1
|
González-Gragera E, García-López JD, Boutine A, García-Marín ML, Fonollá J, Gil-Martínez L, Fernández I, Martínez-Bueno M, Baños A. Improving the Quality and Safety of Fish Products with Edible Coatings Incorporating Piscicolin CM22 from a Psychrotolerant Carnobacterium maltaromaticum Strain. Foods 2024; 13:3165. [PMID: 39410200 PMCID: PMC11476091 DOI: 10.3390/foods13193165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The consumption of raw or smoked fish entails significant microbiological risks, including contamination by pathogens such as Listeria monocytogenes, which can cause severe foodborne illnesses. This study explores the preservative use of piscicolin CM22, a novel bacteriocin derived from the psychrotolerant strain Carnobacterium maltaromaticum CM22, in two types of edible coatings (EC): chitosan-based and fish gelatin-based. An initial in vitro characterization of the technological and antimicrobial properties of these ECs with and without bacteriocin was conducted. The efficacy of the edible coatings was subsequently evaluated through shelf life and challenge tests against L. monocytogenes in raw and smoked fish products. The results demonstrated significant antimicrobial activity, with the chitosan-based coating containing piscicolin CM22 being the most effective in reducing microbial counts and maintaining pH and color stability. Furthermore, in the challenge test studies, both ECs effectively controlled L. monocytogenes, showing significant reductions in bacterial counts compared to the controls in fresh tuna, salmon, and smoked salmon. The ECs containing piscicolin CM22 reduced Listeria counts by up to 4 log CFU/g in raw and smoked fish samples, with effective control in smoked salmon for up to 15 days at refrigeration temperature. While further research is required to fully assess their preservation potential, these findings strongly indicate that piscicolin CM22-functionalized edible coatings hold significant potential for improving the quality and safety of fish products.
Collapse
Affiliation(s)
- Elías González-Gragera
- Department of Microbiology, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (E.G.-G.); (M.L.G.-M.); (M.M.-B.)
| | - José David García-López
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain; (J.D.G.-L.); (A.B.); (L.G.-M.); (I.F.)
| | - Abdelkader Boutine
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain; (J.D.G.-L.); (A.B.); (L.G.-M.); (I.F.)
| | - María Luisa García-Marín
- Department of Microbiology, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (E.G.-G.); (M.L.G.-M.); (M.M.-B.)
| | - Juristo Fonollá
- Department of Nutrition and Food Technology, University of Granada, 18071 Granada, Spain
| | - Lidia Gil-Martínez
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain; (J.D.G.-L.); (A.B.); (L.G.-M.); (I.F.)
| | - Inmaculada Fernández
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain; (J.D.G.-L.); (A.B.); (L.G.-M.); (I.F.)
| | - Manuel Martínez-Bueno
- Department of Microbiology, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (E.G.-G.); (M.L.G.-M.); (M.M.-B.)
- Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| | - Alberto Baños
- Department of Microbiology, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (E.G.-G.); (M.L.G.-M.); (M.M.-B.)
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain; (J.D.G.-L.); (A.B.); (L.G.-M.); (I.F.)
| |
Collapse
|
2
|
González-Gragera E, García-López JD, Teso-Pérez C, Jiménez-Hernández I, Peralta-Sánchez JM, Valdivia E, Montalban-Lopez M, Martín-Platero AM, Baños A, Martínez-Bueno M. Genomic Characterization of Piscicolin CM22 Produced by Carnobacterium maltaromaticum CM22 Strain Isolated from Salmon (Salmo salar). Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10316-1. [PMID: 38958914 DOI: 10.1007/s12602-024-10316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Carnobacterium maltaromaticum is a species of lactic acid bacteria (LAB) that has been isolated from various natural environments. It is well-known for producing a diverse spectrum of bacteriocins with potential biotechnological applications. In the present study, a new psychrotolerant strain of C. maltaromaticum CM22 is reported, isolated from a salmon gut sample and producing a variant of the bacteriocin piscicolin 126 that has been named piscicolin CM22. After identification by 16S rRNA gene, this strain has been genomically characterized by sequencing and assembling its complete genome. Moreover, its bacteriocin was purified and characterized. In vitro tests demonstrated that both the strain and its bacteriocin possess antimicrobial activity against several Gram-positive bacteria of interest in human and animal health, such as Listeria monocytogenes, Clostridium perfringens, or Enterococcus faecalis. However, this bacteriocin did not produce any antimicrobial effect on Gram-negative species. The study of its genome showed the genetic structure of the gene cluster that encodes the bacteriocin, showing a high degree of homology to the gene cluster of piscicolin 126 described in other C. maltaromaticum. Although more studies are necessary concerning its functional properties, this new psychrotolerant strain C. maltaromaticum CM22 and its bacteriocin could be considered an interesting candidate with potential application in agri-food industry.
Collapse
Affiliation(s)
- Elías González-Gragera
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - J David García-López
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - Claudia Teso-Pérez
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - Irene Jiménez-Hernández
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | | | - Eva Valdivia
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
- Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Manuel Montalban-Lopez
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
- Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Antonio M Martín-Platero
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
- Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Alberto Baños
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - Manuel Martínez-Bueno
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain.
- Institute of Biotechnology, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
3
|
Zhang J, Zhao L, Tang W, Li J, Tang T, Sun X, Qiao X, He Z. Characterization of a novel circular bacteriocin from Bacillus velezensis 1-3, and its mode of action against Listeria monocytogenes. Heliyon 2024; 10:e29701. [PMID: 38726204 PMCID: PMC11078769 DOI: 10.1016/j.heliyon.2024.e29701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/12/2024] Open
Abstract
In this study, isolate Bacillus velezensis1-3 was selected out for its anti- Listeria potency, from which a novel circular bacteriocin, velezin, was purified out of the fermentate, and then characterized. Facilitated with a broad antibacterial spectrum, velezin has demonstrated decent inhibitive activity against of foodborne pathogen L. monocytogenes ATCC 19115. It exerted the antibacterial activity through damaging the membrane integrity of targeted cell and causing leakage of vital elements, including K+ ion. It was noteworthy that velezin also inhibited the biofilm formation by L. monocytogenes ATCC 19115. At the challenge of velezin, L. monocytogenes ATCC 19115 up-regulated expression of genes associated with membrane, ion transporters, stressing-related proteins as well as the genes responsible for the synthesis of small molecule. Taken together, velezin may have potential to be a candidate as natural additive used in food/feed in the future.
Collapse
Affiliation(s)
- Jun Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Qingdao Bioantai Biotechnology Co., Ltd., Qingdao, 266071, China
| | - Lihong Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Wei Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266000, China
| | - Jiaxin Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Tao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266000, China
| | - Xiaowen Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Qingdao Bioantai Biotechnology Co., Ltd., Qingdao, 266071, China
| | - Xiaoni Qiao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Qingdao Bioantai Biotechnology Co., Ltd., Qingdao, 266071, China
| | - Zengguo He
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Qingdao Bioantai Biotechnology Co., Ltd., Qingdao, 266071, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266000, China
| |
Collapse
|
4
|
De Marco G, Cappello T, Maisano M. Histomorphological Changes in Fish Gut in Response to Prebiotics and Probiotics Treatment to Improve Their Health Status: A Review. Animals (Basel) 2023; 13:2860. [PMID: 37760260 PMCID: PMC10525268 DOI: 10.3390/ani13182860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The gastrointestinal tract (GIT) promotes the digestion and absorption of feeds, in addition to the excretion of waste products of digestion. In fish, the GIT is divided into four regions, the headgut, foregut, midgut, and hindgut, to which glands and lymphoid tissues are associated to release digestive enzymes and molecules involved in the immune response and control of host-pathogens. The GIT is inhabited by different species of resident microorganisms, the microbiota, which have co-evolved with the host in a symbiotic relationship and are responsible for metabolic benefits and counteracting pathogen infection. There is a strict connection between a fish's gut microbiota and its health status. This review focuses on the modulation of fish microbiota by feed additives based on prebiotics and probiotics as a feasible strategy to improve fish health status and gut efficiency, mitigate emerging diseases, and maximize rearing and growth performance. Furthermore, the use of histological assays as a valid tool for fish welfare assessment is also discussed, and insights on nutrient absorptive capacity and responsiveness to pathogens in fish by gut morphological endpoints are provided. Overall, the literature reviewed emphasizes the complex interactions between microorganisms and host fish, shedding light on the beneficial use of prebiotics and probiotics in the aquaculture sector, with the potential to provide directions for future research.
Collapse
Affiliation(s)
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.D.M.); (M.M.)
| | | |
Collapse
|
5
|
Aprea G, Del Matto I, Tucci P, Marino L, Scattolini S, Rossi F. In Vivo Functional Properties of Dairy Bacteria. Microorganisms 2023; 11:1787. [PMID: 37512959 PMCID: PMC10385490 DOI: 10.3390/microorganisms11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
This literature review aimed to collect investigations on the in vivo evidence for bacteria associated with fermented dairy foods to behave as probiotics with beneficial effects in the prevention and treatment of various diseases. All main bacterial groups commonly present in high numbers in fermented milks or cheeses were taken into account, namely starter lactic acid bacteria (SLAB) Lactobacillus delbrueckii subsp. bulgaricus and lactis, L. helveticus, Lactococcus lactis, Streptococcus thermophilus, non-starter LAB (NSLAB) Lacticaseibacillus spp., Lactiplantibacillus plantarum, dairy propionibacteria, and other less frequently encountered species. Only studies regarding strains of proven dairy origin were considered. Studies in animal models and clinical studies showed that dairy bacteria ameliorate symptoms of inflammatory bowel disease (IBD), mucositis, metabolic syndrome, aging and oxidative stress, cancer, bone diseases, atopic dermatitis, allergies, infections and damage caused by pollutants, mild stress, and depression. Immunomodulation and changes in the intestinal microbiota were the mechanisms most often involved in the observed effects. The results of the studies considered indicated that milk and dairy products are a rich source of beneficial bacteria that should be further exploited to the advantage of human and animal health.
Collapse
Affiliation(s)
- Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Ilaria Del Matto
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Patrizia Tucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Lucio Marino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
6
|
Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
García-López JD, Teso-Pérez C, Martín-Platero AM, Peralta-Sánchez JM, Fonollá-Joya J, Martínez-Bueno M, Baños A. Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6, Two Bacteriocinogenic Isolated Strains from Andalusian Spontaneous Fermented Sausages. Foods 2023; 12:2445. [PMID: 37444181 DOI: 10.3390/foods12132445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Traditional spontaneously fermented foods are well known for their sensory and safety properties, which is mainly due to their indigenous microflora. Within this group of food, Mediterranean dry-cured sausages stand out as a significant source of lactic-acid bacterial strains (LAB) with biotechnological properties, such as their antimicrobial activity. The aim of this study was to investigate the biodiversity of antagonistic LAB strains from different Andalusian traditional sausages, such as salchichón and chorizo. First, a screening was carried out focusing on the antimicrobial activity against foodborne pathogens, such as Listeria monocytogenes, Escherichia coli, Clostridium perfringens, and Staphylococcus aureus, selecting two strains due to their higher antibiosis properties, both in agar and liquid media. These bacteria were identified as Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6. In addition, genomic studies confirmed the presence of certain structural genes related to the production of bacteriocins. Finally, the culture supernatants of both strains were purified and analyzed by LC-MS/MS, obtaining the relative molecular mass and the amino acid sequence and identifying the peptides as the bacteriocins Pediocin-PA and Leucocin K. In conclusion, genomes and antimicrobial substances of P. acidilactici ST6, a Pediocin-PA producer, and Lpb. paraplantarum BPF2, a Leucocin K producer, isolated from Andalusian salchichón and chorizo, respectively, are presented in this work. Although further studies are required, these strains could be used alone or in combination as starters or protective cultures for the food industry.
Collapse
Affiliation(s)
- José David García-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Claudia Teso-Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio Manuel Martín-Platero
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Juan Manuel Peralta-Sánchez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avenida de la Reina Mercedes 6, 41012 Seville, Spain
| | - Juristo Fonollá-Joya
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Campus Universitario de Cartuja s/n, 18071 Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Alberto Baños
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
8
|
Cebrián R, Martínez-García M, Fernández M, García F, Martínez-Bueno M, Valdivia E, Kuipers OP, Montalbán-López M, Maqueda M. Advances in the preclinical characterization of the antimicrobial peptide AS-48. Front Microbiol 2023; 14:1110360. [PMID: 36819031 PMCID: PMC9936517 DOI: 10.3389/fmicb.2023.1110360] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial resistance is a natural and inevitable phenomenon that constitutes a severe threat to global public health and economy. Innovative products, active against new targets and with no cross- or co-resistance with existing antibiotic classes, novel mechanisms of action, or multiple therapeutic targets are urgently required. For these reasons, antimicrobial peptides such as bacteriocins constitute a promising class of new antimicrobial drugs under investigation for clinical development. Here, we review the potential therapeutic use of AS-48, a head-to-tail cyclized cationic bacteriocin produced by Enterococcus faecalis. In the last few years, its potential against a wide range of human pathogens, including relevant bacterial pathogens and trypanosomatids, has been reported using in vitro tests and the mechanism of action has been investigated. AS-48 can create pores in the membrane of bacterial cells without the mediation of any specific receptor. However, this mechanism of action is different when susceptible parasites are studied and involves intracellular targets. Due to these novel mechanisms of action, AS-48 remains active against the antibiotic resistant strains tested. Remarkably, the effect of AS-48 against eukaryotic cell lines and in several animal models show little effect at the doses needed to inhibit susceptible species. The characteristics of this molecule such as low toxicity, microbicide activity, blood stability and activity, high stability at a wide range of temperatures or pH, resistance to proteases, and the receptor-independent effect make AS-48 unique to fight a broad range of microbial infections, including bacteria and some important parasites.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital San Cecilio, Granada, Spain,*Correspondence: Rubén Cebrián, ✉
| | | | | | - Federico García
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital San Cecilio, Granada, Spain,Biomedicinal Research Network Center, Infectious Diseases (CIBERINFEC), Madrid, Spain
| | | | - Eva Valdivia
- Department of Microbiology, University of Granada, Granada, Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Manuel Montalbán-López
- Department of Microbiology, University of Granada, Granada, Spain,Manuel Montalbán-López, ✉
| | - Mercedes Maqueda
- Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
9
|
Rashid M, Sharma S, Kaur A, Kaur A, Kaur S. Biopreservative efficacy of Enterococcus faecium-immobilised film and its enterocin against Salmonella enterica. AMB Express 2023; 13:11. [PMID: 36690815 PMCID: PMC9871141 DOI: 10.1186/s13568-023-01516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
The growing awareness about the adverse health effects of artificial synthetic preservatives has led to a rapid increase in the demand for safe food preservation techniques and bio preservatives. Thus, in this study, the biopreservatives efficacy of enterocin-producing Enterococcus faecium Smr18 and its enterocin, ESmr18 was evaluated against Salmonella enterica contamination in chicken samples. E. faecium Smr18 is susceptible to the antibiotics penicillin-G, ampicillin, vancomycin, and erythromycin, thereby indicating that it is a nonpathogenic strain. Further, the enterocin ESmr18 was purified and characterised as a 3.8 kDa peptide. It possessed broad spectrum antibacterial activity against both Gram-positive and Gram-negative pathogens including S. enterica serotypes Typhi and Typhimurium. Purified ESmr18 disrupted the cell membrane permeability of the target cell thereby causing rapid efflux of potassium ions from L. monocytogenes and S. enterica. Chicken samples inoculated with S. enterica and packaged in alginate films containing immobilised viable E. faecium resulted in 3 log10 colony forming units (CFU) reduction in the counts of S. enterica after 34 days of storage at 7-8 °C. The crude preparation of ESmr18 also significantly (p < 0.05) reduced the CFU counts of salmonella-inoculated chicken meat model. Purified ESmr18 at the concentration upto 4.98 µg/ml had no cytolytic effect against human red blood cells. Crude preparation of ESmr18 when orally administered in fish did not cause any significant (p < 0.05) change in the biochemical parameters of sera samples. Nonsignificant changes in the parameters of comet and micronucleus assays were observed between the treated and untreated groups of fishes that further indicated the safety profile of the enterocin ESmr18.
Collapse
Affiliation(s)
- Muzamil Rashid
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Sunil Sharma
- grid.411894.10000 0001 0726 8286Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Arvinder Kaur
- grid.411894.10000 0001 0726 8286Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Amarjeet Kaur
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Sukhraj Kaur
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab India
| |
Collapse
|
10
|
Pereira WA, Mendonça CMN, Urquiza AV, Marteinsson VÞ, LeBlanc JG, Cotter PD, Villalobos EF, Romero J, Oliveira RPS. Use of Probiotic Bacteria and Bacteriocins as an Alternative to Antibiotics in Aquaculture. Microorganisms 2022; 10:microorganisms10091705. [PMID: 36144306 PMCID: PMC9503917 DOI: 10.3390/microorganisms10091705] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity.
Collapse
Affiliation(s)
- Wellison Amorim Pereira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Carlos Miguel N. Mendonça
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | | | | | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000, Argentina
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland, T12 K8AF Cork, Ireland
| | - Elías Figueroa Villalobos
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4780000, Chile
- Correspondence:
| | - Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, El Libano 5524, Santiago 783090, Chile
| | - Ricardo P. S. Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
11
|
Mazlumi A, Panahi B, Hejazi MA, Nami Y. Probiotic potential characterization and clustering using unsupervised algorithms of lactic acid bacteria from saltwater fish samples. Sci Rep 2022; 12:11952. [PMID: 35831426 PMCID: PMC9279464 DOI: 10.1038/s41598-022-16322-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/08/2022] [Indexed: 11/22/2022] Open
Abstract
This research aimed to isolate lactic acid bacteria from the bowel of saltwater fish to assess their potential probiotic properties. Nineteen isolates of LAB including Lactiplantibacillus plantarum, Lactiplantibacillus pentosus, Lactobacillus acidophilus, Levilactobacillus brevis, Pediococcus pentosaceus, and Pediococcus acidilactici were recognized using molecular tools. All the isolates survived in the simulated conditions of the GI tract. Auto-aggregation ranged from 01.3 ± 0.5 to 82.6 ± 1.4% and hydrophobicity with toluene ranged from 3.7 ± 1.6 to 69.4 ± 1.3%, while the range of hydrophobicity with xylene was from 02.2 ± 1.6 to 56.4 ± 2.1%. All the isolates of lactobacilli, pediococci, enterococci, and lactococci indicated variable sensitivity and resistance towards clinical antibiotics. Non-neutralized cell free supernatant of isolates F12 and F15 showed antimicrobial activity against all the 8 evaluated enteric pathogens. Cluster analysis of identified potential probiotic bacteria based on heat-map and PCA methods also highlighted the priority of isolates F3, F7, F12, and F15 as bio-control agents in fishery industry. The findings of this study may essentially contribute to the understanding of the probiotic potential of LAB in saltwater fish, in order to access their probiotic characterization for use as biocontrol in fishery.
Collapse
Affiliation(s)
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West region, Agricultural Biotechnology Research, Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Mohammad Amin Hejazi
- Department of Food Biotechnology, Branch for Northwest & West region, Agricultural Biotechnology Research, Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest & West region, Agricultural Biotechnology Research, Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
12
|
Zhang H, Cao Z, Diao Q, Zhou Y, Ao J, Liu C, Sun Y. Antimicrobial activity and mechanisms of a derived antimicrobial peptide TroNKL-27 from golden pompano (Trachinotus ovatus) NK-lysin. FISH & SHELLFISH IMMUNOLOGY 2022; 126:357-369. [PMID: 35661768 DOI: 10.1016/j.fsi.2022.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/07/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
NK-lysin, a homologue of granulysin among human, is predominantly found in natural killer cells and cytotoxic T-lymphocytes, which plays a pivotal part in innate immune responses against diverse pathogenic bacteria. Nonetheless, in teleosts, the research on antimicrobial activity and mechanisms of NK-lysin are seldom reported. In this study, we determined the antimicrobial activity of the truncated peptide TroNKL-27 that derived from golden pompano (Trachinotus ovatus) NK-lysin, and investigated its antimicrobial mechanisms. The results showed that TroNKL-27 had considerable antimicrobial potency against both Gram-positive (Staphylococcus aureus, Streptococcus agalactiae) and Gram-negative bacteria (Vibrio harveyi, V. alginolyticus, Escherichia coli, Edwardsiella tarda). Cytoplasmic membrane depolarization and propidium iodide (PI) uptake assay manifested that TroNKL-27 could induce the bacterial membrane depolarization and change its membrane permeability, respectively. In the light of scanning electron microscopy (SEM) observation, TroNKL-27 was capable of altering morphological structures of bacteria and leading to leakage of cellular contents. Moreover, the results of gel retardation assay indicated TroNKL-27 had the ability to induce the degradation of bacterial genomic DNA. As regards in vivo assay, TroNKL-27 could reduce the replication of V. harveyi in tissues of golden pompano, protect the tissue from pathological changes. Moreover, TroNKL-27 in vivo could significantly increase the expression of the immune genes (such as IL1β, TNFα, IFN-γ, C3 and Mx) in presence or absence of V. harveyi infection. All of these results suggest that TroNKL-27 is a novel antimicrobial peptide possessing antibacterial and immunoregulatory function in vivo and in vitro, and the observed effects of TroNKL-27 will lay a solid foundation for the development of new antimicrobial agents used in aquaculture.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Qianying Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
13
|
Effects of Dietary Enterococcus faecalis YFI-G720 on the Growth, Immunity, Serum Biochemical, Intestinal Morphology, Intestinal Microbiota, and Disease Resistance of Crucian Carp (Carassius auratus). FISHES 2022. [DOI: 10.3390/fishes7010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diseases of crucian carp (Carassius auratus) are closely related to intestinal parameters. Enterococcus faecalis has strong colonization ability in the intestinal tract, and produces natural antibiotics, bacteriocin, and other bacteriostatic substances, which can effectively inhibit some pathogenic bacteria and improve the intestinal microenvironment. This study aimed to assess the effects of E. faecalis YFI-G720 which was isolated from the intestinal of crucian carp on the growth, immunity, intestinal health, and disease resistance of crucian carp. Fish (48.16 ± 0.55 g) were fed four diets, commercial diet or diet containing E. faecalis at 105 CFU/g (EF1), 106 CFU/g (EF2), or 107 CFU/g (EF3) for 28 days. The results showed that supplementation of E. faecalis significantly improved the weight gain ratio (WGR) and the specific growth rate (SGR) compared with control group (p < 0.05). Intestinal mucosal epithelial cells in EF2 were intact and normal, but there was obvious vacuolation in CG. Compared with CG, serum C3 and IgM in EF2 were significantly increased at the end of the experiment (p < 0.05), and serum alkaline phosphatase was significantly higher in all experimental groups (p < 0.05). Among studied immune-related genes, expression was detected by qPCR, C3, IgM, and IL-1βwere upregulated in all experimental groups to varying degrees from 14 days, with highest expression in EF2 at 28 days. Intestinal microbiota structure analyzed through high-throughput sequencing, and the results showed that the relative abundance of Aeromonas and Acinetobacter decreased while Cetobacterium increased in all experimental groups, with the greatest changes in EF2. Challenge tests showed that fish fed E. faecalis were more resistant to Aeromonas veronii (p < 0.05). In conclusion, dietary E. faecalis YFI-G720 at 106 CFU/g can improve the health status, immune parameters, intestinal microbiota composition, and disease resistance of crucian carp.
Collapse
|
14
|
Sharma BR, Halami PM, Tamang JP. Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods. Food Sci Biotechnol 2022; 31:1-16. [PMID: 35059226 PMCID: PMC8733103 DOI: 10.1007/s10068-021-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/28/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
Ethnic fermented foods are known for their unique aroma, flavour, taste, texture and other sensory properties preferred by every ethnic community in this world culturally as parts of their eatables. Some beneficial microorganisms associated with fermented foods have several functional properties and health-promoting benefits. Bacteriocins are the secondary metabolites produced by the microorganisms mostly lactic acid bacteria present in the fermented foods which can act as lantibiotics against the pathogen bacteria. Several studies have been conducted regarding the isolation and characterization of potent strains as well as their association with different types of bacteriocins. Collective information regarding the gene organizations responsible for the potent effect of bacteriocins as lantibiotics, mode of action on pathogen bacterial cells is not yet available. This review focuses on the gene organizations, pathways include for bacteriocin and their mode of action for various classes of bacteriocins produced by lactic acid bacteria in some ethnic fermented foods.
Collapse
Affiliation(s)
- Basista Rabina Sharma
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Prakash M. Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Jyoti Prakash Tamang
- DAICENTER, Department of Microbiology, Sikkim University, Science Building, Tadong, Gangtok, Sikkim 737102 India
| |
Collapse
|
15
|
Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol 2021; 12:630695. [PMID: 33935991 PMCID: PMC8083986 DOI: 10.3389/fmicb.2021.630695] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The world is facing a significant increase in infections caused by drug-resistant infectious agents. In response, various strategies have been recently explored to treat them, including the development of bacteriocins. Bacteriocins are a group of antimicrobial peptides produced by bacteria, capable of controlling clinically relevant susceptible and drug-resistant bacteria. Bacteriocins have been studied to be able to modify and improve their physicochemical properties, pharmacological effects, and biosafety. This manuscript focuses on the research being developed on the biosafety of bacteriocins, which is a topic that has not been addressed extensively in previous reviews. This work discusses the studies that have tested the effect of bacteriocins against pathogens and assess their toxicity using in vivo models, including murine and other alternative animal models. Thus, this work concludes the urgency to increase and advance the in vivo models that both assess the efficacy of bacteriocins as antimicrobial agents and evaluate possible toxicity and side effects, which are key factors to determine their success as potential therapeutic agents in the fight against infections caused by multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Diego Francisco Benítez-Chao
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| |
Collapse
|
16
|
Simón R, Docando F, Nuñez-Ortiz N, Tafalla C, Díaz-Rosales P. Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Front Immunol 2021; 12:653025. [PMID: 33986745 PMCID: PMC8110931 DOI: 10.3389/fimmu.2021.653025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been defined as live microorganisms that when administered in adequate amounts confer health benefits to the host. The use of probiotics in aquaculture is an attractive bio-friendly method to decrease the impact of infectious diseases, but is still not an extended practice. Although many studies have investigated the systemic and mucosal immunological effects of probiotics, not all of them have established whether they were actually capable of increasing resistance to different types of pathogens, being this the outmost desired goal. In this sense, in the current paper, we have summarized those experiments in which probiotics were shown to provide increased resistance against bacterial, viral or parasitic pathogens. Additionally, we have reviewed what is known for fish probiotics regarding the mechanisms through which they exert positive effects on pathogen resistance, including direct actions on the pathogen, as well as positive effects on the host.
Collapse
Affiliation(s)
| | | | | | | | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
17
|
Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals (Basel) 2021; 11:ani11040979. [PMID: 33915717 PMCID: PMC8067144 DOI: 10.3390/ani11040979] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
In the search for an alternative treatment to reduce antimicrobial resistance, bacteriocins shine a light on reducing this problem in public and animal health. Bacteriocins are peptides synthesized by bacteria that can inhibit the growth of other bacteria and fungi, parasites, and viruses. Lactic acid bacteria (LAB) are a group of bacteria that produce bacteriocins; their mechanism of action can replace antibiotics and prevent bacterial resistance. In veterinary medicine, LAB and bacteriocins have been used as antimicrobials and probiotics. However, another critical role of bacteriocins is their immunomodulatory effect. This review shows the advances in applying bacteriocins in animal production and veterinary medicine, highlighting their biological roles.
Collapse
|
18
|
Arsène MMJ, Davares AKL, Andreevna SL, Vladimirovich EA, Carime BZ, Marouf R, Khelifi I. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet World 2021; 14:319-328. [PMID: 33776297 PMCID: PMC7994123 DOI: 10.14202/vetworld.2021.319-328] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Although the production of safe food for human consumption is the primary purpose for animal rearing, the environment and well-being of the animals must also be taken into consideration. Based on microbiological point of view, the production of healthy food from animals involves considering foodborne pathogens, on the one hand and on the other hand, the methods used to fight against germs during breeding. The conventional method to control or prevent bacterial infections in farming is the use antibiotics. However, the banning of these compounds as growth promoters caused many changes in animal breeding and their use has since been limited to the treatment and prevention of bacterial infections. In this function, their importance no longer needs to be demonstrated, but unfortunately, their excessive and abusive use have led to a double problem which can have harmful consequences on consumer health: Resistance to antibiotics and the presence of antibiotic residues in food. The use of probiotics appears to be a suitable alternative to overcome these problems because of their ability to modulate the immune system and intestinal microflora, and further considering their antagonistic role against certain pathogenic bacteria and their ability to play the role of growth factor (sometimes associated with prebiotics) when used as feed additives. This review aims to highlight some of the negative effects of the use of antibiotics in animal rearing as well as emphasize the current knowledge on the use of probiotics as a feed additive, their influence on animal production and their potential utility as an alternative to conventional antibiotics, particularly in poultry, pig, and fish farming.
Collapse
Affiliation(s)
- Mbarga M. J. Arsène
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Anyutoulou K. L. Davares
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Smolyakova L. Andreevna
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| | | | - Bassa Z. Carime
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Razan Marouf
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - Ibrahim Khelifi
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| |
Collapse
|
19
|
Cascajosa-Lira A, Ai P, M P, A B, E V, A J, Cameán AM. Mutagenicity and genotoxicity assessment of a new biopreservative product rich in Enterocin AS-48. Food Chem Toxicol 2020; 146:111846. [PMID: 33166674 DOI: 10.1016/j.fct.2020.111846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 11/17/2022]
Abstract
A biopreservative derived from the fermentation of a dairy byproduct by Enterococcus faecalis UGRA10 strains being developed. This product possesses a strong and wide antibacterial spectrum mainly due to the presence of Enterocin AS-48 in its composition. To assess its potential as food additive, the mutagenicicity and genotoxicity has been assayed by means of the bacterial reverse-mutation assay in Salmonella typhimurium TA97A, TA98, TA100, TA102, TA1535 strains (Ames test, OECD 471, 2020) and the micronucleus test (MN) (OECD 487, 2016) in L5178Y/Tk ± cells. The results in the Ames test after exposure to the byproduct (6.75-100 μg/plate) with absence and presence of the metabolic activation system from rat liver (S9 fraction), revealed not mutagenicity at the conditions tested. For the MN test, the exposition to five enterocin AS-48 concentrations (0.2-1 μg/μl) was tested in the absence and presence of S9 fraction, with no evidence of genotoxicity. Negative results in the mutagenicity and genotoxicity assays point out the good safety profile of the byproduct and support its use as additive. Further toxicological studies are required before its approval and commercial application.
Collapse
Affiliation(s)
- A Cascajosa-Lira
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González N°2, 41012, Sevilla, Spain
| | - Prieto Ai
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González N°2, 41012, Sevilla, Spain.
| | - Puerto M
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González N°2, 41012, Sevilla, Spain
| | - Baños A
- Department of Microbiology, University of Granada, Fuente Nueva S/n, 19071, Granada, Spain
| | - Valdivia E
- Department of Microbiology, University of Granada, Fuente Nueva S/n, 19071, Granada, Spain
| | - Jos A
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González N°2, 41012, Sevilla, Spain
| | - A M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González N°2, 41012, Sevilla, Spain
| |
Collapse
|
20
|
Shan Z, Yang Y, Guan N, Xia X, Liu W. NKL-24: A novel antimicrobial peptide derived from zebrafish NK-lysin that inhibits bacterial growth and enhances resistance against Vibrio parahaemolyticus infection in Yesso scallop, Patinopecten yessoensis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:431-440. [PMID: 32810530 DOI: 10.1016/j.fsi.2020.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The extensive use of antibiotics in aquaculture has resulted in the prevalence of antibiotic-resistant bacteria and, consequently, new antibacterial strategies or drugs with clear modes of action are urgently needed. Antimicrobial peptides (AMPs) are currently widely considered as alternatives to antibiotics in the treatment of infections in aquatic animals. In this study, we aimed to evaluate the effects of NKL-24, a truncated peptide derived from zebrafish NK-lysin, against Yesso scallop (Patinopecten yessoensis) pathogen, Vibrio parahaemolyticus. The results showed that NKL-24 had a potent antibacterial effect against V. parahaemolyticus via a membrane active cell-killing mechanism. The in vitro study showed that sub-lethal levels of NKL-24 obviously reduced bacterial swimming ability and downregulated the transcription of the selected genes associated with V. parahaemolyticus virulence. Studies on NKL-24 biosafety in hemocytes and in Yesso scallop have shown no adverse effects from this peptide. Bacteria challenge test results demonstrated that NKL-24 significantly decreased the mortality and inhibited bacterial growth in the scallop infected with V. parahaemolyticus, while further in vivo examination revealed that NKL-24 could enhance non-specific immune parameters. Moreover, NKL-24 was capable of modulating a series of V. parahaemolyticus-responsive genes in the scallop. These results suggest the protective action of NKL-24 against V. parahaemolyticus and the potential of this peptide as a promising candidate for aquaculture applications.
Collapse
Affiliation(s)
- Zhongguo Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Guan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Weidong Liu
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China.
| |
Collapse
|
21
|
Eveno M, Belguesmia Y, Bazinet L, Gancel F, Fliss I, Drider D. In silico analyses of the genomes of three new bacteriocin-producing bacteria isolated from animal's faeces. Arch Microbiol 2020; 203:205-217. [PMID: 32803347 DOI: 10.1007/s00203-020-02016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Here, we have analysed and explored the genome sequences of three newly isolated bacteria that were recently characterised for their probiotic activities and ability to produce bacteriocins. These strains, isolated from faeces of animals living in captivity at the zoological garden of Lille (France), are Escherichia coli ICVB443, Enterococcus faecalis ICVB501 and Pediococcus pentosaceus ICVB491. Their genomes have been analysed and compared to those of their pathogenic or probiotic counterparts. The genome analyses of E. coli ICVB443 and Ent. faecalis ICVB501 displayed similarities to those of probiotics E. coli 1917 Nissle, and Ent. faecalis Symbioflor 1, respectively. Furthermore, E. coli ICVB443 shares at least 89 genes with the enteroaggregative E. coli 55989 (EAEC), and Ent. faecalis ICVB501 shares at least 315 genes with the pathogenic Ent. faecalis V583 strain. Unlike Ped. pentosaceus ICVB491, which is devoid of virulence genes, E. coli ICVB443 and Ent. faecalis ICVB501 both carry genes encoding virulence factors on their genomes. Of note, the bioinformatics analysis of these two genomes located the bsh gene, which codes for bile salt hydrolase (BSH). The presence of BSH is of major importance, as it can help to increase the viability of these two strains in the gastrointestinal tract (GIT). The genome analysis of Ped. pentosaceus ICVB491 confirmed its GRAS status (Generally Recognised As Safe), as no genomic virulence factor determinant was found.
Collapse
Affiliation(s)
- Mégane Eveno
- UMR Transfrontalière BioEcoAgro INRAE 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000, Lille, France.,Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Dairy Research Center (STELA), Pavillon Paul-Comtois, Université Laval, 2425, rue de l'Agriculture, Québec, G1V 0A6, Canada
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro INRAE 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Laurent Bazinet
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Dairy Research Center (STELA), Pavillon Paul-Comtois, Université Laval, 2425, rue de l'Agriculture, Québec, G1V 0A6, Canada
| | - Frédérique Gancel
- UMR Transfrontalière BioEcoAgro INRAE 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Ismail Fliss
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Dairy Research Center (STELA), Pavillon Paul-Comtois, Université Laval, 2425, rue de l'Agriculture, Québec, G1V 0A6, Canada
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro INRAE 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000, Lille, France.
| |
Collapse
|
22
|
Ringø E, Van Doan H, Lee SH, Soltani M, Hoseinifar SH, Harikrishnan R, Song SK. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. J Appl Microbiol 2020; 129:116-136. [PMID: 32141152 DOI: 10.1111/jam.14628] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Probiotics administration in aquafeed is known to increase feed consumption and absorption due to their capacity to release a wide range of digestive enzymes and nutrients which can participate in digestion process and feed utilization, along with the absorption of diet components led to an increase in host's health and well-being. Furthermore, probiotics improve gut maturation, prevention of intestinal disorders, predigestion of antinutrient factors found in the feed ingredients, gut microbiota, disease resistance against pathogens and metabolism. The beneficial immune effects of probiotics are well established in finfish. However, in comparison, similar studies are less abundant in the shellfish. In this review, the discussions will mainly focus on studies reported the last 2 years. In recent studies, native probiotic bacteria were isolated and fed back to their hosts. Although beneficial effects were demonstrated, some studies showed adverse effects when treated with a high concentration. This adverse effect may be due to the imbalance of the gut microbiota caused by the replenished commensal probiotics. Probiotics revealed greatest effect on the shrimp digestive system particularly in the larval and early post-larval stages, and stimulate the production of endogenous enzymes in shrimp and contribute with improved the enzyme activities in the gut, as well as disease resistance.
Collapse
Affiliation(s)
- E Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - H Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - S H Lee
- School of Life Science, Handong University, Pohang, Republic of Korea
| | - M Soltani
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA, Australia.,Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - S H Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - R Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Tamil Nadu, Kanchipuram, India
| | - S K Song
- School of Life Science, Handong University, Pohang, Republic of Korea
| |
Collapse
|
23
|
Cebrián R, Rodríguez-Cabezas ME, Martín-Escolano R, Rubiño S, Garrido-Barros M, Montalbán-López M, Rosales MJ, Sánchez-Moreno M, Valdivia E, Martínez-Bueno M, Marín C, Gálvez J, Maqueda M. Preclinical studies of toxicity and safety of the AS-48 bacteriocin. J Adv Res 2019; 20:129-139. [PMID: 31360546 PMCID: PMC6637140 DOI: 10.1016/j.jare.2019.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
The in vitro antimicrobial potency of the bacteriocin AS-48 is well documented, but its clinical application requires investigation, as its toxicity could be different in in vitro (haemolytic and antibacterial activity in blood and cytotoxicity towards normal human cell lines) and in vivo (e.g. mice and zebrafish embryos) models. Overall, the results obtained are promising. They reveal the negligible propensity of AS-48 to cause cell death or impede cell growth at therapeutic concentrations (up to 27 μM) and support the suitability of this peptide as a potential therapeutic agent against several microbial infections, due to its selectivity and potency at low concentrations (in the range of 0.3-8.9 μM). In addition, AS-48 exhibits low haemolytic activity in whole blood and does not induce nitrite accumulation in non-stimulated RAW macrophages, indicating a lack of pro-inflammatory effects. The unexpected heightened sensitivity of zebrafish embryos to AS-48 could be due to the low differentiation state of these cells. The low cytotoxicity of AS-48, the absence of lymphocyte proliferation in vivo after skin sensitization in mice, and the lack of toxicity in a murine model support the consideration of the broad spectrum antimicrobial peptide AS-48 as a promising therapeutic agent for the control of a vast array of microbial infections, in particular, those involved in skin and soft tissue diseases.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Molecular Genetics, Faculty of Science and Engineering, Nijenborgh 7, 9747 AG, University of Groningen, Groningen, the Netherlands
| | - M Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology. Centre for Biomedical Research (CIBM), Avda del Conocimiento s/n, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Susana Rubiño
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - María Garrido-Barros
- CIBER-EHD, Department of Pharmacology. Centre for Biomedical Research (CIBM), Avda del Conocimiento s/n, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Manuel Montalbán-López
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - María José Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Eva Valdivia
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - Manuel Martínez-Bueno
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology. Centre for Biomedical Research (CIBM), Avda del Conocimiento s/n, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Mercedes Maqueda
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| |
Collapse
|
24
|
Wang K, Cao G, Zhang H, Li Q, Yang C. Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, immune function, intestinal morphology, volatile fatty acids, and intestinal flora in a piglet model. Food Funct 2019; 10:7844-7854. [DOI: 10.1039/c9fo01650c] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We investigated the effects of Clostridium butyricum and Enterococcus faecalis (probiotics) in a piglet model.
Collapse
Affiliation(s)
- Kangli Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province
- Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology
- College of Animal Science and Technology
- Zhejiang A & F University
- Hangzhou 311300
| | - Guangtian Cao
- College of Standardisation
- China Jiliang University
- Hangzhou 310018
- China
| | - Haoran Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province
- Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology
- College of Animal Science and Technology
- Zhejiang A & F University
- Hangzhou 311300
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province
- Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology
- College of Animal Science and Technology
- Zhejiang A & F University
- Hangzhou 311300
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province
- Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology
- College of Animal Science and Technology
- Zhejiang A & F University
- Hangzhou 311300
| |
Collapse
|