallocatechin are exemplary compounds that inhibit the growth cycle of viruses. Special attention has been paid to identify plants and polyphenols that can be efficient against coronavirus infections. It has been proven that polyphenols present in the diet and in pharmaceuticals protect us from viral infections and, in case of infection, support the healing process by various mechanisms, i.e., they block the entry into the host cells, inhibit the multiplication of the virus, seal blood vessels and protect against superinfection.
Collapse
|
7
|
Yang J, Li H, Wang X, Zhang C, Feng G, Peng X. Inhibition Mechanism of α-Amylase/α-Glucosidase by Silibinin, Its Synergism with Acarbose, and the Effect of Milk Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10515-10526. [PMID: 34463509 DOI: 10.1021/acs.jafc.1c01765] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a natural flavonolignan, silibinin is reported to possess multiple biological activities, while the inhibitory potential of silibinin on carbohydrate-hydrolyzing enzymes is still unclear. Therefore, in this study, the inhibitory effect and underlying mechanism of silibinin against α-amylase/α-glucosidase were investigated. The results indicated that silibinin showed a strong inhibitory efficiency against α-amylase/α-glucosidase in noncompetitive manners and exhibited synergistic inhibition against α-glucosidase with acarbose. However, interestingly, the inhibitory effect of silibinin was significantly hindered in various milk protein-rich environments, but this phenomenon disappeared after simulated gastrointestinal digestion of milk proteins in vitro. Furthermore, silibinin could combine with the inactive site of α-amylase/α-glucosidase and change the microenvironment and secondary structure of the enzymes, thereby influencing the catalytic efficiency of enzymes. This research suggested that silibinin could be used as a novel carbohydrate-hydrolyzing enzyme inhibitor, and milk beverages rich in silibinin had the potential for further application in antidiabetic dietary or medicine.
Collapse
Affiliation(s)
- Jichen Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huan Li
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaoli Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuanying Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guo Feng
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xin Peng
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, People's Republic of China
| |
Collapse
|
8
|
Lim CY, Kim H, Chung MS. Mori Cortex Radicis extract inhibits human norovirus surrogate in simulated digestive conditions. Food Sci Biotechnol 2021; 30:1243-1248. [PMID: 34483697 PMCID: PMC8403467 DOI: 10.1007/s10068-021-00958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022] Open
Abstract
Norovirus is a major cause of acute gastroenteritis globally, resulting in enormous health and societal costs. In this study, the antiviral activities of Mori Cortex Radicis (MCR) extract and its bioactive flavonoids, morusin and kuwanon G, were tested against murine norovirus (MNV), a human norovirus surrogate, using plaque assay. The antiviral activity was confirmed in simulated digestive conditions, including simulated saliva fluid (SSF), simulated gastric fluid (SGF), and simulated intestinal fluid (SIF). Pre-treatment of MNV with MCR extract at 1000 µg/mL showed antiviral activity with a 1.1-log reduction. Morusin and kuwanon G also demonstrated a 1.0-log and 0.6-log reductions of MNV titers, respectively, at 100 µM. MCR extract at a concentration of 2 mg/mL in SSF, SGF, and SIF markedly reduced MNV titers by 1.8, 1.9, and 1.5 logs, respectively. Therefore, these data suggest that MCR extract can be used to control norovirus infectivity.
Collapse
Affiliation(s)
- Chae Yeon Lim
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369 Korea
| | - Hyojin Kim
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369 Korea
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369 Korea
| |
Collapse
|
9
|
Sarowska J, Wojnicz D, Jama-Kmiecik A, Frej-Mądrzak M, Choroszy-Król I. Antiviral Potential of Plants against Noroviruses. Molecules 2021; 26:molecules26154669. [PMID: 34361822 PMCID: PMC8347075 DOI: 10.3390/molecules26154669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/02/2023] Open
Abstract
Human noroviruses, which belong to the enterovirus family, are one of the most common etiological agents of food-borne diseases. In recent years, intensive research has been carried out regarding the antiviral activity of plant metabolites that could be used for the preservation of fresh food, because they are safer for consumption when compared to synthetic chemicals. Plant preparations with proven antimicrobial activity differ in their chemical compositions, which significantly affects their biological activity. Our review aimed to present the results of research related to the characteristics, applicability, and mechanisms of the action of various plant-based preparations and metabolites against norovirus. New strategies to combat intestinal viruses are necessary, not only to ensure food safety and reduce infections in humans but also to lower the direct health costs associated with them.
Collapse
Affiliation(s)
- Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Dorota Wojnicz
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland
- Correspondence: ; Tel.: +48-717-841-512
| | - Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| |
Collapse
|
10
|
Živković I, Šavikin K, Živković J, Zdunić G, Janković T, Lazić D, Radin D. Antiviral Effects of Pomegranate Peel Extracts on Human Norovirus in Food Models and Simulated Gastrointestinal Fluids. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:203-209. [PMID: 33825092 PMCID: PMC8024177 DOI: 10.1007/s11130-021-00895-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 05/23/2023]
Abstract
Human noroviruses (HuNoV) are the dominant cause of viral gastroenteritis in all age groups worldwide. In this study, we investigated the effects of pomegranate peel extract (PPE) on the reduction of HuNoV in different food models, on surfaces of fresh produce (green onion and cherry tomato), in low-fat milk, and simulated gastrointestinal fluids. The antiviral efficacy of PPE against HuNoV was evaluated by quantifying the number of residual virus genomes using a quantitative reverse transcription PCR (qRT-PCR) assay. Pomegranate peel, considered as a waste product of industrial processing, is known for beneficial health effects and broad antimicrobial activity due to the high content of phenolic compounds and tannins. PPE showed significant antiviral properties against HuNoV both in phosphate-buffered saline (PBS) and simulated gastric fluid. The reduction of HuNoV by pomegranate juice was lower than with PPE, which could be attributed to the lower content of antimicrobial compounds. A pretreatment of cherry tomato and green onion surfaces with PPE significantly reduced the amount of HuNoV particles that adhered to those surfaces during subsequent virus suspension treatment. A detrimental effect of PPE on HuNoV structure was confirmed by transmission electron microscopy. Our results indicate that PPE is a natural antiviral agent effective against food-borne noroviruses.
Collapse
Affiliation(s)
- Ivana Živković
- Institute for Vegetable Crops, 71 Karadjordjeva, Smederevska Palanka, Serbia.
| | - Katarina Šavikin
- Institute for Medicinal Plants Research "Dr Josif Pančić", 1 Tadeuša Košćuška Street, Belgrade, 11000, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research "Dr Josif Pančić", 1 Tadeuša Košćuška Street, Belgrade, 11000, Serbia
| | - Gordana Zdunić
- Institute for Medicinal Plants Research "Dr Josif Pančić", 1 Tadeuša Košćuška Street, Belgrade, 11000, Serbia
| | - Teodora Janković
- Institute for Medicinal Plants Research "Dr Josif Pančić", 1 Tadeuša Košćuška Street, Belgrade, 11000, Serbia
| | - Dejan Lazić
- East Diagnostics, 32 Golsvordijeva Street, Belgrade, 11000, Serbia
| | - Dragoslava Radin
- Faculty of Agriculture, Institute for Food Technology and Biochemistry, University of Belgrade, 6 Nemanjina Street, Belgrade, 11080, Serbia
| |
Collapse
|
11
|
Joshi SS, D'Souza DH. Grape seed extract against Aichi virus infectivity in model foods and contact surfaces. Food Microbiol 2021; 98:103784. [PMID: 33875212 DOI: 10.1016/j.fm.2021.103784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
Aichi virus (AiV) is an enteric virus that affects humans and is prevalent in sewage waters. Effective strategies to control its spread need to be explored. This study evaluated grape seed extract (GSE) for: a) antiviral potential towards AiV infectivity at 37 °C and room temperature (RT); b) antiviral behavior in model foods (apple juice (AJ) and 2% fat milk) and also simulated gastric environments; and c) potential application as a wash solution on stainless steel surfaces. GSE at 0.5 mg/mL decreased AiV suspensions containing ~4.75 log PFU/mL to titer levels that were not detected after 30 s at both 37 °C and RT. Infectious AiV titers were not detected after 5 min treatment with 1 mg/mL GSE at 37 °C in AJ. GSE at 2 mg/mL and 4 mg/mL in 2% fat milk decreased AiV after 24 h by 1.18 and 1.57 log PFU/mL (4.75 log PFU/mL to 2.86 and 3.25 log PFU/mL), respectively. As a surface wash, GSE at 1 mg/mL after 30 s decreased AiV to undetectable levels under clean conditions. With organic load (mimicking unclean conditions), 2 and 4 mg/mL GSE reduced AiV after 5 min by 1.13 and 1.71 log PFU/mL, respectively. Overall, GSE seems to be a promising antiviral agent against AiV at low concentrations and short contact times.
Collapse
Affiliation(s)
- Snehal S Joshi
- The University of Tennessee, Institute of Agriculture, Department of Food Science, 2600 River Drive, Knoxville, TN, 37996, USA
| | - Doris H D'Souza
- The University of Tennessee, Institute of Agriculture, Department of Food Science, 2600 River Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
12
|
Gobeil A, Maherani B, Lacroix M. Norovirus elimination on the surface of fresh foods. Crit Rev Food Sci Nutr 2020; 62:1822-1837. [DOI: 10.1080/10408398.2020.1848784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexandra Gobeil
- Research Laboratories in Sciences, Applied to Food, Canadian Irradiation Centre, Nutraceuticals and Functional Foods, Laval, Québec, Canada
| | - Behnoush Maherani
- Research Laboratories in Sciences, Applied to Food, Canadian Irradiation Centre, Nutraceuticals and Functional Foods, Laval, Québec, Canada
| | - Monique Lacroix
- Research Laboratories in Sciences, Applied to Food, Canadian Irradiation Centre, Nutraceuticals and Functional Foods, Laval, Québec, Canada
| |
Collapse
|
13
|
Pedrali D, Barbarito S, Lavelli V. Encapsulation of grape seed phenolics from winemaking byproducts in hydrogel microbeads – Impact of food matrix and processing on the inhibitory activity towards α-glucosidase. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Solis-Sanchez D, Rivera-Piza A, Lee S, Kim J, Kim B, Choi JB, Kim YW, Ko GP, Song MJ, Lee SJ. Antiviral Effects of Lindera obtusiloba Leaf Extract on Murine Norovirus-1 (MNV-1), a Human Norovirus Surrogate, and Potential Application to Model Foods. Antibiotics (Basel) 2020; 9:antibiotics9100697. [PMID: 33066532 PMCID: PMC7602249 DOI: 10.3390/antibiotics9100697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 01/14/2023] Open
Abstract
Noroviruses are the leading cause of acute gastroenteritis and food poisoning worldwide. In this study, we investigated the anti-noroviral activity of Lindera obtusiloba leaf extract (LOLE) using murine norovirus (MNV-1), a surrogate of human norovirus. Preincubation of MNV-1 with LOLE at 4, 8, or 12 mg/mL for 1 h at 25 °C significantly reduced viral infectivity, by 51.8%, 64.1%, and 71.2%, respectively. Among LOLE single compounds, β-pinene (49.7%), α-phellandrene (26.2%), and (+)-limonene (17.0%) demonstrated significant inhibitory effects on viral infectivity after pretreatment with MNV-1, suggesting that the anti-noroviral effects of LOLE may be due to the synergetic activity of several compounds, with β-pinene as a key molecule. The inhibitory effect of LOLE was tested on the edible surfaces of lettuce, cabbage, and oysters, as well as on stainless steel. After one hour of incubation at 25°C, LOLE (12 mg/mL) pretreatment significantly reduced MNV-1 plaque formation on lettuce (76.4%), cabbage (60.0%), oyster (38.2%), and stainless-steel (62.8%). These results suggest that LOLE effectively inhibits norovirus on food and metal surfaces. In summary, LOLE, including β-pinene, may inactivate norovirus and could be used as a natural agent promoting food safety and hygiene.
Collapse
Affiliation(s)
- Diana Solis-Sanchez
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Adriana Rivera-Piza
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Soyoung Lee
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Jia Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Bomi Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Joo Bong Choi
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Ye Won Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Gwang Pyo Ko
- Institute of Health and Environment, Department of Environmental Health, Center for Human and Environmental Microbiome, Graduate School of Public Health, Seoul National University, Seoul 151-742, Korea;
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Department of Biosystems and Biotechnology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea;
| | - Sung-Joon Lee
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
- Correspondence: ; Tel.: +82-2-3290-3029
| |
Collapse
|
15
|
Kim H, Lim CY, Chung MS. Magnolia officinalis and Its Honokiol and Magnolol Constituents Inhibit Human Norovirus Surrogates. Foodborne Pathog Dis 2020; 18:24-30. [PMID: 32716659 DOI: 10.1089/fpd.2020.2805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Norovirus is a major cause of foodborne disease and nonbacterial gastroenteritis globally. This study evaluated the antiviral effects of Magnolia officinalis extract and its honokiol and magnolol constituents against human norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV) in vitro, and in model food systems. Pretreatment or cotreatment of M. officinalis extract at 1 mg/mL reduced MNV and FCV titers by 0.6-1.8 log. Honokiol and magnolol, which are the major polyphenols in the extract, showed significant antiviral effects against MNV and FCV. The virus-infected cells that were treated with M. officinalis extract exhibited significantly increased glutathione levels (p < 0.05). The extract, honokiol, and magnolol revealed ferric ion-reducing and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activities in a dose-dependent manner. Furthermore, MNV and FCV titers were reduced by >1.6 log or to undetectable levels in apple, orange, and plum juices and by 0.9 and 1.6 log in milk, respectively, when they were treated with the extract at 5 mg/mL. Therefore, the present study suggests that M. officinalis extract can be used as an antiviral food material to control norovirus foodborne diseases.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Food and Nutrition, Duksung Women's University, Seoul, Korea
| | - Chae Yeon Lim
- Department of Food and Nutrition, Duksung Women's University, Seoul, Korea
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women's University, Seoul, Korea
| |
Collapse
|
16
|
Zhang Y, Wang X, Liu B, Liu Q, Zheng H, You X, Sun K, Luo X, Li F. Comparative study of individual and Co-Application of biochar and wood vinegar on blueberry fruit yield and nutritional quality. CHEMOSPHERE 2020; 246:125699. [PMID: 31884234 DOI: 10.1016/j.chemosphere.2019.125699] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Biochar and its by-product, wood vinegar, have attracted extensive attention owing to their great potentials in improving degraded soil, which is a global concern because of the threats to soil productivity and food security. However, the effect of biochar or wood vinegar on blueberry production is unknown. Therefore, a field trial was conducted to investigate the effects of individual and co-application of biochar (BC450) and wood vinegar (WV450) derived from blended wood waste on the blueberry tree (Vaccinium corymbosum L.) growth, fruit yield, appearance, and nutritional quality as well as the soil properties and nutrient availability. Regardless of individual or co-application, all the amendments had little effect on tree growth. Although BC450 and WV450 increased the fruit yield, the differences between the amended treatments were non-significant. Both the amendments had little effect on the apparent fruit quality, but improved the nutritional quality has been improved (e.g., increased vitamin C and decreased titratable acidity). Additionally, the individual or co-application of BC450 and WV450 had little effect on soil properties (except for soil organic matter), but increased the soil nutrient availability (e.g., NH4+-N, NO3⁻-N, and Mg). The enhancement in the nutritional quality of the blueberry fruit can be mainly attributed to the increased nutrient availability. This is the first preliminary study that demonstrates that the individual or co-application of biochar and wood vinegar can be a potential strategy for reclaiming degraded soil and enhancing blueberry production.
Collapse
Affiliation(s)
- Yuchan Zhang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xiao Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Bingjie Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Qiang Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
17
|
Antimicrobial effects and membrane damage mechanism of blueberry (Vaccinium corymbosum L.) extract against Vibrio parahaemolyticus. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Joshi SS, Howell AB, D'Souza DH. Antiviral effects of blueberry proanthocyanidins against Aichi virus. Food Microbiol 2019; 82:202-208. [PMID: 31027775 DOI: 10.1016/j.fm.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 01/12/2023]
Abstract
Blueberry polyphenols are known for their high antioxidant and antimicrobial potential. Aichi virus (AiV) is an emerging human enteric virus that causes gastroenteritis outbreaks worldwide. This study aimed to (1) determine the time- and dose-dependent effects of blueberry proanthocyanidins (B-PAC) against AiV over 24 h at 37 °C; (2) gain insights on their mode of action using pre- and post-treatment of host cells and Transmission Electron Microscopy; and (3) determine their anti-AiV effects in model foods and under simulated gastric conditions. AiV at ∼5 log PFU/ml was incubated with equal volumes of commercial blueberry juice (BJ, pH 2.8), neutralized BJ (pH 7.0), B-PAC (2, 4, and 10 mg/ml) prepared either in 10% ethanol, apple juice (AJ), 2% milk, simulated gastric fluid (SGF, pH 1.5) or simulated intestinal fluid (SIF, pH 7.5), and controls (malic acid (pH 3.0), phosphate buffered saline (pH 7.2), apple juice (pH 3.6) and 2% milk) over 24 h at 37 °C, followed by standard plaque assays. Each experiment was replicated thrice and data were statistically analyzed. Differences in AiV titers with 1 mg/ml B-PAC were 2.13 ± 0.06 log PFU/ml lower after 24 h and ≥3 log PFU/ml (undetectable levels) lower with 2 and 5 mg/ml B-PAC compared to AiV titers in PBS after 24 h and 3 h, respectively. BJ at 37 °C resulted in titer differences (lower titers compared to PBS) of 0.17 ± 0.06, 1.27 ± 0.01, and 1.73 ± 0.23 log PFU/ml after 1, 3, and 6 h and ≥3 log PFU/ml after 24 h. Pre- and post-treatment of host cells with 0.5 mg/ml B-PAC caused titer decreases of 0.62 ± 0.33 and 0.30 ± 0.06 log PFU/ml, respectively suggesting a moderate effect on viral-host cell binding. B-PAC at 2 mg/ml in AJ caused titer differences of ≥3 log PFU/ml after 0.5 h, while differences of 0.84 ± 0.03 log PFU/ml with 5 mg/ml B-PAC in milk, and ≥3 log PFU/ml with B-PAC at 5 mg/ml in SIF after 30 min were obtained. This study shows the ability of BJ and B-PAC to decrease AiV titers to potentially prevent AiV-related illness and outbreaks.
Collapse
Affiliation(s)
- Snehal S Joshi
- Department of Food Science, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Amy B Howell
- Rutgers University, Marucci Center for Blueberry Cranberry Research, Chatsworth, NJ, 08019, USA
| | - Doris H D'Souza
- Department of Food Science, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA.
| |
Collapse
|
19
|
Falcó I, Randazzo W, Rodríguez-Díaz J, Gozalbo-Rovira R, Luque D, Aznar R, Sánchez G. Antiviral activity of aged green tea extract in model food systems and under gastric conditions. Int J Food Microbiol 2018; 292:101-106. [PMID: 30594741 DOI: 10.1016/j.ijfoodmicro.2018.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/30/2018] [Accepted: 12/19/2018] [Indexed: 01/24/2023]
Abstract
Aged-green tea extract (GTE) is known to reduce the infectivity of hepatitis A virus (HAV) and murine norovirus (MNV), a human norovirus surrogate, in vitro and in washing solutions. Initially, the effect of aged-GTE was evaluated on virus like particles (VLPs) of human norovirus (HuNoV) genogroup I (GI) by a porcine gastric mucine (PGM)-enzyme-linked immunosorbent assay (ELISA) and transmission electron microscopy (TEM), and on HuNoV GI suspensions by an in situ capture-RT-qPCR method, suggesting that HuNoVs are very sensitive to aged-GTE treatment at 37 °C. Moreover, the potential application of aged-GTE was evaluated using model foods and simulated gastric conditions. Then, aged-GTE samples prepared in orange juice, apple juice, horchata, and milk, respectively, were individually mixed with each virus and incubated overnight at 37 °C. Aged-GTE at 5 mg/ml in apple juice reduced MNV infectivity to undetectable levels and from 1.0 to 1.8 log in milk, horchata and orange juice. Aged-GTE at 5 mg/ml in orange juice, apple juice, horchata and milk reduced HAV infectivity by 1.2, 2.1, 1.5, and 1.7 log, respectively. Additionally, aged-GTE at 5 mg/ml in simulated intestinal fluid reduced MNV titers to undetectable levels and reduced HAV infectivity by ca. 2.0 log. The results show a potential for aged-GTE as a suitable natural option for preventive strategies for foodborne viral diseases.
Collapse
Affiliation(s)
- Irene Falcó
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50. 46100 Burjassot, Valencia, Spain; Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50. 46100 Burjassot, Valencia, Spain; Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50. 46100 Burjassot, Valencia, Spain; Institute for Clinical Research of the Hospital Clínico Universitario (INCLIVA), Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50. 46100 Burjassot, Valencia, Spain; Institute for Clinical Research of the Hospital Clínico Universitario (INCLIVA), Valencia, Spain
| | - Daniel Luque
- Unidad de Microscopía Electrónica y Confocal Centro Nacional de Microbiología - ISCIII, Majadahonda, Madrid, Spain
| | - Rosa Aznar
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50. 46100 Burjassot, Valencia, Spain; Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
20
|
Monomeric catechin and dimeric procyanidin B2 against human norovirus surrogates and their physicochemical interactions. Food Microbiol 2018; 76:346-353. [PMID: 30166160 PMCID: PMC7126691 DOI: 10.1016/j.fm.2018.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/15/2018] [Accepted: 06/15/2018] [Indexed: 11/23/2022]
Abstract
Plant polyphenols have shown antiviral activity against several human pathogens, but their physicochemical interactions are not well-understood. The objectives of this study were to compare the antiviral activity between monomeric catechin and dimeric procyanidin B2 (PB2) using cultivable human norovirus surrogates (feline calicivirus (FCV-F9) and murine norovirus (MNV-1)) and to understand their potential antiviral mechanism using virus-like particles (VLPs) and the P domain of human norovirus GII (HNoV GII.4). Surrogate viruses at 5 log PFU/mL were treated with 0.5–5 mg/mL monomeric catechin monohydrate, PB2 or phosphate buffered saline (PBS, pH 7.2; control) at 37 °C over 24 h. Infectivity was determined using plaque assays and data from triplicate experiments were statistically analyzed. PB2 at 0.5 mg/mL and 1 mg/mL reduced FCV-F9 to undetectable levels after 3 h and MNV-1 by 0.21 and 1.23 log PFU after 24 h, respectively. Monomeric catechins at 1 mg/mL reduced FCV-F9 to undetectable levels after 6 h and MNV-1 titers to undetectable levels after 24 h. In addition, PB2 was shown to directly bind the P domain, the main capsid structure of HNoVs in the ratio of 1:1 through spontaneous interactions. Electrostatic interactions played a dominant role between PB2 and the P domain. PB2 significantly altered tertiary but not secondary structures of VLPs. Transmission electron microscopy demonstrated that PB2 aggregated VLPs, further indicating interactions between them. These findings indicate that PB2 causes structural changes of the P domain of VLPs, mainly through direct interaction leading to HNoV inactivation. Polymeric procyanidins cause higher reduction of human norovirus surrogate titers than monomers. Binding of procyanidin to human norovirus-like particles alters capsid structure. Procyanidin binding to viral capsid results in decreased infectivity.
Collapse
|