1
|
Yamamoto E, Tooyama E, Honme Y. Role of fumarate reductase on the fermentation properties of Lactobacillus delbrueckii ssp. bulgaricus. J Dairy Sci 2024; 107:3443-3450. [PMID: 38216036 DOI: 10.3168/jds.2023-24091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/02/2023] [Indexed: 01/14/2024]
Abstract
Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus are symbiotic starters widely used in yogurt fermentation. They exchange metabolites to meet their nutritional demands during fermentation, promoting mutual growth. Although S. thermophilus produces fumaric acid, and the addition of fumaric acid has been shown to promote the growth of L. bulgaricus monoculture, whether fumaric acid produced by S. thermophilus is used by L. bulgaricus during coculture remains unclear. Furthermore, the importance of fumaric acid metabolism in the growth of L. bulgaricus is yet to be elucidated. Therefore, in this study, we investigated the importance of fumaric acid metabolism in L. bulgaricus monocultures and coculture with S. thermophilus. We deleted the fumarate reductase gene (frd), which is responsible for the metabolism of fumaric acid to succinic acid, in L. bulgaricus strains 2038 and NCIMB 701373. Both Δfrd strains exhibited longer fermentation times than their parent strains, and fumaric acid was metabolized to malic acid rather than succinic acid. Coculture of Δfrd strains with S. thermophilus 1131 also resulted in a longer fermentation time, and the accumulation of malic acid was observed. These results indicated that fumaric acid produced by S. thermophilus is used by L. bulgaricus as a symbiotic substance during yogurt fermentation and that the metabolism of fumaric acid to succinic acid by fumarate reductase is a key factor determining the fermentation ability of L. bulgaricus.
Collapse
Affiliation(s)
- Eri Yamamoto
- Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Nanakuni, Hachioji, Tokyo 192-0919, Japan.
| | - Emi Tooyama
- Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Yoshiko Honme
- Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Nanakuni, Hachioji, Tokyo 192-0919, Japan
| |
Collapse
|
2
|
Hoseinifar SH, Maradonna F, Faheem M, Harikrishnan R, Devi G, Ringø E, Van Doan H, Ashouri G, Gioacchini G, Carnevali O. Sustainable Ornamental Fish Aquaculture: The Implication of Microbial Feed Additives. Animals (Basel) 2023; 13:ani13101583. [PMID: 37238012 DOI: 10.3390/ani13101583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Ornamental fish trade represents an important economic sector with an export turnover that reached approximately 5 billion US dollars in 2018. Despite its high economic importance, this sector does not receive much attention. Ornamental fish husbandry still faces many challenges and losses caused by transport stress and handling and outbreak of diseases are still to be improved. This review will provide insights on ornamental fish diseases along with the measures used to avoid or limit their onset. Moreover, this review will discuss the role of different natural and sustainable microbial feed additives, particularly probiotics, prebiotics, and synbiotics on the health, reduction in transport stress, growth, and reproduction of farmed ornamental fish. Most importantly, this review aims to fill the informational gaps existing in advanced and sustainable practices in the ornamental fish production.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Mehwish Faheem
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti 621007, Tamil Nadu, India
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, N9019 Tromsø, Norway
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ghasem Ashouri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
3
|
Alexander LM, van Pijkeren JP. Modes of therapeutic delivery in synthetic microbiology. Trends Microbiol 2023; 31:197-211. [PMID: 36220750 PMCID: PMC9877134 DOI: 10.1016/j.tim.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 02/03/2023]
Abstract
For decades, bacteria have been exploited as vectors for vaccines and therapeutics. However, the bacterial arsenal used has historically been limited to a few strains. Advancements in immunology, combined with the development of genetic tools, have expanded our strategies and capabilities to engineer bacteria using various delivery strategies. Depending on the application, each delivery strategy requires specific considerations, optimization, and safety concerns. Here, we review various modes of therapeutic delivery used to target or vaccinate against a variety of ailments in preclinical models and in clinical trials. We highlight modes of bacteria-derived delivery best suited for different applications. Finally, we discuss current obstacles in bacteria-derived therapies and explore potential improvements of the various modes of therapeutic delivery.
Collapse
Affiliation(s)
- Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan-Peter van Pijkeren
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA; Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Liu Y, Charamis N, Boeren S, Blok J, Lewis AG, Smid EJ, Abee T. Physiological Roles of Short-Chain and Long-Chain Menaquinones (Vitamin K2) in Lactococcus cremoris. Front Microbiol 2022; 13:823623. [PMID: 35369466 PMCID: PMC8965153 DOI: 10.3389/fmicb.2022.823623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/17/2022] [Indexed: 01/07/2023] Open
Abstract
Lactococcus cremoris and L. lactis are well known for their occurrence and applications in dairy fermentations, but their niche extends to a range of natural and food production environments. L. cremoris and L. lactis produce MKs (vitamin K2), mainly as the long-chain forms represented by MK-9 and MK-8, and a detectable number of short-chain forms represented by MK-3. The physiological significance of the different MK forms in the lifestyle of these bacterial species has not been investigated extensively. In this study, we used L. cremoris MG1363 to construct mutants producing different MK profiles by deletion of genes encoding (i) a menaquinone-specific isochorismate synthase, (ii) a geranyltranstransferase, and (iii) a prenyl diphosphate synthase. These gene deletions resulted in (i) a non-MK producer (ΔmenF), (ii) a presumed MK-1 producer (ΔispA), and (iii) an MK-3 producer (Δllmg_0196), respectively. By examining the phenotypes of the MG1363 wildtype strain and respective mutants, including biomass accumulation, stationary phase survival, oxygen consumption, primary metabolites, azo dye/copper reduction, and proteomes, under aerobic, anaerobic, and respiration-permissive conditions, we could infer that short-chain MKs like MK-1 and MK-3 are preferred to mediate extracellular electron transfer and reaction with extracellular oxygen, while the long-chain MKs like MK-9 and MK-8 are more efficient in aerobic respiratory electron transport chain. The different electron transfer routes mediated by short-chain and long-chain MKs likely support growth and survival of L. cremoris in a range of (transiently) anaerobic and aerobic niches including food fermentations, highlighting the physiological significance of diverse MKs in L. cremoris.
Collapse
Affiliation(s)
- Yue Liu
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Nikolaos Charamis
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Joost Blok
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
5
|
Hu J, Park JH, Kim IH. Effect of dietary supplementation with Lactobacillus plantarum on growth performance, fecal score, fecal microbial counts, gas emission and nutrient digestibility in growing pigs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Abstract
Electro-fermentation (EF) is an upcoming technology that can control the metabolism of exoelectrogenic bacteria (i.e., bacteria that transfer electrons using an extracellular mechanism). The fermenter consists of electrodes that act as sink and source for the production and movement of electrons and protons, thus generating electricity and producing valuable products. The conventional process of fermentation has several drawbacks that restrict their application and economic viability. Additionally, metabolic reactions taking place in traditional fermenters are often redox imbalanced. Almost all metabolic pathways and microbial strains have been studied, and EF can electrochemically control this. The process of EF can be used to optimize metabolic processes taking place in the fermenter by controlling the redox and pH imbalances and by stimulating carbon chain elongation or breakdown to improve the overall biomass yield and support the production of a specific product. This review briefly discusses microbe-electrode interactions, electro-fermenter designs, mixed-culture EF, and pure culture EF in industrial applications, electro methanogenesis, and the various products that could be hence generated using this process.
Collapse
|
7
|
Börner RA, Kandasamy V, Axelsen AM, Nielsen AT, Bosma EF. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol Lett 2019; 366:5251984. [PMID: 30561594 PMCID: PMC6322438 DOI: 10.1093/femsle/fny291] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022] Open
Abstract
This mini-review provides a perspective of traditional, emerging and future applications of lactic acid bacteria (LAB) and how genome editing tools can be used to overcome current challenges in all these applications. It also describes available tools and how these can be further developed, and takes current legislation into account. Genome editing tools are necessary for the construction of strains for new applications and products, but can also play a crucial role in traditional ones, such as food and probiotics, as a research tool for gaining mechanistic insights and discovering new properties. Traditionally, recombinant DNA techniques for LAB have strongly focused on being food-grade, but they lack speed and the number of genetically tractable strains is still rather limited. Further tool development will enable rapid construction of multiple mutants or mutant libraries on a genomic level in a wide variety of LAB strains. We also propose an iterative Design–Build–Test–Learn workflow cycle for LAB cell factory development based on systems biology, with ‘cell factory’ expanding beyond its traditional meaning of production strains and making use of genome editing tools to advance LAB understanding, applications and strain development.
Collapse
Affiliation(s)
- Rosa A Börner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Vijayalakshmi Kandasamy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Amalie M Axelsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Alex T Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Kigel N, Melnik I, Naumenko O. STUDY OF THE BIOTECHNOLOGICAL POTENTIAL OF SELECTED LACTIC ACID BACTERIA CULTURES. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.15673/fst.v12i4.1176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fermenting microflora has been selected by biotechnological activity markers, with various methodological approaches used, namely: directional selection, selection of bacteriophage-insensitive mutants, protoplast regeneration. The experimental data show a significant biotechnological potential of the selected lactic acid bacteria. They are characterized by high milk-clotting activity and yield, the ability to form aromatic compounds and/or viscous components, excellent organoleptic qualities of clots fermented by them, antago-nistic activity against pathogenic and opportunistic pathogenic microorganisms, and phage-resistance to species-specific virulent phages. The collection of industrial microorganisms of Institute of Food Resources of National Academy of Agrarian Sciences (IFR NAAS) has been supplemented with new bioactive strains, in particular, the species Streptococcus thermophilus, Lactobacillus acidophilus, Lactoba-cillus rhamnosus and Lactococcus lactis. Four bacterial compositions have been created. Three of them (Iprovit-LB-R; Iprovit-LB-A, and Iprovit-ST) are supposed to be used as functional enrichers for dry foodstuffs or as biologically active supplements. The bacterial prepara-tion Iprovit-Bifidolux is a universal composition. It can be introduced both as a fermenting culture for milk fermentation and as an enricher for dry and liquid foodstuffs. Biotechnologies for the production of dry bacterial preparations on the basis of selected strains have been field-proven at the State Research Enterprise of Starter Cultures that belongs to the IFR NAAS. The data on a wide range of clinical and therapeutic effects of the bacterial preparation Iprovit-Bifidolux allow recommending it for manufacturing functional foods.
Collapse
|
9
|
Presence of galactose in precultures induces lacS and leads to short lag phase in lactose-grown Lactococcus lactis cultures. J Ind Microbiol Biotechnol 2018; 46:33-43. [PMID: 30413923 PMCID: PMC6339885 DOI: 10.1007/s10295-018-2099-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/26/2018] [Indexed: 11/29/2022]
Abstract
Lactose conversion by lactic acid bacteria is of high industrial relevance and consistent starter culture quality is of outmost importance. We observed that Lactococcus lactis using the high-affinity lactose-phosphotransferase system excreted galactose towards the end of the lactose consumption phase. The excreted galactose was re-consumed after lactose depletion. The lacS gene, known to encode a lactose permease with affinity for galactose, a putative galactose–lactose antiporter, was upregulated under the conditions studied. When transferring cells from anaerobic to respiration-permissive conditions, lactose-assimilating strains exhibited a long and non-reproducible lag phase. Through systematic preculture experiments, the presence of galactose in the precultures was correlated to short and reproducible lag phases in respiration-permissive main cultivations. For starter culture production, the presence of galactose during propagation of dairy strains can provide a physiological marker for short culture lag phase in lactose-grown cultures.
Collapse
|
10
|
Task Distribution between Acetate and Acetoin Pathways To Prolong Growth in Lactococcus lactis under Respiration Conditions. Appl Environ Microbiol 2018; 84:AEM.01005-18. [PMID: 30030222 DOI: 10.1128/aem.01005-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the main bacterium used for food fermentation and is a candidate for probiotic development. In addition to fermentation growth, supplementation with heme under aerobic conditions activates a cytochrome oxidase, which promotes respiration metabolism. In contrast to fermentation, in which cells consume energy to produce mainly lactic acid, respiration metabolism dramatically changes energy metabolism, such that massive amounts of acetic acid and acetoin are produced at the expense of lactic acid. Our goal was to investigate the metabolic changes that correlate with significantly improved growth and survival during respiration growth. Using transcriptional time course analyses, mutational analyses, and promoter-reporter fusions, we uncover two main pathways that can explain the robust growth and stability of respiration cultures. First, the acetate pathway contributes to biomass yield in respiration without affecting medium pH. Second, the acetoin pathway allows cells to cope with internal acidification, which directly affects cell density and survival in stationary phase. Our results suggest that manipulation of these pathways will lead to fine-tuning respiration growth, with improved yield and stability.IMPORTANCE Lactococcus lactis is used in food and biotechnology industries for its capacity to produce lactic acid, aroma, and proteins. This species grows by fermentation or by an aerobic respiration metabolism when heme is added. Whereas fermentation leads mostly to lactic acid production, respiration produces acetate and acetoin. Respiration growth leads to greatly improved bacterial growth and survival. Our study aims at deciphering mechanisms of respiration metabolism that have a major impact on bacterial physiology. Our results showed that two metabolic pathways (acetate and acetoin) are key elements of respiration. The acetate pathway contributes to biomass yield. The acetoin pathway is needed for pH homeostasis, which affects metabolic activities and bacterial viability in stationary phase. This study clarifies key metabolic elements that are required to maintain the growth advantage conferred by respiration metabolism and has potential uses in strain optimization for industrial and biomedical applications.
Collapse
|
11
|
Wang Y, Ryu BH, Yoo W, Lee CW, Kim KK, Lee JH, Kim TD. Identification, characterization, immobilization, and mutational analysis of a novel acetylesterase with industrial potential (LaAcE) from Lactobacillus acidophilus. Biochim Biophys Acta Gen Subj 2017; 1862:197-210. [PMID: 29051067 DOI: 10.1016/j.bbagen.2017.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 11/29/2022]
Abstract
Lactic acid bacteria, which are involved in the fermentation of vegetables, meats, and dairy products, are widely used for the productions of small organic molecules and bioactive peptides. Here, a novel acetylesterase (LaAcE) from Lactobacillus acidophilus NCFM was identified, functionally characterized, immobilized, and subjected to site-directed mutagenesis for biotechnological applications. The enzymatic properties of LaAcE were investigated using biochemical and biophysical methods including native polyacrylamide gel electrophoresis, acetic acid release, biochemical assays, enzyme kinetics, and spectroscopic methods. Interestingly, LaAcE exhibited the ability to act on a broad range of substrates including glucose pentaacetate, glyceryl tributyrate, fish oil, and fermentation-related compounds. Furthermore, immobilization of LaAcE showed good recycling ability and high thermal stability compared with free LaAcE. A structural model of LaAcE was used to guide mutational analysis of hydrophobic substrate-binding region, which was composed of Leu156, Phe164, and Val204. Five mutants (L156A, F164A, V204A, L156A/F164A, and L156A/V204A) were generated and investigated to elucidate the roles of these hydrophobic residues in substrate specificity. This work provided valuable insights into the properties of LaAcE, and demonstrated that LaAcE could be used as a model enzyme of acetylesterase in lactic acid bacteria, making LaAcE a great candidate for industrial applications.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Bum Han Ryu
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - T Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
12
|
Mills S, Griffin C, O'Connor PM, Serrano LM, Meijer WC, Hill C, Ross RP. A Multibacteriocin Cheese Starter System, Comprising Nisin and Lacticin 3147 in Lactococcus lactis, in Combination with Plantaricin from Lactobacillus plantarum. Appl Environ Microbiol 2017; 83:e00799-17. [PMID: 28476774 PMCID: PMC5494623 DOI: 10.1128/aem.00799-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022] Open
Abstract
Functional starter cultures demonstrating superior technological and food safety properties are advantageous to the food fermentation industry. We evaluated the efficacies of single- and double-bacteriocin-producing starters of Lactococcus lactis capable of producing the class I bacteriocins nisin A and/or lacticin 3147 in terms of starter performance. Single producers were generated by mobilizing the conjugative bacteriophage resistance plasmid pMRC01, carrying lacticin genetic determinants, or the conjugative transposon Tn5276, carrying nisin genetic determinants, to the commercial starter L. lactis CSK2775. The effect of bacteriocin coproduction was examined by superimposing pMRC01 into the newly constructed nisin transconjugant. Transconjugants were improved with regard to antimicrobial activity and bacteriophage insensitivity compared to the recipient strain, and the double producer was immune to both bacteriocins. Bacteriocin production in the starter was stable, although the recipient strain proved to be a more efficient acidifier than transconjugant derivatives. Overall, combinations of class I bacteriocins (the double producer or a combination of single producers) proved to be as effective as individual bacteriocins for controlling Listeria innocua growth in laboratory-scale cheeses. However, using the double producer in combination with the class II bacteriocin producer Lactobacillus plantarum or using the lacticin producer with the class II producer proved to be most effective for reducing bacterial load. As emergence of bacteriocin tolerance was reduced 10-fold in the presence of nisin and lacticin, we suggest that the double producer in conjunction with the class II producer could serve as a protective culture providing a food-grade, multihurdle approach to control pathogenic growth in a variety of industrial applications.IMPORTANCE We generated a suite of single- and double-bacteriocin-producing starter cultures capable of generating the class I bacteriocin lacticin 3147 or nisin or both bacteriocins simultaneously via conjugation. The transconjugants exhibited improved bacteriophage resistance and antimicrobial activity. The single producers proved to be as effective as the double-bacteriocin producer at reducing Listeria numbers in laboratory-scale cheese. However, combining the double producer or the lacticin-producing starter with a class II bacteriocin producer, Lactobacillus plantarum LMG P-26358, proved to be most effective at reducing Listeria numbers and was significantly better than a combination of the three bacteriocin-producing strains, as the double producer is not inhibited by either of the class I bacteriocins. Since the simultaneous use of lacticin and nisin should reduce the emergence of bacteriocin-tolerant derivatives, this study suggests that a protective starter system produced by bacteriocin stacking is a worthwhile multihurdle approach for food safety applications.
Collapse
Affiliation(s)
- S Mills
- CSK Food Enrichment, Ede, The Netherlands
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - C Griffin
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- CSK Food Enrichment, Ede, The Netherlands
| | - P M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | | | - W C Meijer
- CSK Food Enrichment, Ede, The Netherlands
| | - C Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R P Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
- College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Zotta T, Parente E, Ricciardi A. Aerobic metabolism in the genusLactobacillus: impact on stress response and potential applications in the food industry. J Appl Microbiol 2017; 122:857-869. [DOI: 10.1111/jam.13399] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/07/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
- T. Zotta
- Istituto di Scienze dell'Alimentazione-CNR; Avellino Italy
| | - E. Parente
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - A. Ricciardi
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
| |
Collapse
|
14
|
Stefanovic E, Fitzgerald G, McAuliffe O. Advances in the genomics and metabolomics of dairy lactobacilli: A review. Food Microbiol 2017; 61:33-49. [DOI: 10.1016/j.fm.2016.08.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 01/21/2023]
|
15
|
Kim Y, Ryu BH, Kim J, Yoo W, An DR, Kim BY, Kwon S, Lee S, Wang Y, Kim KK, Kim TD. Characterization of a novel SGNH-type esterase from Lactobacillus plantarum. Int J Biol Macromol 2016; 96:560-568. [PMID: 28040493 DOI: 10.1016/j.ijbiomac.2016.12.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
Lactic acid bacteria (LAB) are sources of a large variety of microbial ester hydrolases because they can produce a wide range of short-chain esters, phenolic alcohols, and fatty acids. Here, a novel SGNH-type esterase (LpSGNH1) from Lactobacillus plantarum WCFS1 was identified, functionally characterized, and immobilized for biotechnological applications. Homologs of LpSGNH1 are also found in many lactic acid bacteria (LAB) species. Biochemical features of LpSGNH1 were investigated using mass spectrometry, gel filtration chromatography, enzyme kinetics, fluorescence, and circular dichroism (CD) spectroscopy. LpSGNH1 were retained its activity under conditions that would be encountered during fermentations. Interestingly, LpSGNH1 exhibited the ability to act on a broad range of substrates including ketoprofen acetate, cefotaxime (CTX), and 7-aminocephalosporanic acid (7-ACA) as well as glucose pentaacetate, acetylxylan, and acetylalginate, which make LpSGNH1 a great candidate for extensive industrial applications. Furthermore, cross-linked enzyme aggregates of LpSGNH1 (CLEA-LpSGNH1) displayed recycling ability and thermal stability compared to free LpSGNH1, which could be useful for industrial applications. This work highlights the importance of LpSGNH1 in the preparation of commercial compounds, and LpSGNH1 can be used as a model system of SGNH esterases in lactic acid bacteria.
Collapse
Affiliation(s)
- Yonggyu Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Bum Han Ryu
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Jimin Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Deu Rae An
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Boo-Young Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Sena Kwon
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Sojeong Lee
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Ying Wang
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - T Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea.
| |
Collapse
|
16
|
Reale A, Ianniello RG, Ciocia F, Di Renzo T, Boscaino F, Ricciardi A, Coppola R, Parente E, Zotta T, McSweeney PL. Effect of respirative and catalase-positive Lactobacillus casei adjuncts on the production and quality of Cheddar-type cheese. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Ianniello RG, Zotta T, Matera A, Genovese F, Parente E, Ricciardi A. Investigation of Factors Affecting Aerobic and Respiratory Growth in the Oxygen-Tolerant Strain Lactobacillus casei N87. PLoS One 2016; 11:e0164065. [PMID: 27812097 PMCID: PMC5094797 DOI: 10.1371/journal.pone.0164065] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
Aerobic and respiratory cultivations provide benefits for some lactic acid bacteria (LAB). Growth, metabolites, enzymatic activities (lactate dehydrogenase; pyruvate and NADH oxidases, NADH peroxidase; catalase), antioxidant capability and stress tolerance of Lactobacillus casei N87 were evaluated in anaerobic, aerobic and respiratory (aerobiosis with heme and menaquinone supplementation) batch cultivations with different dissolved oxygen (DO) concentrations. The expression of pox (pyruvate oxidase) and cydABCD operon (cytochrome bd oxidase complex) was quantified by quantitative Real Time polymerase chain reaction. Respiration increased biomass production compared to anaerobiosis and unsupplemented aerobiosis, and altered the central metabolism rerouting pyruvate away from lactate accumulation. All enzymatic activities, except lactate dehydrogenase, were higher in respiratory cultures, while unsupplemented aerobiosis with 60% of DO promoted H2O2 and free radical accumulation. Respiration improved the survival to oxidative and freeze-drying stresses, while significant numbers of dead, damaged and viable but not cultivable cells were found in unsupplemented aerobic cultures (60% DO). Analysis of gene expression suggested that the activation of aerobic and respiratory pathways occurred during the exponential growth phase, and that O2 and hemin induced, respectively, the transcription of pox and cydABCD genes. Respiratory cultivation might be a natural strategy to improve functional and technological properties of L. casei.
Collapse
Affiliation(s)
- Rocco G. Ianniello
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Teresa Zotta
- Istituto di Scienze dell’Alimentazione-CNR, Avellino, Italy
- * E-mail:
| | - Attilio Matera
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Francesco Genovese
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Eugenio Parente
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Annamaria Ricciardi
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
18
|
Li L, Shin SY, Lee SJ, Moon JS, Im WT, Han NS. Production of Ginsenoside F2 by Using Lactococcus lactis with Enhanced Expression of β-Glucosidase Gene from Paenibacillus mucilaginosus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2506-2512. [PMID: 26494255 DOI: 10.1021/acs.jafc.5b04098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study aimed to produce a pharmacologically active minor ginsenoside F2 from the major ginsenosides Rb1 and Rd by using a recombinant Lactococcus lactis strain expressing a heterologous β-glucosidase gene. The nucleotide sequence of the gene (BglPm) was derived from Paenibacillus mucilaginosus and synthesized after codon optimization, and the two genes (unoptimized and optimized) were expressed in L. lactis NZ9000. Codon optimization resulted in reduction of unfavorable codons by 50% and a considerable increase in the expression levels (total activities) of β-glucosidases (0.002 unit/mL, unoptimized; 0.022 unit/mL, optimized). The molecular weight of the enzyme was 52 kDa, and the purified forms of the enzymes could successfully convert Rb1 and Rd into F2. The permeabilized L. lactis expressing BglPm resulted in a high conversion yield (74%) of F2 from the ginseng extract. Utilization of this microbial cell to produce F2 may provide an alternative method to increase the health benefits of Panax ginseng.
Collapse
Affiliation(s)
- Ling Li
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University , Cheongju 361-763, Korea
| | - So-Yeon Shin
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University , Cheongju 361-763, Korea
| | - Soo Jin Lee
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University , Cheongju 361-763, Korea
| | - Jin Seok Moon
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University , Cheongju 361-763, Korea
| | - Wan Taek Im
- Department of Biotechnology, Hankyong National University , Kyonggi-do 456-749, Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University , Cheongju 361-763, Korea
| |
Collapse
|
19
|
Shi W, Li Y, Gao X, Fu R. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH. Biotechnol Lett 2015; 38:495-501. [PMID: 26585330 DOI: 10.1007/s10529-015-1999-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/09/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The growth characteristics and intracellular hemin concentrations of Lactococcus lactis grown under different culture pH and aeration conditions were examined to investigate the effect of culture pH on the respiration efficiency of L. lactis NZ9000 (pZN8148). RESULTS Cell biomass and biomass yield of L. lactis grown with 4 μg hemin/ml and O2 were higher than those without aeration when the culture pH was controlled at 5-6.5. The culture pH affected the respiratory efficiency in the following order of pH: 5 > 5.5 > 6 > 6.5; the lag phase increased as the culture pH decreased. Hemin accumulation was sensitive to culture pH. Among the four pH conditions, pH 5.5 was optimal for hemin accumulation in the cells. The highest intracellular hemin level in L. lactis resting cells incubated at different pH saline levels (5-6.5) was at pH 5.5. CONCLUSION The respiration efficiency of L. lactis under respiration-permissive conditions increases markedly as the culture pH decreases. These results may help develop high cell-density L. lactis cultures. Thus, this microorganism may be used for industrial applications.
Collapse
Affiliation(s)
- Weijia Shi
- School of Tea and Food Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Yu Li
- School of Tea and Food Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Xueling Gao
- School of Tea and Food Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Ruiyan Fu
- School of Tea and Food Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
20
|
Ferrer Valenzuela J, Pinuer LA, García Cancino A, Bórquez Yáñez R. Metabolic Fluxes in Lactic Acid Bacteria—A Review. FOOD BIOTECHNOL 2015. [DOI: 10.1080/08905436.2015.1027913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Ianniello RG, Ricciardi A, Parente E, Tramutola A, Reale A, Zotta T. Aeration and supplementation with heme and menaquinone affect survival to stresses and antioxidant capability of Lactobacillus casei strains. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Zhao P, Kim I. Effect of direct-fed microbial on growth performance, nutrient digestibility, fecal noxious gas emission, fecal microbial flora and diarrhea score in weanling pigs. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2014.12.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Kuipers OP. Back to nature: a revival of natural strain improvement methodologies. Microb Biotechnol 2014; 8:17-8. [PMID: 25488414 PMCID: PMC4321361 DOI: 10.1111/1751-7915.12232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Oscar P Kuipers
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| |
Collapse
|
24
|
Cavanagh D, Fitzgerald GF, McAuliffe O. From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment. Food Microbiol 2014; 47:45-61. [PMID: 25583337 DOI: 10.1016/j.fm.2014.11.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/22/2014] [Accepted: 11/01/2014] [Indexed: 11/18/2022]
Abstract
Lactococcus lactis is an organism of substantial economic importance, used extensively in the production of fermented foods and widely held to have evolved from plant strains. The domestication of this organism to the milk environment is associated with genome reduction and gene decay, and the acquisition of specific genes involved in protein and lactose utilisation by horizontal gene transfer. In recent years, numerous studies have focused on uncovering the physiology and molecular biology of lactococcal strains from the wider environment for exploitation in the dairy industry. This in turn has facilitated comparative genome analysis of lactococci from different environments and provided insight into the natural phenotypic and genetic diversity of L. lactis. This diversity may be exploited in dairy fermentations to develop products with improved quality and sensory attributes. In this review, we discuss the classification of L. lactis and the problems that arise with phenotype/genotype designation. We also discuss the adaptation of non-dairy lactococci to milk, the traits associated with this adaptation and the potential application of non-dairy lactococci to dairy fermentations.
Collapse
Affiliation(s)
- Daniel Cavanagh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; Department of Microbiology, University College Cork, Co. Cork, Ireland.
| | | | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
25
|
Derkx PMF, Janzen T, Sørensen KI, Christensen JE, Stuer-Lauridsen B, Johansen E. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microb Cell Fact 2014; 13 Suppl 1:S5. [PMID: 25186244 PMCID: PMC4155822 DOI: 10.1186/1475-2859-13-s1-s5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes.
Collapse
|
26
|
The Science behind the Probiotic Strain Bifidobacterium animalis subsp. lactis BB-12(®). Microorganisms 2014; 2:92-110. [PMID: 27682233 PMCID: PMC5029483 DOI: 10.3390/microorganisms2020092] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/08/2014] [Accepted: 02/07/2014] [Indexed: 12/19/2022] Open
Abstract
This review presents selected data on the probiotic strain Bifidobacterium animalis subsp. lactis BB-12® (BB-12®), which is the world’s most documented probiotic Bifidobacterium. It is described in more than 300 scientific publications out of which more than 130 are publications of human clinical studies. The complete genome sequence of BB-12® has been determined and published. BB-12® originates from Chr. Hansen’s collection of dairy cultures and has high stability in foods and as freeze dried powders. Strain characteristics and mechanisms of BB-12® have been established through extensive in vitro testing. BB-12® exhibits excellent gastric acid and bile tolerance; it contains bile salt hydrolase, and has strong mucus adherence properties, all valuable probiotic characteristics. Pathogen inhibition, barrier function enhancement, and immune interactions are mechanisms that all have been demonstrated for BB-12®. BB-12® has proven its beneficial health effect in numerous clinical studies within gastrointestinal health and immune function. Clinical studies have demonstrated survival of BB-12® through the gastrointestinal tract and BB-12® has been shown to support a healthy gastrointestinal microbiota. Furthermore, BB-12® has been shown to improve bowel function, to have a protective effect against diarrhea, and to reduce side effects of antibiotic treatment, such as antibiotic-associated diarrhea. In terms of immune function, clinical studies have shown that BB-12® increases the body’s resistance to common respiratory infections as well as reduces the incidence of acute respiratory tract infections.
Collapse
|
27
|
Zotta T, Ianniello RG, Guidone A, Parente E, Ricciardi A. Selection of mutants tolerant of oxidative stress from respiratory cultures of Lactobacillus plantarum C17. J Appl Microbiol 2013; 116:632-43. [PMID: 24267916 DOI: 10.1111/jam.12398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/04/2013] [Accepted: 11/15/2013] [Indexed: 12/20/2022]
Abstract
AIMS Lactobacillus plantarum is a lactic acid bacterium involved in the production of many fermented foods. Recently, several studies have demonstrated that aerobic or respiratory metabolism in this species leads to improved technological and stress response properties. METHODS AND RESULTS We investigated respiratory growth, metabolite production and stress resistance of Lact. plantarum C17 during batch, fed-batch and chemostat cultivations under respiratory conditions. Sixty mutants were selected for their ability to tolerate oxidative stress using H2 O2 and menadione as selective agents and further screened for their capability to growth under anaerobic, respiratory and oxidative stress conditions. Dilution rate clearly affected the physiological state of cells and, generally, slow-growing cultures had improved survival to stresses, catalase production and oxygen uptake. Most mutants were more competitive in terms of biomass production and ROS degradation compared with wild-type strain (wt) C17 and two of these (C17-m19 and C17-m58) were selected for further experiments. CONCLUSIONS This work confirms that, in Lact. plantarum, respiration and low growth rates confer physiological and metabolic advantages compared with anaerobic cultivation. SIGNIFICANCE AND IMPACT OF THE STUDY Our strategy of natural selection successfully provides a rapid and inexpensive screening for a large number of strains and represents a food-grade approach of practical relevance in the production of starter and probiotic cultures.
Collapse
Affiliation(s)
- T Zotta
- Istituto di Scienze dell'Alimentazione-CNR, Avellino, Italy
| | | | | | | | | |
Collapse
|
28
|
From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 2013; 31:764-88. [DOI: 10.1016/j.biotechadv.2013.03.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 11/21/2022]
|
29
|
Zotta T, Guidone A, Ianniello RG, Parente E, Ricciardi A. Temperature and respiration affect the growth and stress resistance of Lactobacillus plantarum C17. J Appl Microbiol 2013; 115:848-58. [PMID: 23782242 DOI: 10.1111/jam.12285] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/10/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Abstract
AIMS The aim of the study is to gain further insight on the respiratory behaviour of Lactobacillus plantarum and its consequences on stress tolerance. METHODS AND RESULTS We investigated the effect of temperature and respiration on the growth and stress (heat, oxidative, freezing, freeze-drying) response of Lact. plantarum C17 during batch cultivations. Temperature as well as respiration clearly affected the physiological state of cells, and generally, cultures grown under respiratory conditions exhibited improved tolerance of some stresses (heat, oxidative, freezing) compared to those obtained in anaerobiosis. Our results revealed that the activities in cell-free extracts of the main enzymes related to aerobic metabolism, POX (pyruvate oxidase) and NPR (NADH peroxidase), were significantly affected by temperature. POX was completely inhibited at 37°C, while the activity of NPR slightly increased at 25°C, indicating that in Lact. plantarum, the temperature of growth may be involved in the activation and modulation of aerobic/respiratory metabolism. CONCLUSIONS We confirmed that respiration confers robustness to Lact. plantarum cells, allowing a greater stress tolerance and advantages in the production of starter and probiotic cultures. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study on respiratory metabolism on a strain other than the model strains WCFS1; novel information on the role of temperature in the modulation of aerobic/respiratory metabolism in Lact. plantarum is presented.
Collapse
Affiliation(s)
- T Zotta
- Istituto di Scienze dell'Alimentazione-CNR, Avellino, Italy.
| | | | | | | | | |
Collapse
|
30
|
Kaswurm V, Nguyen TT, Maischberger T, Kulbe KD, Michlmayr H. Evaluation of the food grade expression systems NICE and pSIP for the production of 2,5-diketo-D-gluconic acid reductase from Corynebacterium glutamicum. AMB Express 2013; 3:7. [PMID: 23356419 PMCID: PMC3565945 DOI: 10.1186/2191-0855-3-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 11/10/2022] Open
Abstract
2,5-diketo-D-gluconic acid reductase (2,5-DKG reductase) catalyses the reduction of 2,5-diketo-D-gluconic acid (2,5-DKG) to 2-keto-L-gulonic acid (2-KLG), a direct precursor (lactone) of L-ascorbic acid (vitamin C). This reaction is an essential step in the biocatalytic production of the food supplement vitamin C from D-glucose or D-gluconic acid. As 2,5-DKG reductase is usually produced recombinantly, it is of interest to establish an efficient process for 2,5-DKG reductase production that also satisfies food safety requirements. In the present study, three recently described food grade variants of the Lactobacillales based expression systems pSIP (Lactobacillus plantarum) and NICE (Lactococcus lactis) were evaluated with regard to their effictiveness to produce 2,5-DKG reductase from Corynebacterium glutamicum. Our results indicate that both systems are suitable for 2,5-DKG reductase expression. Maximum production yields were obtained with Lb. plantarum/pSIP609 by pH control at 6.5. With 262 U per litre of broth, this represents the highest heterologous expression level so far reported for 2,5-DKG reductase from C. glutamicum. Accordingly, Lb. plantarum/pSIP609 might be an interesting alternative to Escherichia coli expression systems for industrial 2,5-DKG reductase production.
Collapse
|
31
|
Abstract
Lactic acid bacteria (LAB) are of profound importance in food production and infection medicine. LAB do not rely on heme (protoheme IX) for growth and are unable to synthesize this cofactor but are generally able to assemble a small repertoire of heme-containing proteins if heme is provided from an exogenous source. These features are in contrast to other bacteria, which synthesize their heme or depend on heme for growth. We here present the cellular function of heme proteins so far identified in LAB and discuss their biogenesis as well as applications of the extraordinary heme physiology of LAB.
Collapse
|
32
|
Branco dos Santos F, de Vos WM, Teusink B. Towards metagenome-scale models for industrial applications--the case of Lactic Acid Bacteria. Curr Opin Biotechnol 2012. [PMID: 23200025 DOI: 10.1016/j.copbio.2012.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We review the uses and limitations of modelling approaches that are in use in the field of Lactic Acid Bacteria (LAB). We describe recent developments in model construction and computational methods, starting from application of such models to monocultures. However, since most applications in food biotechnology involve complex nutrient environments and mixed cultures, we extend the scope to discuss developments in modelling such complex systems. With metagenomics and meta-functional genomics data becoming available, the developments in genome-scale community models are discussed. We conclude that exploratory tools are available and useful, but truly predictive mechanistic models will remain a major challenge in the field.
Collapse
Affiliation(s)
- Filipe Branco dos Santos
- Systems Bioinformatics/NISB, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase. Appl Environ Microbiol 2012; 79:376-80. [PMID: 23064338 DOI: 10.1128/aem.02734-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The discovery of heme-induced respiration in Lactococcus lactis has radically improved the industrial processes used for the biomass production of this species. Here, we show that inhibition of the lactate dehydrogenase activity of L. lactis during growth under respiration-permissive conditions can stimulate aerobic respiration, thereby increasing not only growth efficiency but also the robustness of this organism.
Collapse
|
34
|
Garrigues C, Johansen E, Crittenden R. Pangenomics--an avenue to improved industrial starter cultures and probiotics. Curr Opin Biotechnol 2012; 24:187-91. [PMID: 22975152 DOI: 10.1016/j.copbio.2012.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/03/2012] [Accepted: 08/19/2012] [Indexed: 01/01/2023]
Abstract
With the dramatic reductions in the cost and time involved in DNA sequencing, a new approach to characterisation of bacteria is emerging. It is based on a comparison of complete genome sequences of a number of members of the same species (pangenomics). Pangenomics opens an array of new opportunities for understanding and improving industrial starter cultures and probiotics. These include understanding the formation of texture and flavour in dairy products, understanding the functionality of probiotics as well as providing information that can be used for strain screening, strain improvement, safety assessments and process improvements.
Collapse
Affiliation(s)
- Christel Garrigues
- CED-Discovery, Chr Hansen A/S, 10-12 Bøge Allé, DK2970, Hørsholm, Denmark
| | | | | |
Collapse
|
35
|
Chalón MC, Acuña L, Morero RD, Minahk CJ, Bellomio A. Membrane-active bacteriocins to control Salmonella in foods. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Pedersen MB, Gaudu P, Lechardeur D, Petit MA, Gruss A. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu Rev Food Sci Technol 2011; 3:37-58. [PMID: 22385163 DOI: 10.1146/annurev-food-022811-101255] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The lactic acid bacteria (LAB) are essential for food fermentations and their impact on gut physiology and health is under active exploration. In addition to their well-studied fermentation metabolism, many species belonging to this heterogeneous group are genetically equipped for respiration metabolism. In LAB, respiration is activated by exogenous heme, and for some species, heme and menaquinone. Respiration metabolism increases growth yield and improves fitness. In this review, we aim to present the basics of respiration metabolism in LAB, its genetic requirements, and the dramatic physiological changes it engenders. We address the question of how LAB acquired the genetic equipment for respiration. We present at length how respiration can be used advantageously in an industrial setting, both in the context of food-related technologies and in novel potential applications.
Collapse
Affiliation(s)
- Martin B Pedersen
- Department of Physiology, Cultures & Enzymes Division, Chr. Hansen A/S, DK-2970 Hørsholm, Denmark
| | | | | | | | | |
Collapse
|
37
|
Goh YJ, Goin C, O'Flaherty S, Altermann E, Hutkins R. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9. Microb Cell Fact 2011; 10 Suppl 1:S22. [PMID: 21995282 PMCID: PMC3231929 DOI: 10.1186/1475-2859-10-s1-s22] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Streptococcus thermophilus represents the only species among the streptococci that has “Generally Regarded As Safe” status and that plays an economically important role in the fermentation of yogurt and cheeses. We conducted comparative genome analysis of S. thermophilus LMD-9 to identify unique gene features as well as features that contribute to its adaptation to the dairy environment. In addition, we investigated the transcriptome response of LMD-9 during growth in milk in the presence of Lactobacillus delbrueckii ssp. bulgaricus, a companion culture in yogurt fermentation, and during lytic bacteriophage infection. Results The S. thermophilus LMD-9 genome is comprised of a 1.8 Mbp circular chromosome (39.1% GC; 1,834 predicted open reading frames) and two small cryptic plasmids. Genome comparison with the previously sequenced LMG 18311 and CNRZ1066 strains revealed 114 kb of LMD-9 specific chromosomal region, including genes that encode for histidine biosynthetic pathway, a cell surface proteinase, various host defense mechanisms and a phage remnant. Interestingly, also unique to LMD-9 are genes encoding for a putative mucus-binding protein, a peptide transporter, and exopolysaccharide biosynthetic proteins that have close orthologs in human intestinal microorganisms. LMD-9 harbors a large number of pseudogenes (13% of ORFeome), indicating that like LMG 18311 and CNRZ1066, LMD-9 has also undergone major reductive evolution, with the loss of carbohydrate metabolic genes and virulence genes found in their streptococcal counterparts. Functional genome distribution analysis of ORFeomes among streptococci showed that all three S. thermophilus strains formed a distinct functional cluster, further establishing their specialized adaptation to the nutrient-rich milk niche. An upregulation of CRISPR1 expression in LMD-9 during lytic bacteriophage DT1 infection suggests its protective role against phage invasion. When co-cultured with L. bulgaricus, LMD-9 overexpressed genes involved in amino acid transport and metabolism as well as DNA replication. Conclusions The genome of S. thermophilus LMD-9 is shaped by its domestication in the dairy environment, with gene features that conferred rapid growth in milk, stress response mechanisms and host defense systems that are relevant to its industrial applications. The presence of a unique exopolysaccharide gene cluster and cell surface protein orthologs commonly associated with probiotic functionality revealed potential probiotic applications of LMD-9.
Collapse
Affiliation(s)
- Yong Jun Goh
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA
| | | | | | | | | |
Collapse
|
38
|
Peterbauer C, Maischberger T, Haltrich D. Food-grade gene expression in lactic acid bacteria. Biotechnol J 2011; 6:1147-61. [PMID: 21858927 DOI: 10.1002/biot.201100034] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 11/09/2022]
Abstract
In the 1990s, significant efforts were invested in the research and development of food-grade expression systems in lactic acid bacteria (LAB). At this time, Lactococcus lactis in particular was demonstrated to be an ideal cell factory for the food-grade production of recombinant proteins. Steady progress has since been made in research on LAB, including Lactococcus, Lactobacillus and Streptococcus, in the areas of recombinant enzyme production, industrial food fermentation, and gene and metabolic pathway regulation. Over the past decade, this work has also led to new approaches on chromosomal integration vectors and host/vector systems. These newly constructed food-grade gene expression systems were designed with specific attention to self-cloning strategies, food-grade selection markers, plasmid replication and chromosomal gene replacements. In this review, we discuss some well-characterized chromosomal integration and food-grade host/vector systems used in LAB, with a special focus on sustainability, stability and overall safety, and give some attractive examples of protein expression that are based on these systems.
Collapse
Affiliation(s)
- Clemens Peterbauer
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
39
|
Lechardeur D, Cesselin B, Fernandez A, Lamberet G, Garrigues C, Pedersen M, Gaudu P, Gruss A. Using heme as an energy boost for lactic acid bacteria. Curr Opin Biotechnol 2011; 22:143-9. [PMID: 21211959 DOI: 10.1016/j.copbio.2010.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 01/17/2023]
Abstract
Lactic acid bacteria (LAB) are a phylogenetically diverse group named for their main attribute in food fermentations, that is, production of lactic acid. However, several LAB are genetically equipped for aerobic respiration metabolism when provided with exogenous sources of heme (and menaquinones for some species). Respiration metabolism is energetically favorable and leads to less oxidative and acid stress during growth. As a consequence, the growth and survival of several LAB can be dramatically improved under respiration-permissive conditions. Respiration metabolism already has industrial applications for the production of dairy starter cultures. In view of the growth and survival advantages conferred by respiration, and the availability of heme and menaquinones in natural environments, we recommend that respiration be accepted as a part of the natural lifestyle of numerous LAB.
Collapse
Affiliation(s)
- Delphine Lechardeur
- Institut National de Recherche Agronomique, UMR1319 Micalis, Bâtiment 222, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
MILLS SUSAN, O’SULLIVAN ORLA, HILL COLIN, FITZGERALD GERALD, ROSS RPAUL. The changing face of dairy starter culture research: From genomics to economics. INT J DAIRY TECHNOL 2010. [DOI: 10.1111/j.1471-0307.2010.00563.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Brooijmans R, Smit B, Santos F, van Riel J, de Vos WM, Hugenholtz J. Heme and menaquinone induced electron transport in lactic acid bacteria. Microb Cell Fact 2009; 8:28. [PMID: 19480672 PMCID: PMC2696406 DOI: 10.1186/1475-2859-8-28] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 05/29/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. RESULTS Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. CONCLUSION We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.
Collapse
Affiliation(s)
- Rob Brooijmans
- TI food & Nutrition, Kluyver Centre for Genomics of Industrial Fermentation, Po Box 557, 6700 AN, Wageningen, the Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Lactobacillus plantarum WCFS1 requires both heme and menaquinone to induce respiration-like behavior under aerobic conditions. The addition of these compounds enhanced both biomass production, without progressive acidification, and the oxygen consumption rate. When both heme and menaquinone were present, L. plantarum WCFS1 was also able to reduce nitrate. The ability to reduce nitrate was severely inhibited by the glucose levels that are typically found in L. plantarum growth media (1 to 2% [vol/vol] glucose). In contrast, comparable mannitol levels did not inhibit the reduction of nitrate. L. plantarum reduced nitrate with concomitant formation of nitrite and ammonia. Genes that encode a bd-type cytochrome (cydABCD) and a nitrate reductase (narGHJI) were identified in the genome of L. plantarum. The narGHJI operon is part of a cluster of genes that includes the molybdopterin cofactor biosynthesis genes and narK. Besides a menaquinone source, isogenic mutants revealed that cydA and ndh1 are required for the aerobic-respiration-like response and narG for nitrate reduction. The ndh1 mutant was still able to reduce nitrate. The existence of a nonredundant branched electron transport chain in L. plantarum WCFS1 that is capable of using oxygen or nitrate as a terminal electron acceptor is proposed.
Collapse
|
43
|
Multiple control of the acetate pathway in Lactococcus lactis under aeration by catabolite repression and metabolites. Appl Microbiol Biotechnol 2009; 82:1115-22. [PMID: 19214497 DOI: 10.1007/s00253-009-1897-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/25/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
To explore the factors controlling metabolite formation under aeration in Lactococcus lactis, metabolic patterns, enzymatic activities, and transcriptional profiles of genes involved in the aerobic pathway for acetate anabolism were compared between a parental L. lactis strain and its NADH-oxidase-overproducer derivative. Deregulated catabolite repression mutans in the ccpA or pstH genes, encoding CcpA or its co-activator HPr, respectively, were compared with a parental strain, as well. Although the NADH-oxidase activity was derepressed in ccpA, but not in the pstH background, a mixed fermentation was displayed by either mutant, with a higher acetate production in the pstH variant. Moreover, transcription of genes encoding phosphotransacetylase and acetate kinase were derepressed, and the corresponding enzymatic activities increased, in both catabolite repression mutants. These results and the dependence on carbon source for acetate production in the NADH-oxidase-overproducer support the conclusion that catabolite repression, rather than NADH oxidation, plays a critical role to control acetate production. Furthermore, fructose 1,6-bisphosphate influenced the in vitro phosphotransacetylase and acetate kinase activities, while the former was sensitive to diacetyl. Our study strongly supports the model that, under aerobic conditions, the homolactic fermentation in L. lactis MG1363 is maintained by CcpA-mediated repression of mixed acid fermentation.
Collapse
|
44
|
Rasmussen TB, Danielsen M, Valina O, Garrigues C, Johansen E, Pedersen MB. Streptococcus thermophilus core genome: comparative genome hybridization study of 47 strains. Appl Environ Microbiol 2008; 74:4703-10. [PMID: 18539806 PMCID: PMC2519362 DOI: 10.1128/aem.00132-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/16/2008] [Indexed: 11/20/2022] Open
Abstract
A DNA microarray platform based on 2,200 genes from publicly available sequences was designed for Streptococcus thermophilus. We determined how single-nucleotide polymorphisms in the 65- to 75-mer oligonucleotide probe sequences affect the hybridization signals. The microarrays were then used for comparative genome hybridization (CGH) of 47 dairy S. thermophilus strains. An analysis of the exopolysaccharide genes in each strain confirmed previous findings that this class of genes is indeed highly variable. A phylogenetic tree based on the CGH data showed similar distances for most strains, indicating frequent recombination or gene transfer within S. thermophilus. By comparing genome sizes estimated from the microarrays and pulsed-field gel electrophoresis, the amount of unknown DNA in each strain was estimated. A core genome comprised of 1,271 genes detected in all 47 strains was identified. Likewise, a set of noncore genes detected in only some strains was identified. The concept of an industrial core genome is proposed. This is comprised of the genes in the core genome plus genes that are necessary in an applied industrial context.
Collapse
Affiliation(s)
- Thomas Bovbjerg Rasmussen
- Department of Physiology, Cultures & Enzymes Division, Chr. Hansen A/S, Bøge Alle 10-12, DK-2970 Hørsholm, Denmark.
| | | | | | | | | | | |
Collapse
|
45
|
Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon. J Bacteriol 2008; 190:4903-11. [PMID: 18487342 DOI: 10.1128/jb.00447-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lactococcus lactis is a widely used food bacterium mainly characterized for its fermentation metabolism. However, this species undergoes a metabolic shift to respiration when heme is added to an aerobic medium. Respiration results in markedly improved biomass and survival compared to fermentation. Whole-genome microarrays were used to assess changes in L. lactis expression under aerobic and respiratory conditions compared to static growth, i.e., nonaerated. We observed the following. (i) Stress response genes were affected mainly by aerobic fermentation. This result underscores the differences between aerobic fermentation and respiration environments and confirms that respiration growth alleviates oxidative stress. (ii) Functions essential for respiratory metabolism, e.g., genes encoding cytochrome bd oxidase, menaquinone biosynthesis, and heme uptake, are similarly expressed under the three conditions. This indicates that cells are prepared for respiration once O(2) and heme become available. (iii) Expression of only 11 genes distinguishes respiration from both aerobic and static fermentation cultures. Among them, the genes comprising the putative ygfCBA operon are strongly induced by heme regardless of respiration, thus identifying the first heme-responsive operon in lactococci. We give experimental evidence that the ygfCBA genes are involved in heme homeostasis.
Collapse
|
46
|
Abstract
Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client-server application that offers a detailed graphical interface and real-time user interaction on the client side, and massive computer power and a large collection of species databases (400, summer 2007) on the server side. Probes are selected according to five weighted scores: cross-hybridization, deltaT(m), folding, position and low-complexity; and probes can be placed with respect to sequence annotation using regular expressions. This protocol provides recommendations related to the design and parameter settings, and it also offers a comprehensive walkthrough of the design steps. The protocol requires limited computer skills and can be executed from any Internet-connected computer. The probe selection procedure for a standard microarray design targeting all yeast transcripts can be completed in 1 h.
Collapse
|
47
|
Piraino P, Zotta T, Ricciardi A, McSweeney PL, Parente E. Acid production, proteolysis, autolytic and inhibitory properties of lactic acid bacteria isolated from pasta filata cheeses: A multivariate screening study. Int Dairy J 2008. [DOI: 10.1016/j.idairyj.2007.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Defoor E, Kryger MB, Martinussen J. The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker. Microbiology (Reading) 2007; 153:3645-3659. [DOI: 10.1099/mic.0.2007/005959-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Els Defoor
- Center for Systems Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Maj-Britt Kryger
- Center for Systems Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jan Martinussen
- Center for Systems Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
49
|
Brooijmans RJW, Poolman B, Schuurman-Wolters GK, de Vos WM, Hugenholtz J. Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. J Bacteriol 2007; 189:5203-9. [PMID: 17496098 PMCID: PMC1951855 DOI: 10.1128/jb.00361-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis, a facultative anaerobic lactic acid bacterium, is known to have an increased growth yield when grown aerobically in the presence of heme. We have now established the presence of a functional, proton motive force-generating electron transfer chain (ETC) in L. lactis under these conditions. Proton motive force generation in whole cells was measured using a fluorescent probe (3',3'-dipropylthiadicarbocyanine), which is sensitive to changes in membrane potential (Delta psi). Wild-type cells, grown aerobically in the presence of heme, generated a Delta psi even in the presence of the F(1)-F(o) ATPase inhibitor N,N'-dicyclohexylcarbodiimide, while a cytochrome bd-negative mutant strain (CydA Delta) did not. We also observed high oxygen consumption rates by membrane vesicles prepared from heme-grown cells, compared to CydA Delta cells, upon the addition of NADH. This demonstrates that NADH is an electron donor for the L. lactis ETC and demonstrates the presence of a membrane-bound NADH-dehydrogenase. Furthermore, we show that the functional respiratory chain is present throughout the exponential and late phases of growth.
Collapse
Affiliation(s)
- R J W Brooijmans
- Kluyver Centre for Genomics of Industrial Fermentation, Wageningen Centre for Food Sciences, Wageningen, The Netherland
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|