1
|
El-Feky AM, Aboulthana WM, El-Rashedy AA. Assessment of the in vitro anti-diabetic activity with molecular dynamic simulations of limonoids isolated from Adalia lemon peels. Sci Rep 2024; 14:21478. [PMID: 39277638 PMCID: PMC11401861 DOI: 10.1038/s41598-024-71198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Limonoids are important constituents of citrus that have a significant impact on promoting human health. Therefore, the primary focus of this research was to assess the overall limonoid content and isolate limonoids from Adalia lemon (Citrus limon L.) peels for their potential use as antioxidants and anti-diabetic agents. The levels of limonoid aglycones in the C. limon peel extract were quantified through a colorimetric assay, revealing a concentration of 16.53 ± 0.93 mg/L limonin equivalent. Furthermore, the total concentration of limonoid glucosides was determined to be 54.38 ± 1.02 mg/L. The study successfully identified five isolated limonoids, namely limonin, deacetylnomilin, nomilin, obacunone 17-O-β-D-glucopyranoside, and limonin 17-O-β-D-glucopyranoside, along with their respective yields. The efficacy of the limonoids-rich extract and the five isolated compounds was evaluated at three different concentrations (50, 100, and 200 µg/mL). It was found that both obacunone 17-O-β-D-glucopyranoside and limonin 17-O-β-D-glucopyranoside possessed the highest antioxidant, free radical scavenging, and anti-diabetic activities, followed by deacetylnomilin, and then the limonoids-rich extract. The molecular dynamic simulations were conducted to predict the behavior of the isolated compounds upon binding to the protein's active site, as well as their interaction and stability. The results revealed that limonin 17-O-β-D-glucopyranoside bound to the protein complex system exhibited a relatively more stable conformation than the Apo system. The analysis of Solvent Accessible Surface Area (SASA), in conjunction with the data obtained from Root-Mean-Square Deviation (RMSD), Root-Mean-Square Fluctuation (RMSF), and Radius of Gyration (ROG) computations, provided further evidence that the limonin 17-O-β-D-glucopyranoside complex system remained stable within the catalytic domain binding site of the human pancreatic alpha-amylase (HPA)-receptor. The research findings suggest that the limonoids found in Adalia lemon peels have the potential to be used as effective natural substances in creating innovative therapeutic treatments for conditions related to oxidative stress and disorders in carbohydrate metabolism.
Collapse
Affiliation(s)
- Amal M El-Feky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Ahmed A El-Rashedy
- Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
2
|
Gu Y, Lv J, Gouda M, Zhu Y, He Y, Chen J. Using pectinase enzymatic peeling for obtaining high-quality Huyou (Citrus changshanensis) segments. J Food Compost Anal 2024; 125:105706. [DOI: 10.1016/j.jfca.2023.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
3
|
García-Nicolás M, Ledesma-Escobar CA, Priego-Capote F. Spatial Distribution and Antioxidant Activity of Extracts from Citrus Fruits. Antioxidants (Basel) 2023; 12:antiox12040781. [PMID: 37107156 PMCID: PMC10135098 DOI: 10.3390/antiox12040781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Citrus fruits are recommended components of the human diet because of their enriched composition in bioactive compounds and health benefits. Among their notable components are phenols, with a special emphasis on flavonoids, limonoids, and carboxylic acids. In this research, we have carried out a spatial metabolomics analysis for the characterization of these bioactive families in three citrus fruits, namely, lemons, limes, and mandarins. Sampling was undertaken, for which the juices and three fruit tissues, namely, albedo, flavedo, and segments, were analyzed. This characterization allowed for the determination of 49 bioactive compounds in all the samples. The composition of the different extracts was correlated with the antioxidant capacity measured by the DPPH radical scavenging activity and β-carotene bleaching assays. Flavonoids, found in the albedo and flavedo at higher concentrations, were the main components responsible for DPPH radical scavenging activity. On the other hand, the combined action of flavonoids and limonoids contributed to explaining the antioxidant activity measured by the β-carotene bleaching assay. Generally, the antioxidant capacity of juices was lower than that estimated for extracts from citrus tissues.
Collapse
Affiliation(s)
- María García-Nicolás
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Carlos A Ledesma-Escobar
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, E-14014 Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, E-14014 Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Zhou Z, Yan Y, Li H, Feng Y, Huang C, Fan S. Nomilin and Its Analogues in Citrus Fruits: A Review of Its Health Promotion Effects and Potential Application in Medicine. Molecules 2022; 28:molecules28010269. [PMID: 36615463 PMCID: PMC9822165 DOI: 10.3390/molecules28010269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Nomilin is one of the major limonoids, which are plant secondary metabolites also known as tetranortriterpenoids. Nomilin is found mostly in common edible citrus fruits including lemons, limes, oranges, grapefruits, mandarins, along with traditional Chinese medicines derived from citrus fruits, such as tangerine seed, tangerine peel, fructus aurantii immaturus, etc. A number of studies have demonstrated that nomilin and its analogues exhibit a variety of biological and pharmacological activities. These include anti-cancer, immune-modulatory, anti-inflammatory, anti-obesity, anti-viral, anti-osteoclastogenic, anti-oxidant, and neuro-protective effects. Thus, nomilin and its analogues have emerged as a potential therapy for human diseases. The purpose of this review is to chronicle the evolution of nomilin research from examining its history, structure, occurrence, to its pharmacological and disease-preventing properties as well as its potential utilization in medicine and food science.
Collapse
Affiliation(s)
| | | | | | | | - Cheng Huang
- Correspondence: (C.H.); (S.F.); Tel.: +86-21-51323194 (C.H.); Fax: 86-21-51322192 (C.H.)
| | - Shengjie Fan
- Correspondence: (C.H.); (S.F.); Tel.: +86-21-51323194 (C.H.); Fax: 86-21-51322192 (C.H.)
| |
Collapse
|
5
|
Gao L, Zhang H, Yuan CH, Zeng LH, Xiang Z, Song JF, Wang HG, Jiang JP. Citrus aurantium ‘Changshan-huyou’—An ethnopharmacological and phytochemical review. Front Pharmacol 2022; 13:983470. [PMID: 36133822 PMCID: PMC9483622 DOI: 10.3389/fphar.2022.983470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Citrus fruits are composed of oil cells layer, white membrane layer, pulp and seeds. The cultivar Citrus aurantium ‘Changshan-huyou’ (CACH) is a hybridization of Citrus grandis Osbeck and C. sinensis Osbeck. It is a rutaceae plant, and mainly grows in Changshan, Zhejiang, China. With the exploration of its high traditional values, it has been paid more and more attention by the scientific community in recent years. At present, one hundred and two chemical constituents have been identified from the pulp and peel of CACH, including volatile oils, terpenoids, phenols, limonins, sugars, etc., As the representative active component of CACH, phenols have been widely investigated. Studies have shown that CACH shows a variety of significant pharmacological activities, such as anti-inflammatory, antioxidant, hepatoprotective activity, respiratory system protection and intestinal regulation activity. This review mainly introduces the chemical constituents and pharmacological activities of CACH, and discusses its future research and development directions. It will provide theoretical basis for further research of its pharmacodynamic substances, functional mechanism and rational utilization.
Collapse
Affiliation(s)
- Liang Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Chun-Hui Yuan
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Zheng Xiang
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jian-Feng Song
- Quzhou Institute for Food and Drug Control, Quzhou, China
| | - Hua-Gang Wang
- Zhejiang Jing Yuetang Pharmaceutical Co. LTD, Shaoxing, China
| | - Jian-Ping Jiang
- School of Medicine, Zhejiang University City College, Hangzhou, China
- *Correspondence: Jian-Ping Jiang,
| |
Collapse
|
6
|
Goh RMV, Pua A, Luro F, Ee KH, Huang Y, Marchi E, Liu SQ, Lassabliere B, Yu B. Distinguishing citrus varieties based on genetic and compositional analyses. PLoS One 2022; 17:e0267007. [PMID: 35436309 PMCID: PMC9015143 DOI: 10.1371/journal.pone.0267007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Simple sequence repeats (SSR) markers and secondary metabolite composition were used in combination to study seven varieties of citrus for the first time. With reference to established accessions of citrus, two of the varieties (Chanh Giay and Ma Nao Pan) were predicted to be Mexican key limes, while three were mandarin hybrids (Nagpur, Pontianak and Dalandan) and the remaining two (Qicheng and Mosambi) were related to the sweet orange. Notably, Dalandan was genetically more like a mandarin despite often referred to as an orange locally, whereas Mosambi was more likely to be a sweet orange hybrid although it has also been called a sweet lime due to its green peel and small size. Several key secondary metabolites such as polymethoxyflavones (sinensetin, tangeretin etc.), furanocoumarins (bergapten, citropten etc.) and volatiles (citronellol, α-sinensal etc.) were identified to be potential biomarkers for separation of citrus species. However, despite having similar genetic profiles, variations in the volatile profile of the two limes were observed; similarly, there were differences in the secondary metabolite profiles of the three mandarin hybrids despite having a common ancestral parent, highlighting the usefulness of genetic and compositional analyses in combination for revealing both origins and flavour profiles especially in citrus hybrids. This knowledge would be crucial for variety screening and selection for use in flavour or fragrance creation and application.
Collapse
Affiliation(s)
- Rui Min Vivian Goh
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Aileen Pua
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- Mane SEA PTE LTD, Singapore, Singapore
| | - Francois Luro
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Univ Montpellier, San Giuliano, France
| | | | - Yunle Huang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- Mane SEA PTE LTD, Singapore, Singapore
| | - Elodie Marchi
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Univ Montpellier, San Giuliano, France
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | | | - Bin Yu
- Mane SEA PTE LTD, Singapore, Singapore
| |
Collapse
|
7
|
Goh RMV, Ee KH, Pua A, Huang Y, Liu SQ, Lassabliere B, Yu B. Neutral loss scan in complement with high-resolution MS/MS: Combination of detection methods for flavonoid and limonoid glycosides analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4810. [PMID: 35088488 DOI: 10.1002/jms.4810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/14/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
In this study, neutral loss scan and high-resolution MS/MS were used in combination to detect and tentatively identify various flavonoid and limonoid glycosides in navel orange albedo, juice, peel and pulp. These compound classes are of research interest due to their flavour and bioactive properties, and although flavonoid glycosides have been previously studied in other food matrices, to the best of our knowledge, neutral loss scans have not been used for the elucidation of limonoid glycosides. Neutral loss masses of 120, 162 and 308 Da were selected for the detection of hexose, rutinose and neohesperidose-substituted flavonoids, whereas 197 Da was explored for limonoid glycosides due to their tendency to form ammonium adducts. Fragmentation patterns obtained from targeted MS/MS were then used to differentiate rutinose and neohesperidose substituents as well as flavonoid subclasses of flavones, flavanones and flavonols. Additionally, high-resolution MS/MS was also used for the identification of aglycones by accurate mass (to four decimal places), allowing for the differentiation of aglycones with similar unit masses but different chemical formulas. In total, 19 flavonoid glycosides and six limonoid glycosides were detected. This workflow allows for a rapid screening of flavonoid and limonoid glycosides in citrus, which can be further extended to other food products such as tea.
Collapse
Affiliation(s)
- Rui Min Vivian Goh
- Department of Food Science and Technology, National University of Singapore, Singapore
| | | | - Aileen Pua
- Department of Food Science and Technology, National University of Singapore, Singapore
- Mane SEA PTE LTD, Singapore
| | - Yunle Huang
- Department of Food Science and Technology, National University of Singapore, Singapore
- Mane SEA PTE LTD, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore
| | | | - Bin Yu
- Mane SEA PTE LTD, Singapore
| |
Collapse
|
8
|
Huang Y, Xie FJ, Cao X, Li MY. Research progress in biosynthesis and regulation of plant terpenoids. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ying Huang
- Department of Horticulture, College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong, PR China
| | - Fang-Jie Xie
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xue Cao
- Department of Horticulture, College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong, PR China
| | - Meng-Yao Li
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
9
|
Lu X, Zhao C, Shi H, Liao Y, Xu F, Du H, Xiao H, Zheng J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit Rev Food Sci Nutr 2021; 63:2018-2041. [PMID: 34609268 DOI: 10.1080/10408398.2021.1969891] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Citrus fruits are consumed in large quantities worldwide due to their attractive aromas and taste, as well as their high nutritional values and various health-promoting effects, which are due to their abundance of nutrients and bioactives. In addition to water, carbohydrates, vitamins, minerals, and dietary fibers are important nutrients in citrus, providing them with high nutritional values. Citrus fruits are also rich in various bioactives such as flavonoids, essential oils, carotenoids, limonoids, and synephrines, which protect from various ailments, including cancer and inflammatory, digestive, and cardiovascular diseases. The composition and content of nutrients and bioactives differ significantly among citrus varieties, fruit parts, and growth stages. To better understand the nutrient and bioactive profiles of citrus fruits and provide guidance for the utilization of high-value citrus resources, this review systematically summarizes the nutrients and bioactives in citrus fruit, including their contents, structural characteristics, and potential health benefits. We also explore the composition variation in different citrus varieties, fruits parts, and growth stages, as well as their health-promoting effects and applications.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Shi
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Yongcheng Liao
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Fei Xu
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Gupta AK, Dhua S, Sahu PP, Abate G, Mishra P, Mastinu A. Variation in Phytochemical, Antioxidant and Volatile Composition of Pomelo Fruit ( Citrus grandis (L.) Osbeck) during Seasonal Growth and Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10091941. [PMID: 34579472 PMCID: PMC8467822 DOI: 10.3390/plants10091941] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 05/07/2023]
Abstract
Citrus fruits exhibit a high level of different phytoconstituents, of which the changes in the different parts of the fruit during ripening have not been thoroughly studied yet. Thus, in this study, we have investigated how different parts of pomelo fruit (Citrus grandis L.) are modified throughout the development of two consecutive growing seasons. In detail, the main phytochemical compounds, such as total phenolic content, total flavonoid content, antioxidant capacity, DPPH free radical scavenging activity, Ferric reducing antioxidant power (FRAP), and naringin and tannin content, were analyzed. A systematic metabolism of these compounds was found during the development of the fruit, but some pomelo tissues showed a fluctuating trend, suggesting a dependence on the different growing season. Focusing on the tissue distribution of these compounds, the fruit membrane contained the highest level of total phenolic and flavonoid content; fruit flavedo displayed the highest antioxidant capacities and FRAP activities, whereas maximum accumulation of naringin was noticed in fruit albedo. Instead, the highest DPPH free radical scavenging activity and tannin contents were found in the pomelo juice. Regarding the distribution of compounds, a possible bias pattern for the accumulation of those compounds has been noticed throughout the fruit development. From the GC-MS analysis, a total of 111 compounds were identified, where 91 compounds were common in both seasons. Overall, these results could be useful for the food processing industry as guidelines for excellent quality foods and for introducing health-beneficial products and components into our daily diets.
Collapse
Affiliation(s)
- Arun Kumar Gupta
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India; (A.K.G.); (S.D.)
| | - Subhamoy Dhua
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India; (A.K.G.); (S.D.)
| | - Partha Pratim Sahu
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur 784028, Assam, India;
| | - Giulia Abate
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy;
- Correspondence: (G.A.); (P.M.); Tel.: +39-030-371-7509 (G.A.); +91-03712-267007 (ext. 5705) (P.M.)
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India; (A.K.G.); (S.D.)
- Correspondence: (G.A.); (P.M.); Tel.: +39-030-371-7509 (G.A.); +91-03712-267007 (ext. 5705) (P.M.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy;
| |
Collapse
|
11
|
Goh RMV, Pua A, Ee KH, Huang Y, Liu SQ, Lassabliere B, Yu B. Investigation of changes in non-traditional indices of maturation in Navel orange peel and juice using GC-MS and LC-QTOF/MS. Food Res Int 2021; 148:110607. [PMID: 34507751 DOI: 10.1016/j.foodres.2021.110607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/17/2021] [Accepted: 07/11/2021] [Indexed: 11/15/2022]
Abstract
Changes in non-traditional indices of maturity, such as flavonoids and volatile compounds, during maturation were studied in Navel orange. Navel oranges were obtained at four stages of maturation, and non-volatile and volatile compounds in the peel and juice were analysed using liquid chromatography coupled with a quadrupole time-of-flight detector (LC-QTOF/MS) and gas chromatography with mass spectrometry and a flame ionisation detector (GC-MS/FID), respectively. Twenty-eight non-volatile and 62 volatile compounds in the peel as well as 22 non-volatile and 11 volatile compounds in the juice were found to have significant changes (p < 0.05) in abundances during maturation. Notably, most flavonoids (e.g. narirutin) and limonoids (e.g. nomilin) showed decreasing abundances during maturation. For volatile compounds, majority of detected alcohols peaked in abundances during middle maturation stages, while almost all detected aldehydes peaked at full maturity. Most terpenes peaked at earlier maturation stages in juice extracts compared to peel oil extracts. This comprehensive study could facilitate selection of Navel oranges for the extraction of valuable bioactive or flavour contributing compounds that are of interest to fragrance, flavour and nutraceutical industries.
Collapse
Affiliation(s)
- Rui Min Vivian Goh
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore
| | - Aileen Pua
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore; Mane SEA PTE LTD, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
| | - Kim Huey Ee
- Mane SEA PTE LTD, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
| | - Yunle Huang
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore; Mane SEA PTE LTD, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore.
| | - Benjamin Lassabliere
- Mane SEA PTE LTD, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore
| | - Bin Yu
- Mane SEA PTE LTD, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Singapore.
| |
Collapse
|
12
|
Zhou X, Wang W, Ma X, Xu E, Liu D. Ultrasonication of Thawed Huyou Juice: Effects on Cloud Stability, Physicochemical Properties and Bioactive Compounds. Foods 2021; 10:1695. [PMID: 34441472 PMCID: PMC8391196 DOI: 10.3390/foods10081695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
In order to remove the flocculent precipitation in Huyou juice after frozen storage and thawing process, the thawed juice was ultrasonically treated with different power (45-360 W) and time (10-60 min) in ice bath (~0 °C), and its sedimentation behavior during storage was observed. After optimization, the cloud stability of juice could be improved by ultrasonic treatment with ultrasonic power of 360 W or more for at least 30 min, which could be stable during 7 days of storage at 4 °C. Under this optimal condition (360 W, 30 min), the effects of ultrasound on the physicochemical properties and bioactive compounds of thawed Huyou juice during storage were investigated. The results showed that with smaller particle size and lower polymer dispersity index, ultrasonic treatment did not significantly change the color, soluble solids, titratable acidity, and bioactive compounds including flavonoids and other phenolics. In addition, all properties of samples were at the same level during storage. Thus, ultrasound was applicable since it can improve the cloud stability of Huyou juice with minimal impact on its physicochemical properties and nutritional quality compared to the untreated one.
Collapse
Affiliation(s)
- Xinyue Zhou
- Zhejiang R&D Center for Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.Z.); (X.M.); (E.X.)
| | - Wenjun Wang
- Zhejiang R&D Center for Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.Z.); (X.M.); (E.X.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaobin Ma
- Zhejiang R&D Center for Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.Z.); (X.M.); (E.X.)
| | - Enbo Xu
- Zhejiang R&D Center for Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.Z.); (X.M.); (E.X.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- Zhejiang R&D Center for Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.Z.); (X.M.); (E.X.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Huang S, Dong T, Xiong B, Qiu X, Sun G, Liao L, Fan N, Wang X, Deng H, He S, Hu Y, Wang Z. Variation in the content and composition of limonoids in fruits of four pomelo varieties during fruit development: The natural debittering process in pomelo fruits. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Dossi CG, Vargas RG, Valenzuela R, Videla LA. Beneficial effects of natural compounds on experimental liver ischemia-reperfusion injury. Food Funct 2021; 12:3787-3798. [PMID: 33977997 DOI: 10.1039/d1fo00289a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liver ischemia-reperfusion injury (IRI) is a phenomenon inherent to hepatic surgery that severely compromises the organ functionality, whose underlying mechanisms involve cellular and molecular interrelated processes leading to the development of an excessive inflammatory response. Liver resident cells and those recruited in response to injury generate pro-inflammatory signals such as reactive oxygen species, cytokines, chemokines, proteases and lipid mediators that contribute to hepatocellular necrosis and apoptosis. Besides, dying hepatocytes release damage-associated molecular patterns that actívate inflammasomes to further stimulate inflammatory responses leading to massive cell death. Since liver IRI is a complication of hepatic surgery in man, extensive preclinical studies have assessed potential protective strategies, including the supplementation with natural compounds, with the objective to downregulate nuclear factor-κB functioning, the main effector of inflammatory responses. This can be accomplished by either the activation of peroxisome proliferator-activated receptor-α, G protein-coupled receptor 120 or antioxidant signaling pathways, the synthesis of specific pro-resolving mediators, downregulation of Toll-like receptor 4 activity or additional contributory mechanisms that are beginning to be understood. The latter aspect is a crucial issue to be accomplished in preclinical studies, in order to establish adequate conditions for the supplementation with natural products before major liver surgeries in man involving warm IR, such as hepatic trauma or resection of large intrahepatic tumors.
Collapse
Affiliation(s)
- Camila G Dossi
- Escuela de Medicina Veterinaria, Facultad Ciencias de La Vida, Universidad Andres Bello, Viña del Mar, Chile.
| | - Romina G Vargas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, Uiversity of Chile, Santiago, Chile and Nutritional Sciences Department, Faculty of Medicine, University of Toronto, Toronto, ON M2J4A6, Canada
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
15
|
Chidambara Murthy KN, Jayaprakasha GK, Safe S, Patil BS. Citrus limonoids induce apoptosis and inhibit the proliferation of pancreatic cancer cells. Food Funct 2021; 12:1111-1120. [PMID: 33427831 DOI: 10.1039/d0fo02740e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In our recent study, we demonstrated that certain limonoids isolated from citrus seeds induced apoptosis in human pancreatic (Panc-28) cells. In this study, limonin, nomilin and limonexic acid (LNA) were investigated for understanding the possible mode of cytotoxicity in cultured pancreatic cancer (Panc-28) cells. All three limonoids inhibited Panc-28 cell proliferation, with IC50 values less than 50 μM after 72 h of incubation. The induction of apoptosis was confirmed through the cleavage of caspase-3, decreased mitochondrial membrane potential, and expression of apoptosis-related proteins. The Bax/Bcl2 expression ratio was increased up to 11-fold in cells pre-treated with 60 μM limonoids for 48 h. Apart from this, the limonoids also induced the expression of p21, and exhibited anti-inflammatory activity through decreasing the expression of cox-2, NF-κB and IL-6. Based on these results, we were interested in understanding the possible mode of inhibition by LNA, which exhibited the highest activity. The treatment of Panc-28 cells resulted in dose- and time-dependent induction of apoptosis-inducible proteins. In addition, treatment with 60 μM LNA resulted in the activation of Akt-associated signals to induce apoptosis, and the same was confirmed by the effects of the compounds on pAkt, p53, VEGF and caspase proteins. The results of this study demonstrated the cytotoxicity of limonoids to human pancreatic cancer cells through the modulation of genes involved in proliferation and survival.
Collapse
Affiliation(s)
- K N Chidambara Murthy
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA.
| | - G K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA.
| | - Stephen Safe
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA. and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA.
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA.
| |
Collapse
|
16
|
Xiao L, Ye F, Zhou Y, Zhao G. Utilization of pomelo peels to manufacture value-added products: A review. Food Chem 2021; 351:129247. [PMID: 33640768 DOI: 10.1016/j.foodchem.2021.129247] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Pomelo peel as a by-product from pomelo consumption is rich in various nutrients and functional compounds, while most of the by-product is disposed as wastes. The utilization of pomelo peels could not only result in valued-added products/ingredients, but also reduce the environmental threats. By mainly reviewing the recent articles, pomelo peels could be directly used to produce candied pomelo peel, tea, jams, etc. Additionally, functional components (essential oils, pectin, polyphenols, etc.) could be extracted from pomelo peels and applied in food, pharmaceutical and chemical fields. The extraction methods exerted important influences on the composition, physicochemical properties, bioactivities and structures of the resultant fractions. Furthermore, pomelo peel was exploited to make adsorbents, bioethanol, etc. For the future investigations, the functionality- or bioactivity-oriented regimes to recovery valuable components from pomelo peel should be developed in an economic, effective and eco-friendly way and their applicability in large-scale production should be addressed.
Collapse
Affiliation(s)
- Li Xiao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Engineering Research Centre for Regional Foods, Chongqing 400715, People's Republic of China.
| |
Collapse
|
17
|
Gupta AK, Pathak U, Tongbram T, Medhi M, Terdwongworakul A, Magwaza LS, Mditshwa A, Chen T, Mishra P. Emerging approaches to determine maturity of citrus fruit. Crit Rev Food Sci Nutr 2021; 62:5245-5266. [PMID: 33583257 DOI: 10.1080/10408398.2021.1883547] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Owing to their health-boosting properties and other appreciable properties, citrus fruit is widely consumed and commercialized worldwide. Destination markets around the world vary in their fruit quality requirements and are also highly influenced by climatic conditions, agronomical and postharvest practices. Hence, harvesting decisions are arduous. Maturity indices in citrus fruit are highly variable and dependent on the species and varieties, growing regions, and destination markets. For decades, determination of the maturity of citrus fruit and predicting the near time of harvesting was a challenge for producers, researchers, and food safety agencies. Thus, the current review provides a correlation between maturity and internal components and an overview of techniques of maturity determination for citrus fruits. Also, stress has been given to the destructive and nondestructive methods to determine the maturity level of different citrus species. The techniques presented in this review portray continuous productiveness as an excellent quality assessment, particularly as ripening and maturity analysis tools for citrus fruits. Traditional techniques are time-consuming, laborious, costly, destructive, and tedious. Thus, these nondestructive techniques hold great potential to replace conventional procedures.
Collapse
Affiliation(s)
- Arun Kumar Gupta
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, India
| | - Urbi Pathak
- Department of Food Science, ISA Lille, Lille, France
| | - Thoithoi Tongbram
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, India
| | - Manisha Medhi
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, India.,Department of Food Processing and Quality Management, Pub Kamrup College, Kamrup, Assam, India
| | | | - Lembe Samukelo Magwaza
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Asanda Mditshwa
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Tao Chen
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
18
|
Zhang P, Liu X, Yu X, Wang F, Long J, Shen W, Jiang D, Zhao X. The MYB transcription factor CiMYB42 regulates limonoids biosynthesis in citrus. BMC PLANT BIOLOGY 2020; 20:254. [PMID: 32493275 PMCID: PMC7271526 DOI: 10.1186/s12870-020-02475-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Limonoids are major bioactive compounds that are produced by the triterpenoid metabolic pathway. The detailed biochemical process of limonoid biosynthesis and the mechanism of its molecular regulation remain elusive. The identification of transcription factors that regulate limonoid biosynthetic pathways is very important for understanding the underlying regulatory mechanisms. This information could also provide tools for manipulating biosynthesis genes to modulate limonoid production. RESULTS In this study, the CiMYB42 transcription factor was isolated to identify its role in limonoid biosynthesis. Multiple alignment analysis and phylogenetic analysis demonstrated that CiMYB42 is a typical R2R3MYB transcription factor that shares high similarity of its amino acid sequence with AtMYB42. Limonoids contents were higher in Citrus sinensis and Citrus grandis than in other species. Limonoid accumulation during leaf development also showed diverse trends in different genotypes. The expression of CiMYB42 was significantly related to the limonoid content and the expression of CiOSC in some citrus accessions. The overexpression of CiMYB42 in sweet orange resulted in significant accumulation of limonin, whereas the downregulation of CiMYB42 by RNAi resulted in a dwarf phenotype and less nomilin accumulation. Furthermore, the results of a yeast one-hybrid assay and EMSA indicated that CiMYB42 binds exclusively to the TTGTTG sequence (type II MYB core) in the promoter of CiOSC. Together, these results suggest that CiMYB42 positively regulates limonoid biosynthesis by regulating the expression of CiOSC by binding to the TTGTTG sequence (type II MYB core) of its promoter. CONCLUSIONS CiMYB42 is an important transcription activator involved in limonoid biosynthesis that regulates the expression of CiOSC by binding to the TTGTTG sequence (type II MYB core).
Collapse
Affiliation(s)
- Pan Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xiaofeng Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xin Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Fusheng Wang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Junhong Long
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Wanxia Shen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Dong Jiang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China.
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China.
| |
Collapse
|
19
|
Karn A, Zhao C, Yang F, Cui J, Gao Z, Wang M, Wang F, Xiao H, Zheng J. In-vivo biotransformation of citrus functional components and their effects on health. Crit Rev Food Sci Nutr 2020; 61:756-776. [PMID: 32255367 DOI: 10.1080/10408398.2020.1746234] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Citrus, one of the most popular fruits worldwide, contains various functional components, including flavonoids, dietary fibers (DFs), essential oils (EOs), synephrines, limonoids, and carotenoids. The functional components of citrus attract special attention due to their health-promoting effects. Food components undergo complex biotransformation by host itself and the gut microbiota after oral intake, which alters their bioaccessibility, bioavailability, and bioactivity in the host body. To better understand the health effects of citrus fruits, it is important to understand the in-vivo biotransformation of citrus functional components. We reviewed the biotransformation of citrus functional components (flavonoids, DFs, EOs, synephrines, limonoids, and carotenoids) in the body from their intake to excretion. In addition, we described the importance of biotransformation in terms of health effects. This review would facilitate mechanistic understanding of the health-promoting effect of citrus and its functional components, and also provide guidance for the development of health-promoting foods based on citrus and its functional components.
Collapse
Affiliation(s)
- Abhisek Karn
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feilong Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Minqi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Li L, Zhang M, Chitrakar B, Jiang H. Effect of combined drying method on phytochemical components, antioxidant capacity and hygroscopicity of Huyou (Citrus changshanensis) fruit. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109102] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Liu Z, Lu S, Zhang J, Chen X, Mickymaray S. Limonin: A triterpenoid exerts protective effect during lipopolysaccharide stimulated inflammation in BV2 microglial cells. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_304_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Impoolsup T, Chiewchan N, Devahastin S. On the use of microwave pretreatment to assist zero-waste chemical-free production process of nanofibrillated cellulose from lime residue. Carbohydr Polym 2019; 230:115630. [PMID: 31887968 DOI: 10.1016/j.carbpol.2019.115630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/22/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Microwave (MW) pretreatment as an energy-efficient method to enhance the production of nanofibrillated cellulose (NFC) from lime (Citrus aurantifolia Swingle) residue after juice extraction is proposed. NFC was prepared by subjecting lime residue to MW pretreatment for up to 3 rounds; this was followed by high-shear and high-pressure homogenization. Repeated application of MW pretreatment helped remove non-cellulosic components and resulted in an increased cellulose content and crystallinity index but a decrease in fiber diameter. Freshly prepared NFC sample exhibited gel-like behavior. G' and G″ of suspension prepared from dried NFC markedly decreased, indicating the loss of gel-like property upon drying. Proper pectin molecular weight as well as pectin content were noted to play an important role in controlling aggregation of NFC during drying and hence water redispersibility of dried NFC. Significant amounts of pectin and limonin could be recovered and utilized as co-products after the first round of MW pretreatment.
Collapse
Affiliation(s)
- Tawee Impoolsup
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand.
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand; The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
23
|
Bautista GFM, Vidallon MLP, Salamanez KC, Rodriguez EB. Nanodelivery system based on zein-alginate complexes enhances in vitro chemopreventive activity and bioavailability of pomelo [Citrus maxima (Burm.) Merr.] seed limonoids. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Limonin: A Review of Its Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2019; 24:molecules24203679. [PMID: 31614806 PMCID: PMC6832453 DOI: 10.3390/molecules24203679] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 01/15/2023] Open
Abstract
Limonin is a natural tetracyclic triterpenoid compound, which widely exists in Euodia rutaecarpa (Juss.) Benth., Phellodendron chinense Schneid., and Coptis chinensis Franch. Its extensive pharmacological effects have attracted considerable attention in recent years. However, there is no systematic review focusing on the pharmacology, toxicity, and pharmacokinetics of limonin. Therefore, this review aimed to provide the latest information on the pharmacology, toxicity, and pharmacokinetics of limonin, exploring the therapeutic potential of this compound and looking for ways to improve efficacy and bioavailability. Limonin has a wide spectrum of pharmacological effects, including anti-cancer, anti-inflammatory and analgesic, anti-bacterial and anti-virus, anti-oxidation, liver protection properties. However, limonin has also been shown to lead to hepatotoxicity, renal toxicity, and genetic damage. Moreover, limonin also has complex impacts on hepatic metabolic enzyme. Pharmacokinetic studies have demonstrated that limonin has poor bioavailability, and the reduction, hydrolysis, and methylation are the main metabolic pathways of limonin. We also found that the position and group of the substituents of limonin are key in affecting pharmacological activity and bioavailability. However, some issues still exist, such as the mechanism of antioxidant activity of limonin not being clear. In addition, there are few studies on the toxicity mechanism of limonin, and the effects of limonin concentration on pharmacological effects and toxicity are not clear, and no researchers have reported any ways in which to reduce the toxicity of limonin. Therefore, future research directions include the mechanism of antioxidant activity of limonin, how the concentration of limonin affects pharmacological effects and toxicity, finding ways to reduce the toxicity of limonin, and structural modification of limonin—one of the key methods necessary to enhance pharmacological activity and bioavailability.
Collapse
|
25
|
Variation in limonin and nomilin content in citrus fruits of eight varieties determined by modified HPLC. Food Sci Biotechnol 2018; 28:641-647. [PMID: 31093421 DOI: 10.1007/s10068-018-0509-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/25/2018] [Accepted: 11/11/2018] [Indexed: 01/25/2023] Open
Abstract
The nomilin and limonin content in citrus fruits of different varieties was determined at fruit growth and maturation stages by HPLC. The results showed that the two limonoids can be separated, identified, and quantified in citrus fruits within 10 min by the developed method. The method exhibited good precision, repeatability, stability, and recovery rate. The content of limonin and nomilin in most citrus fruits presented an increasing trend initially, and then decreased during fruit growth and maturation; a peak was observed at the young fruit or fruit expansion stage. The dropped fruits also contained some amount of limonoids, suggesting their industrial application. The variation and cluster analyses results revealed that the orange varieties contained the highest amount of limonoids at the mature stage. The results of this study will enable better use of citrus limonoids.
Collapse
|
26
|
Liu S, Dai G, Sun L, Sun B, Chen D, Zhu L, Wang Y, Zhang L, Chen P, Zhou D, Ju W. Biotransformation and Metabolic Profile of Limonin in Rat Liver Microsomes, Bile, and Urine by High-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10388-10393. [PMID: 30260225 DOI: 10.1021/acs.jafc.8b02057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Limonin is a triterpenoid in citrus seeds, which has significant biological activities. However, the metabolic profile of limonin has not been fully understood. To expound its metabolism in vivo and in vitro, the metabolites of limonin was studied by rat liver microsomes, urine, and bile. High-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was used for identification. Among the metabolites, the structures of M1 and M3 were confirmed by chemical synthesis and nuclear magnetic resonance spectra analysis. Our results indicated that reduction and hydrolysis were the two major pathways during limonin metabolism in vivo and in vitro. The results from this work are valuable and important for understanding the metabolic process of limonin.
Collapse
Affiliation(s)
- Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Guoliang Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Luning Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Bingting Sun
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210016 , People's Republic of China
| | - Du Chen
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjiaxiang Road , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Yao Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210016 , People's Republic of China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210016 , People's Republic of China
| | - Dong Zhou
- Department of Pathology , University of Pittsburgh School of Medicine , Pittsburgh , Pennsylvania 15213 , United States
| | - Wenzheng Ju
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| |
Collapse
|
27
|
Vieira da Silva SA, Clemente A, Rocha J, Direito R, Marques HC, Sepodes B, Figueira ME, Ribeiro MH. Anti-inflammatory effect of limonin from cyclodextrin (un)processed orange juices in in vivo acute inflammation and chronic rheumatoid arthritis models. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
28
|
Qin S, Lv C, Wang Q, Zheng Z, Sun X, Tang M, Deng F. Extraction, identification, and antioxidant property evaluation of limonin from pummelo seeds. ACTA ACUST UNITED AC 2018; 4:281-287. [PMID: 30175256 PMCID: PMC6116831 DOI: 10.1016/j.aninu.2018.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/28/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022]
Abstract
Limonin, the main bioactive phytochemical constituent of limonoids with multi-functions, is enriched in citrus fruits and often found at a high concentration in citrus seeds. The present study was attempted to introduce a new and efficient extraction method to isolate limonoids from pummelo seeds, and to evaluate the antioxidant property of the main constituent limonin in HepG2 cells. Three key single factors were identified for the extraction of limonoids from pummelo seeds using the Box-Behnken experiment design of response surface methodology (RSM), and the optimized extraction parameters were treatment with 89.68 mL of anhydrous acetone for 4.62 h at 78.94 °C, while the yield of limonoids was 11.52 mg/g. The structure of isolated main constituent of the limonoids was further identified as limonin by Fourier transform infrared (FT-IR) spectrometer and nuclear magnetic resonance (NMR) spectrum. Moreover, the molecular data in HepG2 cells revealed that limonin exerted its anti-oxidant property mainly by the activation of nuclear factor (erythroid-2)-like 2 (Nrf2)/kelch-like ECH-associated protein 1 (Keap1)- antioxidant response element (ARE) pathway in the form of transcriptional regulation of Nrf2 mRNA and posttranscriptional regulation of Nrf2/Keap1 system. These results demonstrate that pummelo seeds are an ideal source of limonoids, and limonin is proved to exert its anti-oxidant property by the activation of Nrf2/Keap1 pathway.
Collapse
Affiliation(s)
- Si Qin
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Chenghao Lv
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qingshan Wang
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhibing Zheng
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Xi Sun
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Minyi Tang
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fangming Deng
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
29
|
Hassan NA, Bassossy HME, Fahmy A, Mahmoud MF. Limonin alleviates macro- and micro-vascular complications of metabolic syndrome in rats: A comparative study with azelnidipine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 43:92-102. [PMID: 29747759 DOI: 10.1016/j.phymed.2018.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/31/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Hypertension is a serious component of metabolic syndrome (MetS). HYPOTHESIS This research investigates the potential protective effect of limonin against MetS-associated hypertension in comparison with azelnidipine, a common calcium channel blocker. STUDY DESIGN MetS was induced in rats by 10% fructose in water and 3% salt in diet over a 16-week period. Limonin (50 mg/kg) and azelnidipine (5 mg/kg) were administered daily in the last four weeks METHODS: Non-invasive blood pressure (BP) was recorded in conscious animals. Concentration-response curves for phenylephrine (PE) and acetylcholine (ACh) were analysed in thoracic aorta (macrovessels) and kidney microvessels. Blood glucose level, serum insulin level, advanced glycation end products (AGEs), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA) and transforming growth factor-β1 (TGF-β1) were determined. RESULTS Limonin alleviated elevations in systolic and diastolic BP associated with MetS similar to levels associated with azelnidipine. Limonin prevented the MetS induced exaggerated macro- and micro-vascular contractility to PE and the impaired dilatation to ACh. However, in vitro incubation with limonin partially alleviated the deteriorated vascular reactivity of aorta isolated from MetS animals or AGEs injured aorta. Limonin did not have direct relaxant effect on the isolated vessel. On the other hand, limonin reduced the elevated serum levels of AGEs, TNF-α and MDA. Limonin suppressed the vascular fibrosis through reducing the elevated serum level of TGF-β1 and excessive aortic collagen deposition. Limonin decreased the elevated HOMA-IR in MetS animals. CONCLUSION Limonin offsets the hypertensive and vascular impairment associated with MetS via attenuation of inflammation and fibrosis. Its impact is comparable to that of azelnidipine.
Collapse
Affiliation(s)
- Noura A Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, 44519, Egypt.
| | - Hany M El Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, 44519, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Kingdom of Saudi Arabia
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| |
Collapse
|
30
|
Organic acids, sugars, antioxidant activity, sensorial and other fruit characteristics of nine traditional Spanish Citrus fruits. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3064-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Liu S, Chen P, Zhang N, Sun L, Dai G, Zhu L, Li C, Zhao Y, Zhang L, Fu H, Ju W. Comprehensive characterization of the in vitro and in vivo metabolites of limonin in human samples using LC-Q-TOF/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:226-232. [DOI: 10.1016/j.jchromb.2017.10.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/09/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
|
32
|
Yang YF, Zhang LZ, Du XP, Zhang SF, Li LJ, Jiang ZD, Wu LM, Ni H, Chen F. Recovery and purification of limonin from pummelo [Citrus grandis] peel using water extraction, ammonium sulfate precipitation and resin adsorption. J Chromatogr B Analyt Technol Biomed Life Sci 2017. [DOI: 10.1016/j.jchromb.2017.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity. MEDICINES 2017; 4:medicines4020028. [PMID: 28930243 PMCID: PMC5590064 DOI: 10.3390/medicines4020028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Background: The calamondin (Citrus microcarpa Bunge) and the kumquat (Fortunella crassifolia Swingle) are two small-size citrus fruits that have traditionally been consumed in Taiwan; however, there has been a lack of scientific research regarding the active compounds and functionalities of these fruits. Methods: Analysis of volatile composition of essential oil and phytosterol was carried out using Gas Chromatography–Mass Spectrometry (GC-MS). Flavonoid and limonoid were analyzed by High Performance Liquid Chromatography (HPLC). Moreover, antioxidant capacity from their essential oils and extracts were assessed in vitro. Results: The compositions of the essential oils of both fruits were identified, with the results showing that the calamondin and kumquat contain identified 43 and 44 volatile compounds, respectively. In addition, oxygenated compounds of volatiles accounted for 4.25% and 2.04%, respectively, consistent with the fact that oxygenated compounds are generally found in high content in citrus fruits. In terms of flavonoids, the calamondin exhibited higher content than the kumquat, with disomin-based flavonoids being predominant; on the other hand, phytosterol content of kumquat was higher than that of calamondin, with amyrin being the dominant phytosterol. Both of them contain high amounts of limonoids. The ethanol extracts and essential oils of small-sized citrus fruits have been shown to have antioxidant effects, with those effects being closely related to the flavonoid content of the fruit in question. Conclusions: The present study also reviewed antioxidant activity in terms of specific bioactive compounds in order to find the underlying biological activity of both fruits. The calamondin and kumquat have antioxidant effects, which are in turn very important for the prevention of chronic diseases.
Collapse
|
34
|
Chen MH, Huang TC. Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction. Molecules 2016; 21:molecules21121735. [PMID: 27999320 PMCID: PMC6274330 DOI: 10.3390/molecules21121735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022] Open
Abstract
As local varieties of citrus fruit in Taiwan, Ponkan (Citrus reticulata Blanco), Tankan (C. tankan Hayata), and Murcott (C. reticulate × C. sinensis) face substantial competition on the market. In this study, we used carbon dioxide supercritical technology to extract oleoresin from the peels of the three citrus varieties, adding alcohol as a solvent assistant to enhance the extraction rate. The supercritical fluid extraction was fractionated with lower terpene compounds in order to improve the oxygenated amounts of the volatile resins. The contents of oleoresin from the three varieties of citrus peels were then analyzed with GC/MS in order to identify 33 volatile compounds. In addition, the analysis results indicated that the non-volatile oleoresin extracted from the samples contains polymethoxyflavones (86.2~259.5 mg/g), limonoids (111.7~406.2 mg/g), and phytosterols (686.1~1316.4 μg/g). The DPPH (1,1-Diphenyl-2-picrylhydrazyl), ABTS [2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] scavenging and inhibition of lipid oxidation, which test the oleoresin from the three kinds of citrus, exhibited significant antioxidant capacity. The component polymethoxyflavones contributed the greatest share of the overall antioxidant capacity, while the limonoid and phytosterol components effectively coordinated with its effects.
Collapse
Affiliation(s)
- Min-Hung Chen
- Department of Food Science, National Pingtung University of Science & Technology, Pingtung 90090, Taiwan.
| | - Tzou-Chi Huang
- Department of Food Science, National Pingtung University of Science & Technology, Pingtung 90090, Taiwan.
| |
Collapse
|
35
|
Gualdani R, Cavalluzzi MM, Lentini G, Habtemariam S. The Chemistry and Pharmacology of Citrus Limonoids. Molecules 2016; 21:E1530. [PMID: 27845763 PMCID: PMC6273274 DOI: 10.3390/molecules21111530] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023] Open
Abstract
Citrus limonoids (CLs) are a group of highly oxygenated terpenoid secondary metabolites found mostly in the seeds, fruits and peel tissues of citrus fruits such as lemons, limes, oranges, pumellos, grapefruits, bergamots, and mandarins. Represented by limonin, the aglycones and glycosides of CLs have shown to display numerous pharmacological activities including anticancer, antimicrobial, antioxidant, antidiabetic and insecticidal among others. In this review, the chemistry and pharmacology of CLs are systematically scrutinised through the use of medicinal chemistry tools and structure-activity relationship approach. Synthetic derivatives and other structurally-related limonoids from other sources are include in the analysis. With the focus on literature in the past decade, the chemical classification of CLs, their physico-chemical properties as drugs, their biosynthesis and enzymatic modifications, possible ways of enhancing their biological activities through structural modifications, their ligand efficiency metrics and systematic graphical radar plot analysis to assess their developability as drugs are among those discussed in detail.
Collapse
Affiliation(s)
- Roberta Gualdani
- Department of Chemistry "U. Shiff", University of Florence, Via della Lastruccia 3, Florence 50019, Italy.
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy-Drug Sciences, University of Studies of Bari Aldo Moro, Via E. Orabona n. 4, Bari 70126, Italy.
| | - Giovanni Lentini
- Department of Pharmacy-Drug Sciences, University of Studies of Bari Aldo Moro, Via E. Orabona n. 4, Bari 70126, Italy.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Charham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
36
|
Wang F, Yu X, Liu X, Shen W, Zhu S, Zhao X. Temporal and spatial variations on accumulation of nomilin and limonin in the pummelos. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:23-9. [PMID: 27135815 DOI: 10.1016/j.plaphy.2016.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 05/01/2023]
Abstract
Limonoids are the important secondary metabolites in the citrus. In this study, the accumulation of limonoids at different fruit developmental stages and distribution among different genotypes, tissues and developmental stages were investigated in 12 pummelo varieties. The large variations on limonoids concentration were found among different varieties, which ranged from 233.78 mg/kg FW to 4090.41 mg/kg FW in the seeds at full color stage of the fruit. Classification of pummelos based on the limonoids content divided 12 varieties into three groups. It was matched well with the geographic origination of the pummelo varieties, suggesting that the accumulation of limonoids was mainly determined by the genotype of the pummelo. Accumulation of the limonoids in different tissues was highly variable, and in a tissue specific fashion. The trend of the change on the levels of nomilin and limonin in the seeds and segment membrane were corresponded to the physiological development of the fruit. The rapid accumulation of nomilin and limonoids was observed from the physiological ripening of the seeds. It suggested that physiological maturation of the seeds is a key point that the seeds accelerate the accumulation of nomilin and limonin. In most of pummelo varieties, 10% color break of the fruit was a phenotypic landmark associated with the maximum level of nomilin accumulated in the seeds.
Collapse
Affiliation(s)
- Fusheng Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, China
| | - Xiaohan Yu
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaona Liu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, China
| | - Wanxia Shen
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, China
| | - Shiping Zhu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, China
| | - Xiaochun Zhao
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, China.
| |
Collapse
|
37
|
Sun Y, Shen Y, Liu D, Ye X. Effects of drying methods on phytochemical compounds and antioxidant activity of physiologically dropped un-matured citrus fruits. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Liu C, Yan F, Gao H, He M, Wang Z, Cheng Y, Deng X, Xu J. Features of citrus terpenoid production as revealed by carotenoid, limonoid and aroma profiles of two pummelos (Citrus maxima) with different flesh color. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:111-9. [PMID: 24723118 DOI: 10.1002/jsfa.6689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/04/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Terpenoids are major components of carotenoids, limonoids and aromas in citrus fruits, resulting in fruit coloration, bitterness and aroma. In this study the carotenoid, limonoid and volatile profiles of red-flesh Chuhong pummelo (CH) and pale green-flesh Feicui pummelo (FC) were investigated by HPLC and GC/MS. RESULTS Large differences were found in constituents of carotenoids and limonoids in juice sacs and flavedo and of aromas in flavedo of the two pummelos. For carotenoids in juice sacs, CH contained 57 times the amount in FC, mainly all-trans-lycopene and phytoene, whereas in flavedo it contained only 25% of that in FC, the latter showing a high proportion of β-carotene and other chloroplastic carotenoids. In comparison with FC, limonin and nomilin aglycone production was boosted in juice sacs of CH while being almost absent in flavedo. For volatiles in flavedo, the total amount was significantly higher in CH. PCA suggested that germacrene-type sesquiterpenoids, etc. were principal in distinguishing volatile profiles of the two pummelos. CONCLUSION The data showed a different tissue-biased pattern of carotenoid and limonoid aglycone synthesis in pummelos with different flesh color, and the possible independently regulated synthesis of those metabolites in different fruit tissues. Furthermore, decreased carotenoid and limonoid aglycone production accompanied by increased accumulation of volatile terpenoids in flavedo of red-flesh CH was identified, indicating that a total capacity or a balance of production of various terpenoids might exist in pummelo fruit tissues. It was also suggested that substrate concentration is not the key factor affecting product concentrations during the synthesis of monoterpene derivatives.
Collapse
Affiliation(s)
- Cuihua Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bataglion GA, da Silva FM, Santos JM, dos Santos FN, Barcia MT, de Lourenço CC, Salvador MJ, Godoy HT, Eberlin MN, Koolen HH. Comprehensive characterization of lipids from Amazonian vegetable oils by mass spectrometry techniques. Food Res Int 2014; 64:472-481. [DOI: 10.1016/j.foodres.2014.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/30/2014] [Accepted: 07/20/2014] [Indexed: 11/25/2022]
|
40
|
Mahmoud MF, Gamal S, El-Fayoumi HM. Limonin attenuates hepatocellular injury following liver ischemia and reperfusion in rats via toll-like receptor dependent pathway. Eur J Pharmacol 2014; 740:676-82. [DOI: 10.1016/j.ejphar.2014.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 01/04/2023]
|
41
|
Xiang Y, Cao J, Luo F, Wang D, Chen W, Li X, Sun C, Chen K. Simultaneous purification of limonin, nomilin and isoobacunoic acid from pomelo fruit (Citrus grandis) segment membrane. J Food Sci 2014; 79:C1956-63. [PMID: 25212475 DOI: 10.1111/1750-3841.12581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/12/2014] [Indexed: 11/26/2022]
Abstract
UNLABELLED A method was established for purification of limonin, nomilin, and isoobacunoic acid simultaneously from segment membranes of pomelo (Citrus Grandis). This method includes 3 steps, removing most impurities by macroporous resin HZ-816, isolating limonin by High Speed Counter Current Chromatography (HSCCC), and isolating nomilin and isoobacunoic acid by semi-preparative HPLC. Naringin was partially purified as a by-product of this process using Sephadex LH-20. All limonoids purified through this method reached 95% purity. The purified limonin, nomilin and isoobacunoic acid were identified according to the retention time of the standard substances using HPLC and characteristic fragment ions of LC-MS/MS. PRACTICAL APPLICATION A method of getting health care products limonoids from fruit processing by-products segments membrane of pomelo.
Collapse
Affiliation(s)
- Yu Xiang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Univ, Zijingang Campus, Hangzhou, 310058, PR China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ni H, Yang YF, Chen F, Ji HF, Yang H, Ling W, Cai HN. Pectinase and naringinase help to improve juice production and quality from pummelo (Citrus grandis) fruit. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0100-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Tundis R, Loizzo MR, Menichini F. An overview on chemical aspects and potential health benefits of limonoids and their derivatives. Crit Rev Food Sci Nutr 2014; 54:225-50. [PMID: 24188270 DOI: 10.1080/10408398.2011.581400] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Limonoids are heavily oxygenated, modified triterpenes dominant in Meliaceae and Rutaceae plant families. The term 'limonoid' is derived from limonin, which was first identified as the bitter constituent of Citrus seeds in 1841. This group of secondary metabolites exhibits a wide range of biological properties, including anticancer, antibacterial, antifungal, antimalarial, and antiviral activities. Significant progress on the role of limonoids as promising candidates for cancer chemoprevention and/or therapy has been achieved in particular in recent years. The aim of this review article is to discuss the recent developments on limonoids chemical aspects and biological activities with the relationship between structure and activity, supporting the new possibilities for the medicinal and/or nutraceutical use of these compounds.
Collapse
Affiliation(s)
- Rosa Tundis
- a Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , I-87036 Rende (CS) , Italy
| | | | | |
Collapse
|
44
|
Li PL, Liu MH, Hu JH, Su WW. Systematic chemical profiling of Citrus grandis ‘Tomentosa’ by ultra-fast liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry. J Pharm Biomed Anal 2014; 90:167-79. [DOI: 10.1016/j.jpba.2013.11.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/27/2013] [Indexed: 12/19/2022]
|
45
|
Das N, Islam ME, Jahan N, Islam MS, Khan A, Islam MR, Parvin MS. Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:45. [PMID: 24495381 PMCID: PMC3937116 DOI: 10.1186/1472-6882-14-45] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/29/2014] [Indexed: 12/28/2022]
Abstract
Background Antioxidant compounds like phenols and flavonoids scavenge free radicals and thus inhibit the oxidative mechanisms that lead to control degenerative and other diseases. The aim of this study was to investigate the antioxidant activity in vitro, total phenolic and flavonoid contents in ethanol extracts and fractions of Crescentia cujete leaves and stem bark. Methods Crescentia cujete leaves and bark crude ethanol extract (CEE) and their partitionates petroleum ether (PEF), chloroform (CHF), ethyl acetate (EAF) and aqueous (AQF) were firstly prepared. Different established testing methods, such as 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical, ferric reducing power (FRP), and total antioxidant capacity (TAC) assays were used to detect the antioxidant activity. Further, the total yield, total phenolic (TPC) and total flavonoid contents (TFC) of CEE and all the fractions were determined. Ethanol extracts of both leaves and stem bark were also subjected to preliminary phytochemical screening to detect the presence of secondary metabolites, using standard phytochemical methods (Thin layer chromatography and spray reagents). Results Phytochemical screening of crude ethanol extract of both leaves and stem bark revealed the presence of steroids, flavonoids, saponins, tannins, glycosides and terpenoids. All the fractions and CEE of leaves and bark exhibited antioxidant activities, however, EAF of leaves showing the highest antioxidant activity based on the results of DPPH, FRP and TAC assay tests. The above fraction has shown the significant DPPH scavenging activity (IC50 = 8.78 μg/ml) when compared with standard ascorbic acid (IC50 =7.68 μg/ml). The TAC and FRP activities increased with increasing crude extract/fractions content. The TPC (371.23 ± 15.77 mg GAE/g extract) and TFC (144.64 ± 5.82 mg QE/g extract) of EAF of leaves were found significantly higher as compared to other solvent fractions for both leaves and bark. TPC were highly correlated with the antioxidant activity (R2 = 0.9268 and 0.8515 in DPPH test for leaves and bark, respectively). Conclusion The results of the study show that leaves of C. cujete possesses significant free radical scavenging properties compared with stem bark and a clear correlation exists between the antioxidant activity and phenolic content.
Collapse
|
46
|
Protective effect of compounds from the flowers of Citrus aurantium L. var. amara Engl against carbon tetrachloride-induced hepatocyte injury. Food Chem Toxicol 2013; 62:432-5. [DOI: 10.1016/j.fct.2013.08.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/16/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
|
47
|
Rech Franke SI, Guecheva TN, Henriques JAP, Prá D. Orange Juice and Cancer Chemoprevention. Nutr Cancer 2013; 65:943-53. [DOI: 10.1080/01635581.2013.817594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Li S, Wang Z, Ding F, Sun D, Ma Z, Cheng Y, Xu J. Content changes of bitter compounds in 'Guoqing No.1' Satsuma mandarin (Citrus unshiu Marc.) during fruit development of consecutive 3 seasons. Food Chem 2013; 145:963-9. [PMID: 24128570 DOI: 10.1016/j.foodchem.2013.09.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
The main bitter compounds (nomilin, limonin and naringin) in the fruit tissues of 'Guoqing No.1' Satsuma mandarin (Citrus unshiu Marc.) were determined throughout the fruit development of 3 consecutive growing seasons. Although fluctuating largely at the corresponding developing stages of the 3 years, the contents of these compounds in fruit tissues mostly displayed a declining trend, which implied that the rhythm of the metabolism of these bitter compounds was not consistent among years and was largely growing season dependent. Regarding their distribution, fruit flavedo might be a weak sink that contained the lowest level of naringin, while the segment membrane accumulated large amount of limonin and nomilin, which indicated a possible tissue bias pattern for biosynthesis or accumulation of those compounds. Partial correlation coefficient analysis revealed a synergistic accumulation of naringin and the two limonoid aglycones in fruit tissues during fruit development, indicating an integrated metabolism of flavonoids and limonoids.
Collapse
Affiliation(s)
- Shaojie Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Chinapongtitiwat V, Jongaroontaprangsee S, Chiewchan N, Devahastin S. Important flavonoids and limonin in selected Thai citrus residues. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
50
|
Sun Y, Qiao L, Shen Y, Jiang P, Chen J, Ye X. Phytochemical profile and antioxidant activity of physiological drop of citrus fruits. J Food Sci 2013; 78:C37-42. [PMID: 23301602 DOI: 10.1111/j.1750-3841.2012.03002.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
UNLABELLED The phytochemical content and the antioxidant activity (AA) of physiological drop of the main citrus species grown in China were investigated. Among the flavonoids, hesperidin was found mostly in mandarin and sweet orange, naringin was found mostly in sour orange, pummelo, grapefruit and a hybrid (Gaocheng), narirutin was found in most varieties, neohesperidin was found in Gaocheng and Huyou, and nobiletin and tangeretin were found in most varieties. Hydroxycinnamic acids were the main phenolic acids present, ferulic acid and caffeic acid were the dominant in most cases. There was a greater amount of free (extractable) than bound (insoluble) phenolic acids. Levels of limonoids were higher in Foyou, Eureka lemon, and Gaocheng than those in the other cultivars. The highest level of synephrine was found in Ponkan and Weizhang Satsuma. AA was highest in Ponkan and Weizhang Satsuma and lowest in Huyou, pummel, and lemon. These results suggest that physiological drop of citrus fruits have good potential as sources of different bioactive compounds and antioxidants. PRACTICAL APPLICATION Physiological drop of citrus fruits may be a good resource of bioactive compounds including flavonoids, phenolic acids, limonoids, synephrine, and a good material of nutraceuticals.
Collapse
Affiliation(s)
- Yujing Sun
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | | | | | |
Collapse
|