1
|
Duan ZF, Han MY, Niu JL, Zhao JR, Li WW, Zhu LN, Ma HF, Wu YF, Li XT, Sun BG. Evolution of fermented grain yeast communities in strong-flavored baijiu and functional validation of yeasts that produce superior-flavored substances. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5973-5981. [PMID: 38436499 DOI: 10.1002/jsfa.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Baijiu is a well-known alcoholic beverage in China and the quality is determined by various microorganisms during the fermentation process. Yeast is one of the most important microorganisms in the fermentation of baijiu. It has a strong esterification capacity and also affects the aroma. RESULTS High-throughput sequencing results showed that the fermented grains (jiupei) during baijiu production were mainly composed of eight highly abundant yeast species. The species and abundance of yeasts changed significantly with the fermentation process. The flavor of 30 yeast strains in the jiupei was determined by a sniffing test and gas chromatography-mass spectrometry (GC-MS). The strain with the highest flavor substance content (2.34 mg L-1), named YX3205, was identified as Clavispora lusitaniae. Tolerance results showed that C. lusitaniae YX3205 can tolerate up to 15% (v v-1) ethanol. In a solid-state simulated fermentation experiment, the content of 24 flavor substances was significantly increased in the fortified group, and the total ester content reached 4240.73 μg kg-1, which was 2.8 times higher than that of the control group. CONCLUSION The present study demonstrated the potential of C. lusitaniae YX3205 to enhance the flavor of baijiu, thereby serving as a valuable strain for the improvement of the flavor quality of baijiu. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhong-Fu Duan
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Mei-Yue Han
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Jia-Liang Niu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Jing-Rong Zhao
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Wei-Wei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Li-Ning Zhu
- Hebei Fenglaiyi Distillery Co., Ltd, Hebei, China
| | - Hui-Feng Ma
- Hebei Fenglaiyi Distillery Co., Ltd, Hebei, China
| | - Yan-Fang Wu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiu-Ting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Bao-Guo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
2
|
Hirt B, Fiege J, Cvetkova S, Gräf V, Scharfenberger-Schmeer M, Durner D, Stahl M. Comparison and prediction of UV-C inactivation kinetics of S. cerevisiae in model wine systems dependent on flow type and absorbance. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
|
4
|
Salar FJ, Domínguez-Perles R, García-Viguera C, Fernández PS. Ifs and buts of non-thermal processing technologies for plant-based drinks' bioactive compounds. FOOD SCI TECHNOL INT 2022:10820132221094724. [PMID: 35440183 DOI: 10.1177/10820132221094724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vegetables and fruits contain a variety of bioactive nutrients and non-nutrients that are associated with health promotion. Consumers currently demand foods with high contents of healthy compounds, as well as preserved natural taste and flavour, minimally processed without using artificial additives. Processing alternatives to be applied on plant-based foodstuffs to obtain beverages are mainly referred to as classical thermal treatments that although are effective treatments to ensure safety and extended shelf-life, also cause undesirable changes in the sensory profiles and phytochemical properties of beverages, thus affecting the overall quality and acceptance by consumers. As a result of these limitations, new non-thermal technologies have been developed for plant-based foods/beverages to enhance the overall quality of these products regarding microbiological safety, sensory traits, and content of bioactive nutrients and non-nutrients during the shelf-life of the product, thus allowing to obtain enhanced health-promoting beverages. Accordingly, the present article attempts to review critically the principal benefits and downsides of the main non-thermal processing alternatives (High hydrostatic pressure, pulsed electric fields, ultraviolet light, and ultrasound) to set up sound comparisons with conventional thermal treatments, providing a vision about their practical application that allows identifying the best choice for the sectoral industry in non-alcoholic fruit and vegetable-based beverages.
Collapse
Affiliation(s)
- Francisco J Salar
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain.,Calidad y Evaluación de Riesgos en Alimentos, Unidad Asociada CSIC -UPCT
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain.,Calidad y Evaluación de Riesgos en Alimentos, Unidad Asociada CSIC -UPCT
| | - Pablo S Fernández
- Department of Ingeniería Agrónomica, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain.,Calidad y Evaluación de Riesgos en Alimentos, Unidad Asociada CSIC -UPCT
| |
Collapse
|
5
|
Menezes NMC, Longhi DA, Ortiz BO, Junior AF, de Aragão GMF. Modeling the inactivation of Aspergillus fischeri and Paecilomyces niveus ascospores in apple juice by different ultraviolet light irradiances. Int J Food Microbiol 2020; 333:108773. [PMID: 32739634 DOI: 10.1016/j.ijfoodmicro.2020.108773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022]
Abstract
The present work aimed to evaluate and to model the influence of UV-C light treatments with different irradiances (6.5, 13, 21, and 36 W/m2) on Aspergillus fischeri and Paecilomyces niveus ascospores inactivation in clarified apple juice. Approximately 5.0 and 6.0 log CFU/mL spores of P. niveus and A. fischeri, respectively, were suspended in 30 mL of clarified apple juice (pH 3.8, 12 ± 0.1°Brix) and exposed to UV-C light at different irradiances (as above) and exposure times (0 to 30 min). The first-order biphasic model was able to describe the experimental data with good statistical indices (RMSE = 0.296 and 0.308, R2 = 0.96 and 0.98, for P. niveus and A. fischeri respectively). At the highest irradiance level tested (36 W/m2), the UV-C light allowed the reduction of 5.7 and 4.2 log-cycles of A. fischeri and P. niveus ascospores, respectively, in approximately 10 min. P. niveus was the most UV-C resistant mould. The results showed that, to a defined UV-C fluence, a change in the level of either time or UV-C irradiance did not affect the effectiveness of UV-C light for A. fischeri and P. niveus inactivation. Thus, the modeling of the inactivation as a function of the UV-C fluence allowed the estimation of the primary model parameters with all experimental data and, consequently, no secondary models were needed. The model parameters were validated with experiments of variable UV-C fluences. Accordingly, experimental results allowed to conclude that UV-C treatment at the irradiances tested is a promising application for preventing A. fischeri and P. niveus spoilage of juices.
Collapse
Affiliation(s)
- Natielle Maria Costa Menezes
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Center of Technology, Florianopolis, SC 88040-901, Brazil
| | - Daniel Angelo Longhi
- Federal University of Paraná, Food Engineering, Jandaia do Sul Campus, Jandaia do Sul, PR 86900-000, Brazil
| | - Beatriz Oliveira Ortiz
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Center of Technology, Florianopolis, SC 88040-901, Brazil
| | - Agenor Furigo Junior
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Center of Technology, Florianopolis, SC 88040-901, Brazil
| | - Gláucia Maria Falcão de Aragão
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Center of Technology, Florianopolis, SC 88040-901, Brazil.
| |
Collapse
|
6
|
Graça A, Santo D, Pires-Cabral P, Quintas C. The effect of UV-C and electrolyzed water on yeasts on fresh-cut apple at 4 °C. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Pagal GA, Gabriel AA. Individual and combined mild heat and UV-C processes for orange juice against Escherichia coli O157:H7. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Barrilli ÉT, Tadioto V, Milani LM, Deoti JR, Fogolari O, Müller C, Barros KO, Rosa CA, Dos Santos AA, Stambuk BU, Treichel H, Alves SL. Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood. Arch Microbiol 2020; 202:1729-1739. [PMID: 32328754 DOI: 10.1007/s00203-020-01884-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
We isolated two Candida pseudointermedia strains from the Atlantic rain forest in Brazil, and analyzed cellobiose metabolization in their cells. After growth in cellobiose medium, both strains had high intracellular β-glucosidase activity [~ 200 U (g cells)-1 for 200 mM cellobiose and ~ 100 U (g cells)-1 for 2 mM pNPβG] and negligible periplasmic cellobiase activity. During batch fermentation, the strain with the best performance consumed all the available cellobiose in the first 18 h of the assay, producing 2.7 g L-1 of ethanol. Kinetics of its cellobiase activity demonstrated a high-affinity hydrolytic system inside cells, with Km of 12.4 mM. Our data suggest that, unlike other fungal species that hydrolyze cellobiose extracellularly, both analyzed strains transport it to the cytoplasm, where it is then hydrolyzed by high-affinity intracellular β-glucosidases. We believe this study increases the fund of knowledge regarding yeasts from Brazilian microbiomes.
Collapse
Affiliation(s)
- Évelyn T Barrilli
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Viviani Tadioto
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Letícia M Milani
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Junior R Deoti
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Odinei Fogolari
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Caroline Müller
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Katharina O Barros
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos A Rosa
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Angela A Dos Santos
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil.,Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Boris U Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim, RS, Brazil
| | - Sérgio L Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
9
|
Feliciano RJ, Gabriel AA. Juice composition, physicochemistry, and efficacy of ultraviolet radiation against Cryptococcus albidus. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|