1
|
Xie D, Lei Y, Sun Y, Li X, Zheng J. Regulation of fructose levels on carbon flow and metabolites in yeast during food fermentation. FOOD SCI TECHNOL INT 2025; 31:69-82. [PMID: 37259509 DOI: 10.1177/10820132231179495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, the effects of fructose levels on yeast growth, metabolic pathways and products, and redox status were investigated by simulated dough medium. The results showed that yeast was subjected to oxidative stress and damage under both sugar-free and high-fructose conditions. Yeast has a strong ability to metabolize pentose phosphate, trehalose, and tricarboxylic acid under sugar-free conditions. In the high fructose environment, yeast preferentially produced trehalose and glycerol in the early stage and gradually increased the metabolism of pentose phosphate in the later stage. Compared with the low fructose concentration, yeast had stronger pentose phosphate and tricarboxylic acid cycle (TCA) metabolism to ensure nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP) content in higher fructose levels. Therefore, sugar-free and high fructose levels affected the growth of yeast cells and yeast responded to fructose levels by regulating the metabolic carbon flow of glycolysis, pentose phosphate, trehalose, and TCA.
Collapse
Affiliation(s)
- Dongdong Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Yanan Lei
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Yingqi Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Xing Li
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Jiaxin Zheng
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Xiao X, Liu Q, Zhang Q, Yan Z, Cai D, Li X. Exogenous Trehalose Assists Zygosaccharomyces rouxii in Resisting High-Temperature Stress Mainly by Activating Genes Rather than Entering Metabolism. J Fungi (Basel) 2024; 10:842. [PMID: 39728338 DOI: 10.3390/jof10120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Zygosaccharomyces rouxii is a typical aroma-producing yeast in food brewing, but it has low heat resistance and poor proliferation ability at high temperature. Trehalose is generally considered to be a protective agent that helps stable yeast cells resist heat shock stress, but its functional mechanism for yeast cells in the adaptation period under heat stress is unclear. In this study, the physiological metabolism changes, specific gene transcription expression characteristics, and transcriptome differences of Z. rouxii under different carbon sources under high-temperature stress (40 °C) were compared to explore the mechanism of trehalose inducing Z. rouxii to recover and proliferate under high-temperature stress during the adaptation period. The results showed that high concentration of trehalose (20% Tre) could not be used as the main carbon source for the proliferation of Z. rouxii under long-term high-temperature stress, but it helped to maintain the stability of the cell population. The intracellular trehalose of Z. rouxii was mainly derived from the synthesis and metabolism of intracellular glucose, and the extracellular acetic acid concentration showed an upward trend with the improvement of yeast growth. A high concentration of trehalose (20% Tre) can promote the expression of high glucose receptor gene GRT2 (12.0-fold) and induce the up-regulation of HSF1 (27.1-fold), MSN4 (58.9-fold), HXK1 (8.3-fold), and other signal transduction protein genes, and the increase of trehalose concentration will maintain the temporal up-regulation of these genes. Transcriptome analysis showed that trehalose concentration and the presence of glucose had a significant effect on the gene expression of Z. rouxii under high-temperature stress. In summary, trehalose assists Z. rouxii in adapting to high temperature by changing gene expression levels, and assists Z. rouxii in absorbing glucose to achieve cell proliferation.
Collapse
Affiliation(s)
- Xiong Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Quan Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Qian Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Zhenzhen Yan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430068, China
| | - Xin Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
3
|
Hua S, Wang Y, Wang L, Zhou Q, Li Z, Liu P, Wang K, Zhu Y, Han D, Yu Y. Regulatory mechanisms of acetic acid, ethanol and high temperature tolerances of acetic acid bacteria during vinegar production. Microb Cell Fact 2024; 23:324. [PMID: 39614240 PMCID: PMC11607832 DOI: 10.1186/s12934-024-02602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
Acetic acid bacteria (AAB) play a pivotal role in the food fermentation industry, especially in vinegar production, due to their ability to partially oxidize alcohols to acetic acid. However, economic bioproduction using AAB is challenged by harsh environments during acetic acid fermentation, among which initial ethanol pressure, subsequent acetic acid pressure, and consistently high temperatures are common experiences. Understanding the stress-responsive mechanisms is essential to developing robust AAB strains. Here, we review recent progress in mechanisms underlying AAB stress response, including changes in cell membrane composition, increased activity of membrane-bound enzymes, activation of efflux systems, and the upregulation of stress response molecular chaperones. We also discuss the potential of advanced technologies, such as global transcription machinery engineering (gTME) and Design-Build-Test-Learn (DBTL) approach, to enhance the stress tolerance of AAB, aiming to improve vinegar production.
Collapse
Affiliation(s)
- Shengkai Hua
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Leyi Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Qinxuan Zhou
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Zhitao Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
4
|
Xie D, Zheng J, Sun Y, Li X, Ren S. Effects of Ca 2+ signal on the activities of key enzymes and expression of related genes in yeast ethanol metabolism and mitochondrial function during high sugar fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5077-5088. [PMID: 38284794 DOI: 10.1002/jsfa.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND During high sugar fermentation, yeast is mainly affected by high sugar stress in the early stage. It becomes jointly affected by high sugar and ethanol stress as ethanol accumulates during fermentation. Ca2+, as the second messenger of the cell, mediates various metabolic processes. In this study, the effects of the Ca2+ signal on the activities of key enzymes, expression of related genes of ethanol metabolism, and mitochondrial function were investigated. RESULTS The results showed a significant increase in the activities of enzymes related to ethanol metabolism in yeast cells under a high sugar environment. Ca2+ significantly promoted the activities of enzymes related to mitochondrial respiratory metabolism and regulated the carbon flow between ethanol metabolism and the tricarboxylic acid cycle. The high sugar environment affected the expression of genes related to carbon metabolism, while the addition of Ca2+ stabilized the expression of related genes. CONCLUSION Ca2+ signal participated in ethanol and mitochondrial metabolism and regulated the key enzymes and related gene expression to enhance the resistance of yeast to stress during high sugar fermentation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Xie
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jiaxin Zheng
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing Li
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
5
|
Chen Y, Yang Y, Cai W, Zeng J, Liu N, Wan Y, Fu G. Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process. Crit Rev Food Sci Nutr 2023; 63:12308-12323. [PMID: 35848108 DOI: 10.1080/10408398.2022.2101090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Saccharomyces cerevisiae plays a decisive role in the brewing of alcohol products, and the ideal growth and fermentation characteristics can give the pure flavor of alcohol products. However, S. cerevisiae can be affected profoundly by environmental factors during the brewing process, which have negative effects on the growth and fermentation characteristics of S. cerevisiae, and seriously hindered the development of brewing industry. Therefore, we summarized the environmental stress factors (ethanol, organic acids, temperature and osmotic pressure) that affect S. cerevisiae during the brewing process. Their impact mechanisms and the metabolic adaption of S. cerevisiae in response to these stress factors. Of note, S. cerevisiae can increase the ability to resist stress factors by changing the cell membrane components, expressing transcriptional regulatory factors, activating the anti-stress metabolic pathway and enhancing ROS scavenging ability. Meantime, the strategies and methods to improve the stress- tolerant ability of S. cerevisiae during the brewing process were also introduced. Compared with the addition of exogenous anti-stress substances, mutation breeding and protoplast fusion, it appears that adaptive evolution and genetic engineering are able to generate ideal environmental stress tolerance strains of S. cerevisiae and are more in line with the needs of the current brewing industry.
Collapse
Affiliation(s)
- Yanru Chen
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering & Biotechnology, Taizhou, PR China
| | - Wenqin Cai
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Jiali Zeng
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Na Liu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| |
Collapse
|
6
|
Chang L, Chen H, Yang B, Chen H, Chen W. Redistributing Carbon Flux by Impairing Saccharide Synthesis to Enhance Lipid Yield in Oleaginous Fungus Mortierella alpina. ACS Synth Biol 2023; 12:1750-1760. [PMID: 37166287 DOI: 10.1021/acssynbio.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Increasing carbon flux toward target metabolites is important in improving microbial productivity and economic value. To improve the efficiency of lipid production in Mortierella alpina, we knocked down genes for trehalose-6-phosphate synthetase (Matps) and phosphoenolpyruvate carboxykinase (Mapepck) in the major pathways for saccharide synthesis. The knockdown of Matps reduced trehalose content by an average of 31.87%, while the knockdown of Mapepck reduced the total saccharide content by 28.6%, and both recombinant strains showed more than 20% increased lipid yield. Trehalose plays a vital role in stress resistance, but a higher polyunsaturated fatty acid-rich lipid content was found to partly compensate for the loss of trehalose after Matps knockdown. As compared with Matps knockdown, the knockdown of Mapepck gave better lipid production by bringing forward the time to maximum lipid yield by three days in a scale-up test. The arachidonic acid yield after the Mapepck knockdown reached 1.23 g/L, which was 39.9% higher than that of the original strain. The present research provided an efficient strategy for redistributing carbon flux among different metabolites and therefore promoted microbial lipid yield in a shorter fermentation period.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hanqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Centre for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
7
|
Zhang Y, van der Zee L, Barberis M. Two-way communication between cell cycle and metabolism in budding yeast: what do we know? Front Microbiol 2023; 14:1187304. [PMID: 37396387 PMCID: PMC10309209 DOI: 10.3389/fmicb.2023.1187304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Coordination of cell cycle and metabolism exists in all cells. The building of a new cell is a process that requires metabolic commitment to the provision of both Gibbs energy and building blocks for proteins, nucleic acids, and membranes. On the other hand, the cell cycle machinery will assess and regulate its metabolic environment before it makes decisions on when to enter the next cell cycle phase. Furthermore, more and more evidence demonstrate that the metabolism can be regulated by cell cycle progression, as different biosynthesis pathways are preferentially active in different cell cycle phases. Here, we review the available literature providing a critical overview on how cell cycle and metabolism may be coupled with one other, bidirectionally, in the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yanfei Zhang
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Lucas van der Zee
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Matteo Barberis
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
8
|
Shen D, He X, Weng P, Liu Y, Wu Z. A review of yeast: High cell-density culture, molecular mechanisms of stress response and tolerance during fermentation. FEMS Yeast Res 2022; 22:6775076. [PMID: 36288242 DOI: 10.1093/femsyr/foac050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/21/2022] [Accepted: 10/22/2022] [Indexed: 01/07/2023] Open
Abstract
Yeast is widely used in the fermentation industry, and the major challenges in fermentation production system are high capital cost and low reaction rate. High cell-density culture is an effective method to increase the volumetric productivity of the fermentation process, thus making the fermentation process faster and more robust. During fermentation, yeast is subjected to various environmental stresses, including osmotic, ethanol, oxidation, and heat stress. To cope with these stresses, yeast cells need appropriate adaptive responses to acquire stress tolerances to prevent stress-induced cell damage. Since a single stressor can trigger multiple effects, both specific and nonspecific effects, general and specific stress responses are required to achieve comprehensive protection of cells. Since all these stresses disrupt protein structure, the upregulation of heat shock proteins and trehalose genes is induced when yeast cells are exposed to stress. A better understanding of the research status of yeast HCDC and its underlying response mechanism to various stresses during fermentation is essential for designing effective culture control strategies and improving the fermentation efficiency and stress resistance of yeast.
Collapse
Affiliation(s)
- Dongxu Shen
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Xiaoli He
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
9
|
Xie D, Sun Y, Lei Y. Effect of glucose levels on carbon flow rate, antioxidant status, and enzyme activity of yeast during fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5333-5347. [PMID: 35318660 DOI: 10.1002/jsfa.11887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The physiological metabolism of yeast has a significant impact on the quality of fermentation products. The present study aimed to investigate yeast metabolism in response to a changing glucose content environment, especially in fermentation products, as well as the change of carbon flow rate, antioxidant status, and yeast enzyme activity. RESULTS Yeast in a 0 g L-1 glucose level was subjected to carbon starvation stress, cell growth retardation and cell proliferation was significantly inadequate; in the logarithmic growth stage of yeast, at a 30 g L-1 glucose level, the carbon source mainly flowed to tricarboxylic acid cycle and pentose phosphate metabolism, cell division, proliferation, and increased cell growth. In later logarithmic growth period and stable period, carbon flowed into glycerol and trehalose metabolism, to cope with the environmental stress; yeast in 60 and 150 g L-1 glucose levels faced high glucose stress at the beginning, the content of reactive oxygen increased, malondialdehyde content increased, cell damage was reduced through the regulation of superoxide dismutase and catalase enzyme activities, and most of the carbon flowed into the metabolic pathway of ethanol, glycerol, and trehalose to cope with high glucose stress, the pentose phosphate pathway showed a large late influx, and NADPH also started to increase rapidly after 24 h. CONCLUSION Yeast was stressed in a high-sugar environment and ensured the activity of yeast by preferentially increasing the metabolic intensity of trehalose, glycerol, and glycolytic metabolism, weakening tricarboxylic acid metabolism, and first weakening and then increasing pentose phosphate metabolism. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yanan Lei
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
10
|
NTH2 1271_1272delTA Gene Disruption Results in Salt Tolerance in Saccharomyces cerevisiae. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Trehalose is a common energy reservoir, and its accumulation results in osmotic protection. This sugar can accumulate through its synthesis or slow degradation of the reservoir by trehalase enzymes. Saccharomyces cerevisiae contains two neutral trehalases, NTH1 and NTH2, responsible for 75% and 25% of the enzymatic metabolism. We were interested in the loss-of-function of both enzymes with CRISPR/Cas9. The later NTH2 was of great importance since it is responsible for minor metabolic degradation of this sugar. It was believed that losing its functionality results in limited osmotic protection. We constructed an osmotolerant superior yeast capable of growing in 0.85 M NaCl after independent nth2 1271_1272delTA mutation by CRISPR/Cas9 technology, compared with nth1 893_894insT and wild type. We suggest that this yeast model could give clues to breeding commercial yeast resulting in non-GMO salinity-tolerant strains.
Collapse
|
11
|
Transcriptomics Analysis of Primordium Formation in Pleurotus eryngii. Genes (Basel) 2021; 12:genes12121863. [PMID: 34946812 PMCID: PMC8700867 DOI: 10.3390/genes12121863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/17/2023] Open
Abstract
Primordium formation is an important stage preceding the growth and development of the Pleurotus eryngii fruiting body. However, the molecular mechanisms underlying primordium formation remain unclear. In the present study, comparative transcriptomics was performed between mature mycelia and primordium to analyze the transcriptional properties during primordium formation in P. eryngii. A total of 19,655 differentially expressed genes (10,718 upregulated genes and 8937 downregulated genes) were identified. These differentially expressed genes were involved in cell wall degradation, carbohydrate hydrolysis, light perception, and cAMP signal transduction. These results aid further understanding of the transcriptional changes and the molecular processes underlying primordium formation and differentiation, which may lay the foundation for improving the cultivation and quality control of P. eryngii.
Collapse
|
12
|
Zhang G, Qi Q, Sadiq FA, Wang W, He X, Wang W. Proteomic Analysis Explores Interactions between Lactiplantibacillus plantarum and Saccharomyces cerevisiae during Sourdough Fermentation. Microorganisms 2021; 9:microorganisms9112353. [PMID: 34835478 PMCID: PMC8620635 DOI: 10.3390/microorganisms9112353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
Sourdough is a fermentation culture which is formed following metabolic activities of a multiple bacterial and fungal species on raw dough. However, little is known about the mechanism of interaction among different species involved in fermentation. In this study, Lactiplantibacillus plantarum Sx3 and Saccharomyces cerevisiae Sq7 were selected. Protein changes in sourdough, fermented with single culture (either Sx3 or Sq7) and mixed culture (both Sx3 and Sq7), were evaluated by proteomics. The results show that carbohydrate metabolism in mixed-culture-based sourdough is the most important metabolic pathway. A greater abundance of L-lactate dehydrogenase and UDP-glucose 4-epimerase that contribute to the quality of sourdough were observed in mixed-culture-based sourdough than those produced by a single culture. Calreticulin, enolase, seryl-tRNA synthetase, ribosomal protein L23, ribosomal protein L16, and ribosomal protein L5 that are needed for the stability of proteins were increased in mixed-culture-based sourdough. The abundance of some compounds which play an important role in enhancing the nutritional characteristics and flavour of sourdough (citrate synthase, aldehyde dehydrogenase, pyruvate decarboxylase, pyruvate dehydrogenase E1 and acetyl-CoA) was decreased. In summary, this approach provided new insights into the interaction between L. plantarum and S. cerevisiae in sourdough, which may serve as a base for further research into the detailed mechanism.
Collapse
Affiliation(s)
- Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (Q.Q.); (W.W.); (X.H.)
- Correspondence: (G.Z.); (W.W.); Tel.: +86-15513091052 (G.Z.); +86-13738132996 (W.W.)
| | - Qianhui Qi
- School of Life Science, Shanxi University, Taiyuan 030006, China; (Q.Q.); (W.W.); (X.H.)
| | - Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214000, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214000, China
| | - Wei Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (Q.Q.); (W.W.); (X.H.)
| | - Xiaxia He
- School of Life Science, Shanxi University, Taiyuan 030006, China; (Q.Q.); (W.W.); (X.H.)
| | - Wei Wang
- Institute of Agr-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Correspondence: (G.Z.); (W.W.); Tel.: +86-15513091052 (G.Z.); +86-13738132996 (W.W.)
| |
Collapse
|
13
|
Yan ZY, Zhao MR, Huang CY, Zhang LJ, Zhang JX. Trehalose alleviates high-temperature stress in Pleurotus ostreatus by affecting central carbon metabolism. Microb Cell Fact 2021; 20:82. [PMID: 33827585 PMCID: PMC8028756 DOI: 10.1186/s12934-021-01572-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background Trehalose, an intracellular protective agent reported to mediate defense against many stresses, can alleviate high-temperature-induced damage in Pleurotus ostreatus. In this study, the mechanism by which trehalose relieves heat stress was explored by the addition of exogenous trehalose and the use of trehalose-6-phosphate synthase 1 (tps1) overexpression transformants. Results The results suggested that treatment with exogenous trehalose or overexpression of tps1 alleviated the accumulation of lactic acid under heat stress and downregulated the expression of the phosphofructokinase (pfk) and pyruvate kinase (pk) genes, suggesting an ameliorative effect of trehalose on the enhanced glycolysis in P. ostreatus under heat stress. However, the upregulation of hexokinase (hk) gene expression by trehalose indicated the involvement of the pentose phosphate pathway (PPP) in heat stress resistance. Moreover, treatment with exogenous trehalose or overexpression of tps1 increased the gene expression level and enzymatic activity of glucose-6-phosphate dehydrogenase (g6pdh) and increased the production of both the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), confirming the effect of trehalose on alleviating oxidative damage by enhancing PPP in P. ostreatus under heat stress. Furthermore, treatment with exogenous trehalose or overexpression of tps1 ameliorated the decrease in the oxygen consumption rate (OCR) caused by heat stress, suggesting a relationship between trehalose and mitochondrial function under heat stress. Conclusions Trehalose alleviates high-temperature stress in P. ostreatus by inhibiting glycolysis and stimulating PPP activity. This study may provide further insights into the heat stress defense mechanism of trehalose in edible fungi from the perspective of intracellular metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01572-9.
Collapse
Affiliation(s)
- Zhi-Yu Yan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Meng-Ran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Chen-Yang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Li-Jiao Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Jin-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
14
|
Mannitol and erythritol reduce the ethanol yield during Chinese Baijiu production. Int J Food Microbiol 2020; 337:108933. [PMID: 33181418 DOI: 10.1016/j.ijfoodmicro.2020.108933] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/17/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
Chinese Baijiu is prepared using multiple microbial strains and complex metabolites by simultaneous saccharification and fermentation (SSF). Yeasts are challenged by various endogenous and exogenous factors, detrimentally affecting the ethanol yield. It is imperative to identify and control inhibitory factors. In the present study, microbial taxa and metabolites during Baijiu fermentation were evaluated to identify inhibitors of ethanol production. We found that filamentous fungi and Bacillus, contributing to saccharification, were negatively related to the ethanol content (Spearman's |ρ| > 0.5, P < 0.05). To explore how they affect ethanol production, ten filamentous fungi and three Bacillus strains were isolated. In addition to glucose and maltose, polyols were simultaneously generated by filamentous fungi and Bacillus via the hydrolysis of starch, among which mannitol and erythritol had the highest contents of up to 41.56 ± 2.01 g/kg and 16.16 ± 1.13 g/kg, respectively. The presence of mannitol and erythritol inhibited ethanol production by the functional yeasts Saccharomyces cerevisiae and Pichia kudriavzevii. The presence of 10.0 g/L mannitol significantly (P < 0.01) decreased the ethanol yield of S. cerevisiae by 12.67% (from 39.34 ± 0.02% to 32.71 ± 0.49%). These results revealed that polyols may inhibit the production of Baijiu and other fermented foods, suggesting that the origin and influence of polyols should be a focus of future research.
Collapse
|