1
|
Čuljak N, Bellich B, Pedroni A, Butorac K, Pavunc AL, Novak J, Banić M, Šušković J, Cescutti P, Kos B. Limosilactobacillus fermentum strains MC1 and D12: Functional properties and exopolysaccharides characterization. Int J Biol Macromol 2024; 273:133215. [PMID: 38897515 DOI: 10.1016/j.ijbiomac.2024.133215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Lactic acid bacteria (LAB) produce a broad spectrum of exopolysaccharides (EPSs), commonly used as texturizers in food products. Due to their potential contribution to LAB probiotic properties, like adhesion to human epithelial cells and competitive exclusion of pathogens from human intestinal epithelial cells, this study was focussed on the structural and functional characterization of the EPSs produced by two Limosilactobacillus fermentum strains - MC1, originating from mother's milk, and D12, autochthonous from Croatian smoked fresh cheese. Whole-genome sequencing and functional annotation of both L. fermentum strains by RAST server revealed the genes involved in EPS production and transport, with some differences in functionally related genes. EPSs were extracted from the cell surface of both bacterial strains and purified by size-exclusion chromatography. Structural characterization of the EPSs, achieved by chemical analyses and 1D and 2D NMR spectroscopy, showed that both strains produce an identical mixture of three different EPSs containing galactofuranose and glucopyranose residues. However, a comparison of the functional properties showed that the MC1 strain adhered better to the Caco-2 cell line and exhibited stronger antimicrobial effect against Salmonella enterica serovar Typhimurium FP1 than the D12 strain, which may be attributed to the potential bacteriocin activity of the MC1 strain.
Collapse
Affiliation(s)
- Nina Čuljak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Barbara Bellich
- Department of Advanced Translational Diagnostics, Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137 Trieste, Italy
| | - Alice Pedroni
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127 Trieste, Italy
| | - Katarina Butorac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Andreja Leboš Pavunc
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jasna Novak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Martina Banić
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jagoda Šušković
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127 Trieste, Italy.
| | - Blaženka Kos
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Pradal I, González-Alonso V, Wardhana YR, Cnockaert M, Wieme AD, Vandamme P, De Vuyst L. Various cold storage-backslopping cycles show the robustness of Limosilactobacillus fermentum IMDO 130101 as starter culture for Type 3 sourdough production. Int J Food Microbiol 2024; 411:110522. [PMID: 38160537 DOI: 10.1016/j.ijfoodmicro.2023.110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
Type 3 sourdoughs, which are starter culture-initiated and subsequently backslopped, are less studied than other sourdough types. Yet, they can serve as a model to assess how competitive starter culture strains for sourdough production are and how the microbial composition of such sourdoughs may evolve over time. In the present study, Limosilactobacillus fermentum IMDO 130101 was used to produce Type 3 sourdoughs, prepared from wheat and wholemeal wheat flours. Therefore, an initial fermentation of the flour-water mixture was performed at 30 °C for 48 h. This was followed by cold storage-backslopping cycles, consisting of refreshments (50 %, v/v), fermentation steps of 16 h, and storage at 4 °C each week, every three weeks, and every six weeks. The microbial dynamics (culture-dependent and -independent approaches) and metabolite dynamics were measured. In all sourdoughs produced, starter culture strain monitoring, following an amplicon sequence variant approach, showed that Liml. fermentum IMDO 130101 prevailed during one month when the sourdoughs were refreshed each week, during 24 weeks when the sourdoughs were refreshed every three weeks, and during 12 weeks when the sourdoughs were refreshed every six weeks. This suggested the competitiveness and robustness of Liml. fermentum IMDO 130101 for a considerable duration but also showed that the strain is prone to microbial interference. For instance, Levilactobacillus brevis and Pediococcus spp. prevailed upon further cold storage and backslopping. Also, although no yeasts were inoculated into the flour-water mixtures, Kazachstania unispora, Torulaspora delbrueckii, and Wickerhamomyces anomalus were the main yeast species found. They appeared after several weeks of storage and backslopping, which however indicated the importance of an interplay between LAB and yeast species in sourdoughs. The main differences among the mature sourdoughs obtained could be explained by the different flours used, the refreshment conditions applied, and the sampling time (before and after backslopping). Finally, the metabolite quantifications revealed continued metabolite production during the cold storage periods, which may impact the sourdough properties and those of the breads made thereof.
Collapse
Affiliation(s)
- Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Víctor González-Alonso
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Yohanes Raditya Wardhana
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Anneleen D Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
3
|
Gumustop I, Ortakci F. Comparative genomics of Loigolactobacillus coryniformis with an emphasis on L. coryniformis strain FOL-19 isolated from cheese. Comput Struct Biotechnol J 2023; 21:5111-5124. [PMID: 37920811 PMCID: PMC10618118 DOI: 10.1016/j.csbj.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Loigolactobacillus coryniformis is a member of lactic acid bacteria isolated from various ecological niches. We isolated a novel L. coryniformis strain FOL-19 from artisanal Tulum cheese and performed the whole-genome sequencing for FOL-19. Then, genomic characterization of FOL-19 against ten available whole genome sequences of the same species isolated from kimchi, silage, fermented meat, air of cowshed, dairy, and pheasant chyme was performed to uncover the genetic diversity and biotechnological potential of overall species. The average genome size of 2.93 ± 0.1 Mb, GC content of 42.96% ± 0.002, number of CDS of 2905 ± 165, number of tRNA of 56 ± 10, and number of CRISPR elements of 6.55 ± 1.83 was found. Both Type I and II Cas clusters were observed in L. coryniformis. No bacteriocin biosynthesis gene clusters were found. All strains harbored at least one plasmid except KCTC 3167. All strains were predicted to carry multiple IS elements. The most common origin of the IS elements was belong to Lactiplantibacillus plantarum. Comparative genomic analysis of L. coryniformis revealed hypervariability at the strain level and the presence of CRISPR/Cas suggests that L. coryniformis holds a promising potential for being a reservoir for new CRISPR-based tools. All L. coryniformis strains except PH-1 were predicted to harbor pdu and cbi-cob-hem gene clusters encoding industrially relevant traits of reuterin and cobalamin biosynthesis, respectively. These findings put a step forward for the genomic characterization of L. coryniformis strains for biotechnological applications via genome-guided strain selection to identify industrially relevant traits.
Collapse
Affiliation(s)
- Ismail Gumustop
- BioEngineering Department, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Fatih Ortakci
- Food Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Patel MH, Lu SY, Liu S, Skory CD. Novel endolysin LysMP for control of Limosilactobacillus fermentum contamination in small-scale corn mash fermentation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:144. [PMID: 37775769 PMCID: PMC10541714 DOI: 10.1186/s13068-023-02400-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Traditional bioethanol fermentation industries are not operated under strict sterile conditions and are prone to microbial contamination. Lactic acid bacteria (LAB) are often pervasive in fermentation tanks, competing for nutrients and producing inhibitory acids that have a negative impact on ethanol-producing yeast, resulting in decreased yields and stuck fermentations. Antibiotics are frequently used to combat contamination, but antibiotic stewardship has resulted in a shift to alternative antimicrobials. RESULTS We demonstrate that endolysin LysMP, a bacteriophage-encoded peptidoglycan hydrolase, is an effective method for controlling growth of LAB. The LysMP gene was synthesized based on the prophage sequence in the genome of Limosilactobacillus fermentum KGL7. Analysis of the recombinant enzyme expressed in E. coli and purified by immobilized metal chelate affinity chromatography (IMAC) showed an optimal lysis activity against various LAB species at pH 6, with stability from pH 4 to 8 and from 20 to 40 °C up to 48 h. Moreover, it retains more than 80% of its activity at 10% ethanol (v/v) for up to 48 h. When LysMP was added at 250 µg/mL to yeast corn mash fermentations containing L. fermentum, it reduced bacterial load by at least 4-log fold compared to the untreated controls and prevented stuck fermentation. In comparison, untreated controls with contamination increased from an initial bacterial load of 1.50 × 107 CFU/mL to 2.25 × 109 CFU/mL and 1.89 × 109 CFU/mL after 24 h and 48 h, respectively. Glucose in the treated samples was fully utilized, while untreated controls with contamination had more than 4% (w/v) remaining at 48 h. Furthermore, there was at least a fivefold reduction in lactic acid (0.085 M untreated contamination controls compared to 0.016 M treated), and a fourfold reduction in acetic acid (0.027 M untreated contamination controls vs. 0.007 M treated), when LysMP was used to treat contaminated corn mash fermentations. Most importantly, final ethanol yields increased from 6.3% (w/v) in untreated contamination samples to 9.3% (w/v) in treated contamination samples, an approximate 50% increase to levels comparable to uncontaminated controls 9.3% (w/v). CONCLUSION LysMP could be a good alternative to replace antibiotics for mitigation of LAB contamination in biofuel refineries.
Collapse
Affiliation(s)
- Maulik H Patel
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Shao-Yeh Lu
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research Unit, 1815 N. University St, Peoria, IL, 61604-3902, USA.
| | - Siqing Liu
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research Unit, 1815 N. University St, Peoria, IL, 61604-3902, USA
| | - Christopher D Skory
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research Unit, 1815 N. University St, Peoria, IL, 61604-3902, USA
| |
Collapse
|
5
|
Kobayashi Y, Chiou TY, Konishi M. Artificial intelligence-assisted analysis reveals amino acid effects and interactions on Limosilactobacillus fermentum growth. Biosci Biotechnol Biochem 2023; 87:1068-1076. [PMID: 37355776 DOI: 10.1093/bbb/zbad083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
To understand the growth of lactic acid bacteria (LAB), Limosilactobacillus fermentum, in response to medium compositions, a deep neural network (DNN) was designed using amino acids (AAs) as explanatory variables and LAB growth as the objective variable. Sixty-four different patterns of free AAs were set using an orthogonal array. The best DNN model had high accuracy with low mean square errors and predicted that Asp would affect LAB growth. Bayesian optimization (BO) using this model recommended an optimal growth media comprising maximum amounts of Asn, Asp, Lys, Thr, and Tyr and minimum amounts of Gln, Pro, and Ser. Furthermore, this proposed media was empirically validated to promote LAB growth. The absence of Gln, Ser, and Pro indicates that the different growth trends among the DNN-BO-optimized media were likely caused by the interactions among the AAs and the other components.
Collapse
Affiliation(s)
- Yoshimi Kobayashi
- Cold Regions, Environmental and Energy Engineering Course, Graduate School of Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
- Bio-Production Division, Hokkaido Sugar Co. Ltd., Kitami, Hokkaido, Japan
| | - Tai-Ying Chiou
- Biotechnology and Food Chemistry Course Program, School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
| | - Masaaki Konishi
- Biotechnology and Food Chemistry Course Program, School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
| |
Collapse
|
6
|
Van de Voorde D, Díaz-Muñoz C, Hernandez CE, Weckx S, De Vuyst L. Yeast strains do have an impact on the production of cured cocoa beans, as assessed with Costa Rican Trinitario cocoa fermentation processes and chocolates thereof. Front Microbiol 2023; 14:1232323. [PMID: 37621398 PMCID: PMC10445768 DOI: 10.3389/fmicb.2023.1232323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The microbiological and metabolic outcomes of good cocoa fermentation practices can be standardized and influenced through the addition of starter culture mixtures composed of yeast and bacterial strains. The present study performed two spontaneous and 10 starter culture-initiated (SCI) cocoa fermentation processes (CFPs) in Costa Rica with local Trinitario cocoa. The yeast strains Saccharomyces cerevisiae IMDO 050523, Hanseniaspora opuntiae IMDO 020003, and Pichia kudriavzevii IMDO 060005 were used to compose starter culture mixtures in combination with the lactic acid bacterium strain Limosilactobacillus fermentum IMDO 0611222 and the acetic acid bacterium strain Acetobacter pasteurianus IMDO 0506386. The microbial community and metabolite dynamics of the cocoa pulp-bean mass fermentation, the metabolite dynamics of the drying cocoa beans, and the volatile organic compound (VOC) profiles of the chocolate production were assessed. An amplicon sequence variant approach based on full-length 16S rRNA gene sequencing instead of targeting the V4 region led to a highly accurate monitoring of the starter culture strains added, in particular the Liml. fermentum IMDO 0611222 strain. The latter strain always prevailed over the background lactic acid bacteria. A similar approach, based on the internal transcribed spacer (ITS1) region of the fungal rRNA transcribed unit, was used for yeast strain monitoring. The SCI CFPs evolved faster when compared to the spontaneous ones. Moreover, the yeast strains applied did have an impact. The presence of S. cerevisiae IMDO 050523 was necessary for successful fermentation of the cocoa pulp-bean mass, which was characterized by the production of higher alcohols and esters. In contrast, the inoculation of H. opuntiae IMDO 020003 as the sole yeast strain led to underfermentation and a poor VOC profile, mainly due to its low competitiveness. The P. kudriavzevii IMDO 060005 strain tested in the present study did not contribute to a richer VOC profile. Although differences in VOCs could be revealed in the cocoa liquors, no significant effect on the final chocolates could be obtained, mainly due to a great impact of cocoa liquor processing during chocolate-making. Hence, optimization of the starter culture mixture and cocoa liquor processing seem to be of pivotal importance.
Collapse
Affiliation(s)
- Dario Van de Voorde
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Eduardo Hernandez
- Laboratorio de Calidad e Innovación Agroalimentaria, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Luo R, Liu C, Li Y, Liu Q, Su X, Peng Q, Lei X, Li W, Menghe B, Bao Q, Liu W. Comparative Genomics Analysis of Habitat Adaptation by Lactobacillus kefiranofaciens. Foods 2023; 12:foods12081606. [PMID: 37107402 PMCID: PMC10137885 DOI: 10.3390/foods12081606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Lactobacillus kefiranofaciens is often found in fermented dairy products. Many strains of this species have probiotic properties, contributing to the regulation of immune metabolism and intestinal flora. This species was added to the list of lactic acid bacteria that can be added to food in China, in 2020. However, research on the genomics of this species is scarce. In this study we undertook whole genome sequencing analysis of 82 strains of L. kefiranofaciens from different habitats, of which 9 strains were downloaded from the NCBI RefSeq (National Center for Biotechnology Information RefSeq). The mean genome size of the 82 strains was 2.05 ± 0.25 Mbp, and the mean DNA G + C content was 37.47 ± 0.42%. The phylogenetic evolutionary tree for the core genes showed that all strains belonged to five clades with clear aggregation in relation to the isolation habitat; this indicated that the genetic evolution of L. kefiranofaciens was correlated to the isolation habitat. Analysis of the annotation results identified differences in the functional genes, carbohydrate active enzymes (CAZy) and bacteriocins amongst different isolated strains, which were related to the environment. Isolates from kefir grains had more enzymes for cellulose metabolism and a better ability to use vegetative substrates for fermentation, which could be used in feed production. Isolates from kefir grains also had fewer kinds of bacteriocin than isolates from sour milk and koumiss; helveticin J and lanthipeptide class I were not found in the isolates from kefir grains. The genomic characteristics and evolutionary process of L. kefiranofaciens were analyzed by comparative genomics and this paper explored the differences in the functional genes amongst the strains, aiming to provide a theoretical basis for the research and development of L. kefiranofaciens.
Collapse
Affiliation(s)
- Rui Luo
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Chen Liu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yu Li
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qing Liu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xin Su
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qingting Peng
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xueyan Lei
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
8
|
Aristimuño Ficoseco C, Mansilla FI, Vignolo GM, Nader-Macías MEF. Optimization of Probiotic Lactobacilli Production for In-Feed Supplementation to Feedlot Cattle. Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The selection of probiotic bacteria based on their beneficial characteristics does not necessarily mean they can be later scaled up and used for technological applications and formula design. Three probiotic strains—Lactobacillus acidophilus CRL2074, Limosilactobacillus fermentum CRL2085, and Limosolactobacillus mucosae CRL2069, originally isolated from feedlot cattle feces—have demonstrated beneficial characteristics when used as in-feed probiotics. Therefore, the current study was conducted to develop a low-cost culture medium to optimize growth conditions to enhance biomass production. The study also sought to identify appropriate cryoprotective agents to sustain high functional cell numbers after freeze drying. A central composite design was applied to determine the optimal medium composition. This yielded a simplified, low-cost effective medium containing 3% molasses and industrial yeast extracts (0.5 to 2.5%) as carbon and nitrogen sources, which were added to a basal medium for each strain. Established production conditions at 37 °C, without agitation, and pH-controlled for the CRL2085 and CRL2069 strains, and free pH for the CRL2074 strain, allowed us to obtain biomass yields of 12.95, 18.20, and 12.25 g, respectively, at 24-h incubation, compared with the MRS medium. In addition, the cryoprotective effect of the selected agents was demonstrated to be strain-dependent. Thus, the highest viability (109–1010 CFU/g), stability during 30-d storage, and survival rate (88–99%) were achieved when 10% MSG (monosodium glutamate), sucrose + fructose + trehalose + WPC (whey protein concentrate) + 10% MSG, and 1.2% WPC + 10% trehalose, were used for freeze drying CRL2074, CRL2085, and CRL2069, respectively. Moreover, the probiotic strains retained their probiotic functionality when hydrophobic characteristics were evaluated. These results highlight the need to perform strain-specific evaluation of the critical factors involved in the large-scale production of probiotic lactobacilli to sustain viability and stability after the freeze drying and storage processes.
Collapse
|
9
|
de Moura e Dias M, da Silva Duarte V, Mota LFM, de Cássia Ávila Alpino G, dos Reis Louzano SA, da Conceição LL, Mantovanie HC, Pereira SS, Oliveira LL, de Oliveira Mendes TA, Porcellato D, do Carmo Gouveia Peluzio M. Lactobacillus gasseri LG-G12 Restores Gut Microbiota and Intestinal Health in Obesity Mice on Ceftriaxone Therapy. Foods 2023; 12:foods12051092. [PMID: 36900609 PMCID: PMC10001121 DOI: 10.3390/foods12051092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Gut microbiota imbalance is associated with the occurrence of metabolic diseases such as obesity. Thus, its modulation is a promising strategy to restore gut microbiota and improve intestinal health in the obese. This paper examines the role of probiotics, antimicrobials, and diet in modulating gut microbiota and improving intestinal health. Accordingly, obesity was induced in C57BL/6J mice, after which they were redistributed and fed with an obesogenic diet (intervention A) or standard AIN-93 diet (intervention B). Concomitantly, all the groups underwent a treatment phase with Lactobacillus gasseri LG-G12, ceftriaxone, or ceftriaxone followed by L. gasseri LG-G12. At the end of the experimental period, the following analysis was conducted: metataxonomic analysis, functional profiling of gut microbiota, intestinal permeability, and caecal concentration of short-chain fatty acids. High-fat diet impaired bacterial diversity/richness, which was counteracted in association with L. gasseri LG-G12 and the AIN-93 diet. Additionally, SCFA-producing bacteria were negatively correlated with high intestinal permeability parameters, which was further confirmed via functional profile prediction of the gut microbiota. A novel perspective on anti-obesity probiotics is presented by these findings based on the improvement of intestinal health irrespective of undergoing antimicrobial therapy or not.
Collapse
Affiliation(s)
- Mariana de Moura e Dias
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- Correspondence:
| | - Lúcio Flávio Macedo Mota
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Padua, Italy
| | - Gabriela de Cássia Ávila Alpino
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Sandra Aparecida dos Reis Louzano
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Lisiane Lopes da Conceição
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Hilário Cuquetto Mantovanie
- Department of Microbiology, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Solange Silveira Pereira
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Leandro Licursi Oliveira
- Department of General Biology, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Maria do Carmo Gouveia Peluzio
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
10
|
Mendoza RM, Kim SH, Vasquez R, Hwang IC, Park YS, Paik HD, Moon GS, Kang DK. Bioinformatics and its role in the study of the evolution and probiotic potential of lactic acid bacteria. Food Sci Biotechnol 2023; 32:389-412. [PMID: 36911331 PMCID: PMC9992694 DOI: 10.1007/s10068-022-01142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022] Open
Abstract
Due to their numerous well-established applications in the food industry, there have been many studies regarding the adaptation and evolution of lactic acid bacteria (LAB) in a wide variety of hosts and environments. Progress in sequencing technology and continual decreases in its costs have led to the availability of LAB genome sequence data. Bioinformatics has been central to the extraction of valuable information from these raw genome sequence data. This paper presents the roles of bioinformatics tools and databases in understanding the adaptation and evolution of LAB, as well as the bioinformatics methods used in the initial screening of LAB for probiotic potential. Moreover, the advantages, challenges, and limitations of employing bioinformatics for these purposes are discussed.
Collapse
Affiliation(s)
- Remilyn M. Mendoza
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Robie Vasquez
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - In-Chan Hwang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Gi-Seong Moon
- Division of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
11
|
Mansilla FI, Miranda MH, Uezen JD, Maldonado NC, D'Urso Villar MA, Merino LA, Vignolo GM, Nader-Macias MEF. Effect of probiotic lactobacilli supplementation on growth parameters, blood profile, productive performance, and fecal microbiology in feedlot cattle. Res Vet Sci 2023; 155:76-87. [PMID: 36652843 DOI: 10.1016/j.rvsc.2023.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Lactic acid bacteria (LAB) selected on the basis of probiotic characteristics were administered to beef feedlot catlle and the effect on body condition/growth and nutritional-metabolic status as well as on E. coli O157:H7 fecal shedding, were investigated. A feeding trials involving 126 steers were used to evaluate the effects of Lactobacillus acidophilus CRL2074, Limosilactobacillus fermentum CRL2085 and Limosilactobacillus mucosae CRL2069 and their combinations (5 different probiotic groups and control) when 107-108 CFU/animal of each probiotic group were in-feed supplemented. Cattle were fed a high energy corn-based diet (16 to 88%) and samples from each animal were taken at 0, 40, 104 and 163 days. In general, animals body condition and sensorium state showed optimal muscle-skeletal development and behavioral adaption to confinement; no nasal/eye discharges and diarrheic feces were observed. The nutritional performance of the steers revealed a steady increase of biometric parameters and weight. Animals supplied with L. mucosae CRL2069 for 104 days reached the maximum mean live weight (343.2 kg), whereas the greatest weight daily gain (1.27 ± 0.16 Kg/day) was obtained when CRL2069 and its combination with L. fermentum CRL2085 (1.26 ± 0.11 kg/day) were administered during the complete fattening cycle. With several exceptions, bovine cattle blood and serum parameters showed values within referential ranges. As a preharvest strategy to reduce Escherichia coli O157:H7 in cattle feces, CRL2085 administered during 40 days decreased pathogen shedding with a reduction of 43% during the feeding period. L. fermentum CRL2085 and L. mucosae CRL2069 show promise for feedlot cattle feeding supplementation to improve metabolic-nutritional status, overall productive performance and to reduce E. coli O157:H7 shedding, thus decreasing contamination chances of meat food products.
Collapse
Affiliation(s)
- Flavia I Mansilla
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (4000), Tucumán, Argentina
| | - Maria H Miranda
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (4000), Tucumán, Argentina
| | - José D Uezen
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (4000), Tucumán, Argentina
| | - Natalia C Maldonado
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (4000), Tucumán, Argentina
| | | | - Luis A Merino
- Institute of Regional Medicine, Universidad Nacional del Nordeste, Argentina
| | - Graciela M Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (4000), Tucumán, Argentina
| | | |
Collapse
|
12
|
Janiszewska-Turak E, Witrowa-Rajchert D, Rybak K, Rolof J, Pobiega K, Woźniak Ł, Gramza-Michałowska A. The Influence of Lactic Acid Fermentation on Selected Properties of Pickled Red, Yellow, and Green Bell Peppers. Molecules 2022; 27:molecules27238637. [PMID: 36500730 PMCID: PMC9741357 DOI: 10.3390/molecules27238637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Red, yellow, and green peppers are vegetables rich in natural pigments. However, they belong to seasonal vegetables and need to be treated to prolong their shelf life. One new approach to processing vegetables is to pickle them using lactic acid bacteria. The use of such a process creates a new product with high health value, thanks to the active ingredients and lactic acid bacteria. Therefore, this study aimed to evaluate the effect of the applied strain of lactic acid bacteria (LAB) on the chemical properties, including the content of active compounds (pigments) and the physical properties of the peppers. Levilactobacillus brevis, Limosilactobacillus fermentum, and Lactoplantibacillus plantarum were used for fermentation and spontaneous fermentation. The pigments, polyphenols content, and antioxidant properties were determined in the pickled peppers, as well as sugar content, color, dry matter, texture properties, and the count of lactic acid bacteria. In all samples, similar growth of LAB was observed. Significant degradation of chlorophylls into pheophytins was observed after the fermentation process. No significant differences were observed in the parameters tested, depending on the addition of dedicated LAB strains. After the fermentation process, the vitamin C and total polyphenols content is what influenced the antioxidant activity of the samples. It can be stated that the fermentation process changed the red bell pepper samples in the smallest way and the green ones in the highest way.
Collapse
Affiliation(s)
- Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
- Correspondence: (E.J.-T.); (A.G.-M.); Tel.: +48-22-593-7366 (E.J.-T.); +48-61-848-7327 (A.G.-M.)
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Joanna Rolof
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Łukasz Woźniak
- Department of Food Safety and Chemical Analysis, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
- Correspondence: (E.J.-T.); (A.G.-M.); Tel.: +48-22-593-7366 (E.J.-T.); +48-61-848-7327 (A.G.-M.)
| |
Collapse
|
13
|
Tao A, Zhang H, Duan J, Xiao Y, Liu Y, Li J, Huang J, Zhong T, Yu X. Mechanism and application of fermentation to remove beany flavor from plant-based meat analogs: A mini review. Front Microbiol 2022; 13:1070773. [PMID: 36532431 PMCID: PMC9751450 DOI: 10.3389/fmicb.2022.1070773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Over the past few decades, there has been a noticeable surge in the market of plant-based meat analogs (PBMA). Such popularity stems from their environmentally friendly production procedures as well as their positive health effects. In order to meet the market demand, it is necessary to look for plant protein processing techniques that can help them match the quality of conventional meat protein from the aspects of sensory, quality and functionality. Bean proteins are ideal options for PBMA with their easy accessibility, high nutrient-density and reasonable price. However, the high polyunsaturated lipids content of beans inevitably leads to the unpleasant beany flavor of soy protein products, which severely affects the promotion of soy protein-based PBMA. In order to solve this issue, various methods including bleaching, enzyme and fermentation etc. are developed. Among these, fermentation is widely investigated due to its high efficiency, less harm to the protein matrix, targeted performance and low budget. In addition, proper utilization of microbiome during the fermentation process not only reduces the unpleasant beany flavors, but also enhances the aroma profile of the final product. In this review, we provide a thorough and succinct overview of the mechanism underlying the formation and elimination of beany flavor with associated fermentation process. The pros and cons of typical fermentation technologies for removing beany flavors are discussed in alongside with their application scenarios. Additionally, the variations among different methods are compared in terms of the strains, fermentation condition, target functionality, matrix for application, sensory perception etc.
Collapse
Affiliation(s)
- Anqi Tao
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Hongyu Zhang
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Junnan Duan
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China,Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Yao Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Jianwei Li
- Macau Uni-Win Biotechnology Co., Ltd, Macau, Macau SAR, China
| | - Jieyu Huang
- Macau Uni-Win Biotechnology Co., Ltd, Macau, Macau SAR, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China,*Correspondence: Tian Zhong,
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China,Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China,Xi Yu,
| |
Collapse
|
14
|
Identification of Novel Bile Salt-Tolerant Genes in Lactobacillus Using Comparative Genomics and Its Application in the Rapid Screening of Tolerant Strains. Microorganisms 2022; 10:microorganisms10122371. [PMID: 36557624 PMCID: PMC9786149 DOI: 10.3390/microorganisms10122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Under bile salt treatment, strains display significant differences in their tolerance ability, suggesting the existence of diverse resistance mechanisms in Lactobacillus; however, the genes involved in this protective process are not fully understood. In this study, novel target genes associated with bile salt tolerance in Lactobacillus were identified using comparative genomics for PCR detection and the rapid screening of tolerant strains. The bile salt tolerance of 107 lactobacilli isolated from different origins was assessed, and 26 strains with comparatively large differences were selected for further comparative genomic analysis. Tolerant strains had 112 specific genes that were enriched in the phosphotransferase system, the two-component system, carbohydrate metabolism, and the ATP-binding cassette transporter. Six genes from Lactobacillus were cloned into the inducible lactobacillal expression vector pSIP403. Overexpression in the host strain increased its tolerance ability by 11.86-18.08%. The novel genes identified here can be used as targets to design primers for the rapid screening of bile salt-tolerant lactobacilli. Altogether, these results deepen our understanding of bile salt tolerance mechanisms in Lactobacillus and provide a basis for further rapid assessments of tolerant strains.
Collapse
|
15
|
Hossain TJ. Functional genomics of the lactic acid bacterium Limosilactobacillus fermentum LAB-1: metabolic, probiotic and biotechnological perspectives. Heliyon 2022; 8:e11412. [PMID: 36387576 PMCID: PMC9647476 DOI: 10.1016/j.heliyon.2022.e11412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
A genome-based systematic analysis was conducted to characterize the metabolic, probiotic, fitness, and safety properties of Limosilactobacillus fermentum LAB-1, a lactic acid bacterium demonstrating strong antimicrobial effects against clinical pathogens. Gene functional characterization revealed a large number of genes for carbohydrate metabolism and a heterofermentative system for carbon dissimilation. Genes for intact pyruvate oxidation, pentose phosphate, and PRPP biosynthetic pathways were identified. Substantial carbohydrate-active enzymes and transporters were also predicted. Metabolic reconstruction revealed complete sets of enzymes for arginine, lysine, methionine, threonine, proline, and ornithine biosynthesis. The bacterium harbors a diverse range of peptidases, and a large variety of peptide and amino acid uptake systems. It encodes restriction-modification and CRISPR-Cas systems for protection against phage infections and carries a wide spectrum of stress proteins for adaptation in the gut and industrial conditions. Genes related to the biosynthesis of B-group and K vitamins were identified allowing its application for novel bio-enriched food production. Other beneficial traits of probiotic and industrial importance such as production of flavor compounds, exopolysaccharide, acetoin, and butanediol were identified. Three antimicrobial peptides were predicted which showed >98% sequence-identity to experimentally validated bacteriocins. Negative traits such as transmissible antibiotic resistance, pathogenicity or virulence appeared to be absent suggesting the strain to be considered safe. The genome analysis will allow precisely targeted laboratory research and full exploitation of the probiotic potentials towards functional-food, biotechnology and health-related applications.
Collapse
Affiliation(s)
- Tanim Jabid Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
- Biochemistry and Pathogenesis of Microbes (BPM) Research Group, Chattogram, Bangladesh
| |
Collapse
|
16
|
Wang J, Wang T, Li Y, Fan Z, Lv Z, Liu L, Li X, Li B. Comparative genomic analysis of Lacticaseibacillus paracasei SMN-LBK from koumiss. Front Microbiol 2022; 13:1042117. [DOI: 10.3389/fmicb.2022.1042117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Lacticaseibacillus paracasei SMN-LBK, which was isolated in Xinjiang, has been shown to be a probiotic strain and used as the auxiliary starter for dairy fermentation. Comparative genomic analysis was performed to investigate the metabolic preference and ethanol tolerance mechanisms of L. paracasei SMN-LBK. The results of comparative genomics showed that L. paracasei strains had high conservation and genetic diversity. SMN-LBK encoded various genes related to carbohydrate and amino acid metabolism pathways, which endow this strain with good fermentation potential. In addition, 6 CRISPR sequences and 8 cas proteins were found in SMN-LBK, and these could play vital roles in the immune system. Furthermore, a unique cluster of potential secondary metabolism genes related to bacteriocins was detected in the genome of SMN-LBK, and this could be important for the preservation of fermented foods. Multiple genes related to alcohol tolerance were also identified. In conclusion, our study explained the traits that were previously demonstrated for SMN-LBK as phenotypes and provided a theoretical basis for the application of SMN-LBK in the food industry.
Collapse
|
17
|
Allaith SA, Abdel-aziz ME, Thabit ZA, Altemimi AB, Abd El-Ghany K, Giuffrè AM, Al-Manhel AJA, Ebrahim HS, Mohamed RM, Abedelmaksoud TG. Screening and Molecular Identification of Lactic Acid Bacteria Producing β-Glucan in Boza and Cider. FERMENTATION-BASEL 2022; 8:350. [DOI: 10.3390/fermentation8080350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The goal of this study was screening and molecular identification of Lactic Acid Bacteria (LAB) producing β-glucan from different species isolated from boza and cider compared to a standard strain for Lactobacillus rhamnosus NRRL 1937 (LGG). From 48 unknown isolates, four LAB strains were selected. Based on the NCBI database, their nomenclature was A3, B6, and C9 for Limosilactobacillus fermentum SH1, SH2, and SH3 along with D6 for Leuconostoc mesenteroides SH4. Also, their similarity values were 100%, 99.8%, 100%, and 100%, respectively. The potential of Exopolysaccharide (EPS) (as β-glucan) production for selected LAB strains by gtf gene, conventional PCR and gene expression using both LGG as a control and LAB 16S rRNA gene as a house-keeping gene was investigated. In addition, EPS (mg/100 mL), cell mass (mg/100 mL), pH, total carbohydrate%, total protein% and β-glucan% by the HPLC for all selected LAB isolates were studied. All results of genetic and chemical tests proved the superiority of B6 treatment for L. fermentum SH2. The results showed the superiority of B6 treatment in gtf gene expression (14.7230 ± 0.070-fold) followed by C9 and A3 treatments, which were 10.1730 ± 0.231-fold and 8.6139 ± 0.320-fold, respectively. while D6 treatment recorded the lowest value of gene expression (0.8566 ± 0.040-fold) compared to the control LGG (one-fold). The results also demonstrated that B6 treatment was superior to the other treatments in terms of EPS formation, with a value of 481 ± 1.00 mg/100 mL, followed by the C9 treatment at 440 ± 2.00 mg/100 mL, compared to the LGG (control) reaching 199.7 ± 3.51 mg/100 mL. Also, the highest % of quantitative and qualitative β-glucan in EPS was observed in B6 followed by C9, D6 and A3 which were 5.56 ± 0.01%, 4.46 ± 0.01%, 0.25 ± 0.008% and 0.12 ± 0.008%, respectively compared to control (0.31 ± 0.01%). Finally, the presented results indicate the importance of screening the local LAB isolates to obtain a superior strain for β-glucan production which will be introduced in a subsequent study under optimum conditions.
Collapse
|
18
|
Comparative genomics-based probiotic relevance of Limosilactobacillus fermentum KUB-D18. Gene 2022; 840:146747. [PMID: 35863716 DOI: 10.1016/j.gene.2022.146747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/25/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
Abstract
Limosilactobacillus fermentum KUB-D18 is a heterofermentative lactic acid bacterium that its potential probiotic relevance originally isolated from the chicken intestine. This study sequenced a whole-genome of L. fermentum KUB-D18 and annotated its genes and functions in relation to probiotic properties. As a result, the genome sequence of L. fermentum KUB-D18 approximately contained 2.02 Mbps with GC content of51.7%. After annotating the genome by integrated protein and pathway databases, 2,158 protein-encoding genes were majorly annotated for metabolisms of amino acids, carbohydrates and cofactors as well as vitamins which showed a versatile metabolic capability to gastrointestinal microhabitats. According to the comparative genome analysis of L. fermentum KUB-D18 and the other related strains, L. fermentum KUB-D18 showed common characteristics e.g., folate biosynthesis and bile salt hydrolase enzymes-related cholesterol lowering effect as well as a unique gene cluster involved in metabolism of L-ascorbic acid of L. fermentum KUB-D18. Taken together, L. fermentum KUB-D18 genome provides the genetic basis towards cellular capability for further elucidating the functional mechanisms of its probiotic properties. This study serves for designing desirable targets for the development of probiotic foods and feeds.
Collapse
|
19
|
Ksiezarek M, Grosso F, Ribeiro TG, Peixe L. Genomic diversity of genus Limosilactobacillus. Microb Genom 2022; 8. [PMID: 35838756 PMCID: PMC9455696 DOI: 10.1099/mgen.0.000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Limosilactobacillus (formerly Lactobacillus) contains multiple species considered to be adapted to vertebrates, yet their genomic diversity has not been explored. In this study, we performed comparative genomic analysis of Limosilactobacillus (22 species; 332 genomes) isolated from different niches, further focusing on human strains (11 species; 74 genomes) and their adaptation features to specific body sites. Phylogenomic analysis of Limosilactobacillus showed misidentification of some strains deposited in public databases and existence of putative novel Limosilactobacillus species. The pangenome analysis revealed a remarkable genomic diversity (only 1.3 % of gene clusters are shared), and we did not observe a strong association of the accessory genome with different niches. The pangenome of Limosilactobacillus reuteri and Limosilactobacillus fermentum was open, suggesting that acquisition of genes is still occurring. Although most Limosilactobacillus were predicted as antibiotic susceptible (83%), acquired antibiotic-resistance genes were common in L. reuteri from food-producing animals. Genes related to lactic acid isoform production (>95 %) and putative bacteriocins (70.2%) were identified in most Limosilactobacillus strains, while prophages (55.4%) and CRISPR-Cas systems (32.0%) were less prevalent. Among strains from human sources, several metabolic pathways were predicted as conserved and completed. Their accessory genome was highly variable and did not cluster according to different human body sites, with some exceptions (urogenital Limosilactobacillus vaginalis, Limosilactobacillus portuensis, Limosilactobacillus urinaemulieris and Limosilactobacillus coleohominis or gastrointestinal Limosilactobacillus mucosae). Moreover, we identified 12 Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues that were significantly enriched in strains from particular body sites. We concluded that evolution of the highly diverse Limosilactobacillus is complex and not always related to niche or human body site origin.
Collapse
Affiliation(s)
- Magdalena Ksiezarek
- Laboratory of Microbiology, UCIBIO – Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Filipa Grosso
- Laboratory of Microbiology, UCIBIO – Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Teresa Gonçalves Ribeiro
- Laboratory of Microbiology, UCIBIO – Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luísa Peixe
- Laboratory of Microbiology, UCIBIO – Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- *Correspondence: Luísa Peixe,
| |
Collapse
|
20
|
Wen ZT, Huang X, Ellepola K, Liao S, Li Y. Lactobacilli and human dental caries: more than mechanical retention. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35671222 DOI: 10.1099/mic.0.001196] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lactobacilli have been considered as major contributors to human dental caries for over a century. Recent in vitro model studies have shown that when compared to Streptococcus mutans, a keystone pathogen of human dental caries, the ability of lactobacilli to form biofilms is poor, although differences exist between the different major species. Further studies using molecular and bioinformatics approaches provide evidence that multiple mechanisms, including adhesin-receptor mediated physical contact with S. mutans, facilitate the adherence and establishment of lactobacilli on the tooth surface. There is also evidence that under conditions like continuous sugar consumption, weak acids and other antimicrobials such as bacteriocins from lactobacilli can become detrimental to the microbial community, especially those in the proximity. Details on the underlying mechanisms of how different Lactobacillus sp. establish and persist in the highly complex microbiota on the tooth surface await further investigation.
Collapse
Affiliation(s)
- Zezhang T Wen
- Department of Prosthodontics, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Xiaochang Huang
- Department of Prosthodontics, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Present address: Analysis and Testing Center, Nanchang University, 235 Nanjing East Load, Qingshan Lake District, Nanchang, PR China
| | - Kassapa Ellepola
- Department of Prosthodontics, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Present address: Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Sumei Liao
- Department of Prosthodontics, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Yihong Li
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornel University, Ithaca, NY, USA
| |
Collapse
|
21
|
Fischer E, Cayot N, Cachon R. Potential of Microorganisms to Decrease the "Beany" Off-Flavor: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4493-4508. [PMID: 35384667 DOI: 10.1021/acs.jafc.1c07505] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Vegetable proteins are in high demand due to current issues surrounding meat consumption and changes in eating habits, but they are still not accepted by consumers due to their strong bitterness, astringent taste, and "beany" off-flavor. This review aimed to give an overview of the "beany" off-flavor and the potential of microorganisms to decrease it. Twenty-six volatile compounds were identified from the literature as contributing to the "beany" off-flavor, and their formation pathways were identified in a legume matrix, pea. Biotechnological ways to improve the flavor by reducing these volatile compounds were then looked over. As aldehydes and ketones are the main type of compounds directly linked to the "beany" off-flavor, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) were focused on. By converting aldehyde and ketones into alcohols or carboxylic acids, these two enzymes have the potential to decrease the off-flavor. The presence of the two enzymes in a selection of microorganisms (Lactobacillus acidophilus, Limosilactobacillus fermentum, Lactiplantibacillus plantarum, Streptococcus thermophilus, Saccharomyces cerevisiae, and Gluconobacter suboxydans) was done with a catabolism and a bioinformatical study. Finally, the correlation between the presence of the enzyme and the efficacy to improve the flavor was investigated by comparison with the literature. The presence of ADH and/or ALDH in the strain metabolism seems linked to an odor improvement. Especially, a constitutive enzyme (ADH or ALDH) in the catabolism should give better results, showing that some fermentative types are more inclined to better the flavor. Obligatory fermentative strains, with a constitutive ADH, or acetic acid bacteria, with constitutive ADH and ALDH, show the best results and should be favored to reduce the amount of compounds involved in the "beany" off-flavor and diminish that off-flavor in legume proteins.
Collapse
Affiliation(s)
- Estelle Fischer
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Nathalie Cayot
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Rémy Cachon
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
22
|
Choi HJ, Jin YS, Lee WH. Effects of Engineered Saccharomyces cerevisiae Fermenting Cellobiose through Low-Energy-Consuming Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation. J Microbiol Biotechnol 2022; 32:117-125. [PMID: 34949751 PMCID: PMC9628822 DOI: 10.4014/jmb.2111.11047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Until recently, four types of cellobiose-fermenting Saccharomyces cerevisiae strains have been developed by introduction of a cellobiose metabolic pathway based on either intracellular β-glucosidase (GH1-1) or cellobiose phosphorylase (CBP), along with either an energy-consuming active cellodextrin transporter (CDT-1) or a non-energy-consuming passive cellodextrin facilitator (CDT-2). In this study, the ethanol production performance of two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-2 (N306I) with GH1-1 or CBP were compared with two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-1 (F213L) with GH1-1 or CBP in the simultaneous saccharification and fermentation (SSF) of cellulose under various conditions. It was found that, regardless of the SSF conditions, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the best ethanol production among the four strains. In addition, during SSF contaminated by lactic acid bacteria, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the highest ethanol production and the lowest lactate formation compared with those of other strains, such as the hydrolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-1 with GH1-1, and the glucose-fermenting S. cerevisiae with extracellular β-glucosidase. These results suggest that the cellobiose-fermenting yeast strain exhibiting low energy consumption can enhance the efficiency of the SSF of cellulosic biomass.
Collapse
Affiliation(s)
- Hyo-Jin Choi
- Department of Bioenergy Science and Technology, and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Corresponding authors Y.S. Jin Phone: +217-333-7981 Fax: +217-333-0508 E-mail:
| | - Won-Heong Lee
- Department of Bioenergy Science and Technology, and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea,Department of Food Science and Human Nutrition, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,
W.H. Lee Phone: +82-62-530-2046 Fax: +82-62-530-2047 E-mail:
| |
Collapse
|
23
|
Comparative Genomic Analysis of Stenotrophomonas maltophilia Strain W18 Reveals Its Adaptative Genomic Features for Degrading Polycyclic Aromatic Hydrocarbons. Microbiol Spectr 2021; 9:e0142021. [PMID: 34817285 PMCID: PMC8612148 DOI: 10.1128/spectrum.01420-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants that are ubiquitous in the environment. Numerous bacteria have evolved to have degrading genes or pathways to degrade PAHs. Stenotrophomonas maltophilia strain W18 was found to be able to degrade PAHs. Including 43 other complete genome sequences of S. maltophilia strains, we performed a comparative genomic analysis of 44 S. maltophilia strains by running OrthoFinder. A KEGG pathway enrichment analysis of environmental and clinical isolates of S. maltophilia revealed that environmental isolates tended to enhance gene functions such as "energy metabolism," "amino acid metabolism," "xenobiotic biodegradation and metabolism," and "folding, sorting, and degradation." The pangenome of the 44 S. maltophilia strains was open, while the core genome was estimated to reach a steady plateau. Based on gene annotations, we inferred that most of the degradation potential came from the core genome of S. maltophilia, while character genes and accessory genes also contributed to the degradation ability of S. maltophilia W18. The genes expression level of core genes, character genes and accessory genes were proved by RT-qPCR experiment, and accessory genes encoding alcohol dehydrogenase were upregulated most compared with genes with similar functions. We performed a credible comparative genomic analysis of S. maltophilia strains. S. maltophilia W18 was set as a model PAH-degrading bacterium of this species in this study, which would provide guidance for understanding and predicting the degradation mechanisms of other PAH-degrading S. maltophilia strains lacking complete genome data or waiting to be determined. IMPORTANCE This study provided the latest comparative genomic analysis on Stenotrophomonas maltophilia strains and focused on analyzing their genomic features that allow them to adapt to natural environments. In this study, we set S. maltophilia W18 as a typical PAH-degrading strain of this species. By discussing the genomic adaptative features of degrading PAH, we can predict genomic adaptative features of other S. maltophilia PAH-degrading strains since the core function of this species is stable. The gene functions of how S. maltophilia environmental isolates are enhanced for adaptation to various natural environments compared with clinical isolates have been revealed. Combined with a pangenome analysis and RT-qPCR results, we have proved that core genes, character genes, and accessory genes are all involved in PAH degradation. Accessory genes encoding alcohol dehydrogenase were upregulated most compared with core and character genes with similar functions, which suggests that PAH metabolization potential might be enhanced by horizontal gene transfer.
Collapse
|
24
|
Huang Z, Zhou X, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W. Comparative Genomics and Specific Functional Characteristics Analysis of Lactobacillus acidophilus. Microorganisms 2021; 9:microorganisms9091992. [PMID: 34576887 PMCID: PMC8464880 DOI: 10.3390/microorganisms9091992] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/26/2023] Open
Abstract
Lactobacillus acidophilus is a common kind of lactic acid bacteria usually found in the human gastrointestinal tract, oral cavity, vagina, and various fermented foods. At present, many studies have focused on the probiotic function and industrial application of L. acidophilus. Additionally, dozens of L. acidophilus strains have been genome sequenced, but there has been no research to compare them at the genomic level. In this study, 46 strains of L. acidophilus were performed comparative analyses to explore their genetic diversity. The results showed that all the L. acidophilus strains were divided into two clusters based on ANI values, phylogenetic analysis and whole genome comparison, due to the difference of their predicted gene composition of bacteriocin operon, CRISPR-Cas systems and prophages mainly. Additionally, L. acidophilus was a pan-genome open species with a difference in carbohydrates utilization, antibiotic resistance, EPS operon, surface layer protein operon and other functional gene composition. This work provides a better understanding of L. acidophilus from a genetic perspective, and offers a frame for the biotechnological potentiality of this species.
Collapse
Affiliation(s)
- Zheng Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingya Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China; (C.S.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Reynolds Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China; (C.S.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China; (C.S.); (R.P.R.)
- Correspondence: ; Tel.: +86-510-8591-2155
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr 2021; 63:2447-2479. [PMID: 34523363 DOI: 10.1080/10408398.2021.1976100] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sourdough production is an ancient method to ferment flour from cereals for the manufacturing of baked goods. This review deals with the state-of-the-art of current fermentation strategies for sourdough production and the microbial ecology of mature sourdoughs, with a particular focus on the use of non-flour ingredients. Flour fermentation processes for sourdough production are typically carried out by heterogeneous communities of lactic acid bacteria and yeasts. Acetic acid bacteria may also occur, although their presence and role in sourdough production can be criticized. Based on the inoculum used, sourdough productions can be distinguished in fermentation processes using backslopping procedures, originating from a spontaneously fermented flour-water mixture (Type 1), starter culture-initiated fermentation processes (Type 2), and starter culture-initiated fermentation processes that are followed by backslopping (Type 3). In traditional recipes for the initiation and/or propagation of Type 1 sourdough productions, non-flour ingredients are often added to the flour-water mixture. These ingredients may be the source of an additional microbial inoculum and/or serve as (co-)substrates for fermentation. An example of the former is the addition of yoghurt; an example of the latter is the use of fruit juices. The survival of microorganisms transferred from the ingredients to the fermenting flour-water mixture depends on the competitiveness toward particular strains of the microbial species present under the harsh conditions of the sourdough ecosystem. Their survival and growth is also determined by the presence of the appropriate substrates, whether or not carried over by the ingredients added.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
26
|
Gustaw K, Niedźwiedź I, Rachwał K, Polak-Berecka M. New Insight into Bacterial Interaction with the Matrix of Plant-Based Fermented Foods. Foods 2021; 10:1603. [PMID: 34359473 PMCID: PMC8304663 DOI: 10.3390/foods10071603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms have been harnessed to process raw plants into fermented foods. The adaptation to a variety of plant environments has resulted in a nearly inseparable association between the bacterial species and the plant with a characteristic chemical profile. Lactic acid bacteria, which are known for their ability to adapt to nutrient-rich niches, have altered their genomes to dominate specific habitats through gene loss or gain. Molecular biology approaches provide a deep insight into the evolutionary process in many bacteria and their adaptation to colonize the plant matrix. Knowledge of the adaptive characteristics of microorganisms facilitates an efficient use thereof in fermentation to achieve desired final product properties. With their ability to acidify the environment and degrade plant compounds enzymatically, bacteria can modify the textural and organoleptic properties of the product and increase the bioavailability of plant matrix components. This article describes selected microorganisms and their competitive survival and adaptation in fermented fruit and vegetable environments. Beneficial changes in the plant matrix caused by microbial activity and their beneficial potential for human health are discussed as well.
Collapse
Affiliation(s)
| | | | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (K.G.); (I.N.); (M.P.-B.)
| | | |
Collapse
|
27
|
de Jesus LCL, Drumond MM, Aburjaile FF, Sousa TDJ, Coelho-Rocha ND, Profeta R, Brenig B, Mancha-Agresti P, Azevedo V. Probiogenomics of Lactobacillus delbrueckii subsp. lactis CIDCA 133: In Silico, In Vitro, and In Vivo Approaches. Microorganisms 2021; 9:microorganisms9040829. [PMID: 33919849 PMCID: PMC8070793 DOI: 10.3390/microorganisms9040829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA 133 (CIDCA 133) has been reported as a potential probiotic strain, presenting immunomodulatory properties. This study investigated the possible genes and molecular mechanism involved with a probiotic profile of CIDCA 133 through a genomic approach associated with in vitro and in vivo analysis. Genomic analysis corroborates the species identification carried out by the classical microbiological method. Phenotypic assays demonstrated that the CIDCA 133 strain could survive acidic, osmotic, and thermic stresses. In addition, this strain shows antibacterial activity against Salmonella Typhimurium and presents immunostimulatory properties capable of upregulating anti-inflammatory cytokines Il10 and Tgfb1 gene expression through inhibition of Nfkb1 gene expression. These reported effects can be associated with secreted, membrane/exposed to the surface and cytoplasmic proteins, and bacteriocins-encoding genes predicted in silico. Furthermore, our results showed the genes and the possible mechanisms used by CIDCA 133 to produce their beneficial host effects and highlight its use as a probiotic microorganism.
Collapse
Affiliation(s)
- Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Mariana Martins Drumond
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte 31421-169, Brazil;
| | - Flávia Figueira Aburjaile
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Thiago de Jesus Sousa
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Nina Dias Coelho-Rocha
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Rodrigo Profeta
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, D-37077 Göttingen, Germany;
| | | | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Correspondence:
| |
Collapse
|
28
|
García Arteaga V, Leffler S, Muranyi I, Eisner P, Schweiggert-Weisz U. Sensory profile, functional properties and molecular weight distribution of fermented pea protein isolate. Curr Res Food Sci 2020; 4:1-10. [PMID: 33385169 PMCID: PMC7771043 DOI: 10.1016/j.crfs.2020.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022] Open
Abstract
Pea protein isolate (PPI, from Pisum sativum L.) was fermented with six different lactic acid bacteria strains for 24 h and 48 h. The fermented samples were analyzed regarding their retronasal aroma and taste, their protein solubility, emulsifying and foaming capacity. Changes in the molecular weight distribution were analyzed to monitor potential effects of fermentation on the main allergenic protein fractions of PPI. After 24-h fermentation, PPI's characteristic aroma attributes and bitter taste decreased for all fermented PPI. However, after 48-h fermentation, cheesy aroma, and acid and salty tastes were increased. The PPI fermented with L. plantarum showed the most neutral taste and the panel's highest preference; instead, fermentation with L. fermentum led to a fecal aroma and was the least preferred. The protein solubility and emulsifying capacity decreased after PPI fermentation, while foaming capacity remained constant in comparison to the untreated PPI. The electrophoretic results showed a reduction in the intensity of the allergenic protein fractions; however, these changes might be attributed to the reduced protein solubility rather than to a high proteolytic effect of the strains. Fermentation of PPI for 24 h and 48 h might not be a suitable method for the production of highly functional pea proteins. Further modification methods have to be investigated in the future.
Collapse
Affiliation(s)
- Verónica García Arteaga
- Fraunhofer Institute for Process Engineering and Packaging IVV, Germany
- Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Germany
| | - Sophia Leffler
- Fraunhofer Institute for Process Engineering and Packaging IVV, Germany
| | - Isabel Muranyi
- Fraunhofer Institute for Process Engineering and Packaging IVV, Germany
| | - Peter Eisner
- Fraunhofer Institute for Process Engineering and Packaging IVV, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Germany
- Steinbeis-Hochschule, School of Technology and Engineering, Germany
| | | |
Collapse
|
29
|
Comasio A, Van Kerrebroeck S, Harth H, Verté F, De Vuyst L. Potential of Bacteria from Alternative Fermented Foods as Starter Cultures for the Production of Wheat Sourdoughs. Microorganisms 2020; 8:E1534. [PMID: 33036188 PMCID: PMC7599913 DOI: 10.3390/microorganisms8101534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 01/31/2023] Open
Abstract
Microbial strains for starter culture-initiated sourdough productions are commonly isolated from a fermenting flour-water mixture. Yet, starter culture strains isolated from matrices other than sourdoughs could provide the dough with interesting metabolic properties and hence change the organoleptic properties of the concomitant breads. Furthermore, the selection of sourdough starter cultures does not need to be limited to lactic acid bacteria (LAB), as other food-grade microorganisms are sometimes found in sourdoughs. Therefore, different strains belonging to LAB, acetic acid bacteria (AAB), and coagulase-negative staphylococci (CNS) that originated from different fermented food matrices (fermenting cocoa pulp-bean mass, fermented sausage, and water kefir), were examined as to their prevalence in a wheat sourdough ecosystem during 72-h fermentations. Limosilactobacillus fermentum IMDO 222 (fermented cocoa pulp-bean mass isolate) and Latilactobacillus sakei CTC 494 (fermented sausage isolate) seemed to be promising candidates as sourdough starter culture strains, as were the AAB strains Acetobacter pasteurianus IMDO 386B and Gluconobacter oxydans IMDO A845 (both isolated from fermented cocoa pulp-bean mass), due to their competitiveness in the wheat flour-water mixtures. Wheat breads made with G. oxydans IMDO A845 sourdoughs were significantly darker than reference wheat breads.
Collapse
Affiliation(s)
- Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium; (A.C.); (S.V.K.); (H.H.)
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium; (A.C.); (S.V.K.); (H.H.)
| | - Henning Harth
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium; (A.C.); (S.V.K.); (H.H.)
| | - Fabienne Verté
- Puratos NV, Industrialaan 25, 1702 Groot-Bijgaarden, Belgium;
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium; (A.C.); (S.V.K.); (H.H.)
| |
Collapse
|