1
|
Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules 2022; 27:molecules27186008. [PMID: 36144744 PMCID: PMC9500762 DOI: 10.3390/molecules27186008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Traditionally, Brassica species are widely used in traditional medicine, human food, and animal feed. Recently, special attention has been dedicated to Brassica seeds as source of health-promoting phytochemicals. This review provides a summary of recent research on the Brassica seed phytochemistry, bioactivity, dietary importance, and toxicity by screening the major online scientific database sources and papers published in recent decades by Elsevier, Springer, and John Wiley. The search was conducted covering the period from January 1964 to July 2022. Phytochemically, polyphenols, glucosinolates, and their degradation products were the predominant secondary metabolites in seeds. Different extracts and their purified constituents from seeds of Brassica species have been found to possess a wide range of biological properties including antioxidant, anticancer, antimicrobial, anti-inflammatory, antidiabetic, and neuroprotective activities. These valuable functional properties of Brassica seeds are related to their richness in active compounds responsible for the prevention and treatment of various chronic diseases such as obesity, diabetes, cancer, and COVID-19. Currently, the potential properties of Brassica seeds and their components are the main focus of research, but their toxicity and health risks must also be accounted for.
Collapse
|
2
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
3
|
Broccoli Myrosinase cDNA Expression in Escherichia coli and Saccharomyces cerevisiae. Biomolecules 2022; 12:biom12020233. [PMID: 35204734 PMCID: PMC8961631 DOI: 10.3390/biom12020233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Myrosinases (EC 3.2.1.147) are enzymes known for the generation of hydrolysis products that have a potential beneficial effect on human health. Their reaction mechanisms are widely studied, in order to improve and optimize secondary metabolite production processes. In this work, kinetic and biochemical properties of the broccoli myrosinase enzyme produced from its cDNA cloned in Escherichia coli and Saccharomyces cerevisiae were investigated. The results revealed that the thermal stability of the enzyme produced in S. cerevisiae was slightly higher (30 to 60 °C) than that of myrosinase produced in E. coli (20 to 50 °C). The effect of pH on the enzymatic activity was similar in both enzymes, with pH 3 being the optimum value under the reaction conditions used. The kinetic behavior of both enzymes was adjusted to the Michaelis–Menten model. The catalytic efficiency was up to 4 times higher in myrosinase produced in S. cerevisiae, compared to myrosinase produced in E. coli. The glycosylations present in the enzyme would be related to the formation of a dimeric quaternary structure and would not play an essential role in enzymatic activity, since both enzymes were biologically active. These results will probably allow the development of strategies for the production of bioactive metabolites of medical interest.
Collapse
|
4
|
Affiliation(s)
- Anna Grygier
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
5
|
Chorol S, Angchok D, Stobdan T. Irrigation timing as a glucosinolate alteration factor in radish (Raphanus sativus L.) (Gya Labuk and Tsentay Labuk) in the Indian Trans-Himalayan region of Ladakh. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Torrijos R, Nazareth TDM, Quiles JM, Mañes J, Meca G. Application of White Mustard Bran and Flour on Bread as Natural Preservative Agents. Foods 2021; 10:431. [PMID: 33669358 PMCID: PMC7920268 DOI: 10.3390/foods10020431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, the antifungal activity of white mustard bran (MB), a by-product of mustard (Sinapis alba) milling, and white mustard seed flour (MF) was tested against mycotoxigenic fungi in the agar diffusion method. The results obtained were posteriorly confirmed in a quantitative test, determining the minimum concentration of extract that inhibits the fungal growth (MIC) and the minimum concentration with fungicidal activity (MFC). Since MF demonstrated no antifungal activity, the MB was stored under different temperature conditions and storage time to determine its antifungal stability. Finally, an in situ assay was carried out, applying the MB as a natural ingredient into the dough to avoid P. commune CECT 20767 growth and increase the bread shelf life. The results demonstrated that the antifungal activity of MB was dose-dependent. The higher assayed dose of MB (10 g/kg) reduced the fungal population in 4.20 Log CFU/g regarding the control group. Moreover, the shelf life was extended four days compared to the control, equaling its effectiveness with the synthetic preservative sodium propionate (E-281). Therefore, MB could be an alternative to chemical additives in bread formulations since it satisfies consumer requirements. Also, the formulation of bread with MB valorizes this by-product generated during mustard seed milling, thereby helping the industry move forward sustainably by reducing environmental impact.
Collapse
Affiliation(s)
| | - Tiago de Melo Nazareth
- Department of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (R.T.); (J.M.Q.); (J.M.); (G.M.)
| | | | | | | |
Collapse
|
7
|
Yuanfeng W, Chengzhi L, Ligen Z, Juan S, Xinjie S, Yao Z, Jianwei M. Approaches for enhancing the stability and formation of sulforaphane. Food Chem 2020; 345:128771. [PMID: 33601652 DOI: 10.1016/j.foodchem.2020.128771] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022]
Abstract
The isothiocyanate sulforaphane (SF) is one of the most potent naturally occurring Phase 2 enzymes inducers derived from brassica vegetables like broccoli, cabbage, brussel sprouts, etc. Ingestion of broccoli releases SF via hydrolysis of glucoraphanin (GRP) by plant myrosinase and/or intestinal microbiota. However, both SF and plant myrosinase are thermal-labile, and the epithiospecifier protein (ESP) directs the hydrolysis of GRP toward formation of sulforaphane nitrile instead of SF. In addition, bacterial myrosinase has low hydrolyzing efficiency. In this review, we discuss strategies that could be employed to improve the stability of SF, increase SF formation during thermal and non-thermal processing of broccoli, and enhance the myrosinase-like activity of the gut microbiota. Furthermore, new cooking methods or blanching technologies should be developed to maintain myrosinase activity, and novel thermostable myrosinase and/or microbes with high SF producing abilities should also be developed.
Collapse
Affiliation(s)
- Wu Yuanfeng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Lv Chengzhi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Zou Ligen
- Hangzhou Academy of Agricultural Sciences, Zhejiang, Hangzhou, China.
| | - Sun Juan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Song Xinjie
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Zhang Yao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Mao Jianwei
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China; Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China.
| |
Collapse
|
8
|
Lv X, Wang Q, Wang X, Zheng X, Fan D, Espinoza‐Pinochet CA, Cespedes‐Acuña CL. Selection and microencapsulation of myrosinase enzyme from broccoli sprouts of different varieties and characteristics evaluation. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xingang Lv
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Qilei Wang
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Xiao Wang
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Xiaohua Zheng
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Xi'an PR China
| | | | - Carlos L. Cespedes‐Acuña
- Chemistry and Biotechnology of Bioactive Natural Products, Department of Basic Sciences Faculty of Sciences, Universidad del Bio Bio Chillan Chile
| |
Collapse
|
9
|
Sulforaphane-enriched extracts from glucoraphanin-rich broccoli exert antimicrobial activity against gut pathogens in vitro and innovative cooking methods increase in vivo intestinal delivery of sulforaphane. Eur J Nutr 2020; 60:1263-1276. [PMID: 32651764 PMCID: PMC7987625 DOI: 10.1007/s00394-020-02322-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022]
Abstract
Purpose Studies on broccoli (Brassica oleracea var. italica) indicate beneficial effects against a range of chronic diseases, commonly attributed to their bioactive phytochemicals. Sulforaphane, the bioactive form of glucoraphanin, is formed by the action of the indigenous enzyme myrosinase. This study explored the role that digestion and cooking practices play in bioactivity and bioavailability, especially the rarely considered dose delivered to the colon. Methods The antimicrobial activity of sulforaphane extracts from raw, cooked broccoli and cooked broccoli plus mustard seeds (as a source myrosinase) was assessed. The persistence of broccoli phytochemicals in the upper gastrointestinal tract was analysed in the ileal fluid of 11 ileostomates fed, in a cross-over design, broccoli soup prepared with and without mustard seeds. Results The raw broccoli had no antimicrobial activity, except against Bacillus cereus, but cooked broccoli (with and without mustard seeds) showed considerable antimicrobial activity against various tested pathogens. The recovery of sulforaphane in ileal fluids post soup consumption was < 1% but the addition of mustard seeds increased colon-available sulforaphane sixfold. However, when sulforaphane was extracted from the ileal fluid with the highest sulforaphane content and tested against Escherichia coli K12, no inhibitory effects were observed. Analysis of glucosinolates composition in ileal fluids revealed noticeable inter-individual differences, with six “responding” participants showing increases in glucosinolates after broccoli soup consumption. Conclusions Sulforaphane-rich broccoli extracts caused potent antimicrobial effects in vitro, and the consumption of sulforaphane-enriched broccoli soup may inhibit bacterial growth in the stomach and upper small intestine, but not in the terminal ileum or the colon. Electronic supplementary material The online version of this article (10.1007/s00394-020-02322-0) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Mocniak LE, Elkin K, Bollinger JM. Lifetimes of the Aglycone Substrates of Specifier Proteins, the Autonomous Iron Enzymes That Dictate the Products of the Glucosinolate-Myrosinase Defense System in Brassica Plants. Biochemistry 2020; 59:2432-2441. [PMID: 32516526 DOI: 10.1021/acs.biochem.0c00358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specifier proteins (SPs) are components of the glucosinolate-myrosinase defense system found in plants of the order Brassicales (brassicas). Glucosinolates (GLSs) comprise at least 150 known S-(β-d-glucopyranosyl)thiohydroximate-O-sulfonate compounds, each with a distinguishing side chain linked to the central carbon. Following tissue injury, the enzyme myrosinase (MYR) promiscuously hydrolyzes the common thioglycosidic linkage of GLSs to produce unstable aglycone intermediates, which can readily undergo a Lossen-like rearrangement to the corresponding organoisothiocyanates. The known SPs share a common protein architecture but redirect the breakdown of aglycones to different stable products: epithionitrile (ESP), nitrile (NSP), or thiocyanate (TFP). The different effects of these products on brassica consumers motivate efforts to understand the defense response in chemical detail. Experimental analysis of SP mechanisms is challenged by the instability of the aglycones and would be facilitated by knowledge of their lifetimes. We developed a spectrophotometric method that we used to monitor the rearrangement reactions of the MYR-generated aglycones from nine GLSs, discovering that their half-lives (t1/2) vary by a factor of more than 50, from <3 to 150 s (22 °C). The t1/2 of the sinigrin-derived allyl aglycone (34 s), which can form the epithionitrile product (1-cyano-2,3-epithiopropane) in the presence of ESP, proved to be sufficient to enable spatial and temporal separation of the MYR and ESP reactions. The results confirm recent proposals that ESP is an autonomous iron-dependent enzyme that intercepts the unstable aglycone rather than a direct effector of MYR. Knowledge of aglycone lifetimes will enable elucidation of how the various SPs reroute aglycones to different products.
Collapse
Affiliation(s)
| | - Kyle Elkin
- Pasture Systems and Watershed Management Research Unit, United States Department of Agriculture Agricultural Research Service, Building 3702 Curtin Road, University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
11
|
Zhang L, Xie Z, Chen Y, Hu X. Effect of heat processing on oxazolidine of
Capparis masaikai
LévI. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lanyun Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming PR China
| | - Zenghui Xie
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming PR China
| | - Yanli Chen
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming PR China
| | - Xujia Hu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming PR China
| |
Collapse
|
12
|
Using particle size and fat content to control the release of Allyl isothiocyanate from ground mustard seeds for its application in antimicrobial packaging. Food Chem 2020; 308:125573. [DOI: 10.1016/j.foodchem.2019.125573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022]
|
13
|
Bhat R, Vyas D. Myrosinase: insights on structural, catalytic, regulatory, and environmental interactions. Crit Rev Biotechnol 2019; 39:508-523. [PMID: 30939944 DOI: 10.1080/07388551.2019.1576024] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucosinolate-myrosinase is a substrate-enzyme defense mechanism present in Brassica crops. This binary system provides the plant with an efficient system against herbivores and pathogens. For humans, it is well known for its anti-carcinogenic, anti-inflammatory, immunomodulatory, anti-bacterial, cardio-protective, and central nervous system protective activities. Glucosinolate and myrosinase are spatially present in different cells that upon tissue disruption come together and result in the formation of a variety of hydrolysis products with diverse physicochemical and biological properties. The myrosinase-catalyzed reaction starts with cleavage of the thioglucosidic linkage resulting in release of a D-glucose and an unstable thiohydroximate-O-sulfate. The outcome of this thiohydroximate-O-sulfate has been shown to depend on the structure of the glucosinolate side chain, the presence of supplementary proteins known as specifier proteins and/or on the physiochemical condition. Myrosinase was first reported in mustard seed during 1939 as a protein responsible for release of essential oil. Until this date, myrosinases have been characterized from more than 20 species of Brassica, cabbage aphid, and many bacteria residing in the human intestine. All the plant myrosinases are reported to be activated by ascorbic acid while aphid and bacterial myrosinases are found to be either neutral or inhibited. Myrosinase catalyzes hydrolysis of the S-glycosyl bond, O-β glycosyl bond, and O-glycosyl bond. This review summarizes information on myrosinase, an essential component of this binary system, including its structural and molecular properties, mechanism of action, and its regulation and will be beneficial for the research going on the understanding and betterment of the glucosinolate-myrosinase system from an ecological and nutraceutical perspective.
Collapse
Affiliation(s)
- Rohini Bhat
- a Biodiversity and Applied Botany Division , Indian Institute of Integrative Medicine (CSIR) , Jammu , India.,b Academy of Scientific and Innovative Research , Indian Institute of Integrative Medicine (CSIR) , Jammu , India
| | - Dhiraj Vyas
- a Biodiversity and Applied Botany Division , Indian Institute of Integrative Medicine (CSIR) , Jammu , India.,b Academy of Scientific and Innovative Research , Indian Institute of Integrative Medicine (CSIR) , Jammu , India
| |
Collapse
|
14
|
Zhou Q, Tang H, Jia X, Zheng C, Huang F, Zhang M. Distribution of glucosinolate and pungent odors in rapeseed oils from raw and microwaved seeds. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1514632] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Qi Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P. R. China
- Oil Crops and Lipids Process Technology National& Local Joint Engineering Laboratory, Key Laboratory of Oilseed Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
| | - Hu Tang
- Oil Crops and Lipids Process Technology National& Local Joint Engineering Laboratory, Key Laboratory of Oilseed Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
| | - Xiao Jia
- Oil Crops and Lipids Process Technology National& Local Joint Engineering Laboratory, Key Laboratory of Oilseed Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
| | - Chang Zheng
- Oil Crops and Lipids Process Technology National& Local Joint Engineering Laboratory, Key Laboratory of Oilseed Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
| | - Fenghong Huang
- Oil Crops and Lipids Process Technology National& Local Joint Engineering Laboratory, Key Laboratory of Oilseed Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P. R. China
| |
Collapse
|
15
|
Oliviero T, Verkerk R, Dekker M. Isothiocyanates from Brassica Vegetables-Effects of Processing, Cooking, Mastication, and Digestion. Mol Nutr Food Res 2018; 62:e1701069. [PMID: 29898282 PMCID: PMC6175105 DOI: 10.1002/mnfr.201701069] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/15/2018] [Indexed: 12/14/2022]
Abstract
The formation of health-beneficial isothiocyanates (ITCs) from glucosinolates depends on a wide variety of plant-intrinsic factors (e.g., concentration of glucosinolates, activity of myrosinase, and specifier proteins) and on a multitude of extrinsic postharvest factors such as the conditions used during industrial processing, domestic preparation, mastication, and digestion. All of these factors contribute to a large variability in the formation of ITCs (and other breakdown products), as well as their intake and absorption upon consumption of Brassica vegetables. This uncertainty in ITC intake and absorption is a barrier for the determination of an optimal Brassica vegetable consumption pattern. In this review, the intrinsic and extrinsic factors that affect the formation, intake, and absorption of ITCs are described according to the most recent findings. The focus of this review includes the hydrolysis reaction mechanisms, the elucidation of the primary factors that play a role in the hydrolysis reaction, the influence of processing and cooking conditions, the effect of chewing, and the roles of the gastric and upper intestinal phases, including the effect of the meal composition (e.g., the effect of other meal compounds present during digestion) on the potential formation of ITCs.
Collapse
Affiliation(s)
- Teresa Oliviero
- Food Quality and Design GroupDepartment of Agrotechnology and Food SciencesWageningen UniversityBornse Weilanden 96708 WGWageningenThe Netherlands
| | - Ruud Verkerk
- Food Quality and Design GroupDepartment of Agrotechnology and Food SciencesWageningen UniversityBornse Weilanden 96708 WGWageningenThe Netherlands
| | - Matthijs Dekker
- Food Quality and Design GroupDepartment of Agrotechnology and Food SciencesWageningen UniversityBornse Weilanden 96708 WGWageningenThe Netherlands
| |
Collapse
|
16
|
Okunade O, Niranjan K, Ghawi SK, Kuhnle G, Methven L. Supplementation of the Diet by Exogenous Myrosinase via Mustard Seeds to Increase the Bioavailability of Sulforaphane in Healthy Human Subjects after the Consumption of Cooked Broccoli. Mol Nutr Food Res 2018; 62:e1700980. [PMID: 29806738 DOI: 10.1002/mnfr.201700980] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/08/2018] [Indexed: 11/11/2022]
Abstract
SCOPE Broccoli contains glucosinolate glucoraphanin, which, in the presence of myrosinase, can hydrolyze to isothiocyanate sulforaphane, reported to have anticarcinogenic activity. However, the myrosinase enzyme is denatured on cooking. Addition of an active source of myrosinase, such as from powdered mustard seed, to cooked Brassica vegetables can increase the release of health beneficial isothiocyanates; however, this has not previously been proven in vivo. METHODS AND RESULTS The concentration of sulforaphane metabolite (sulforaphane N-acetyl-l-cysteine [SF-NAC]) in 12 healthy adults after the consumption of 200 g cooked broccoli, with and without 1 g powdered brown mustard, was studied in a randomized crossover design. During the 24-h period following the consumption of the study sample, all urine was collected. SF-NAC content was assayed by HPLC. When study subjects ingested cooked broccoli alone, mean urinary SF-NAC excreted was 9.8 ± 5.1 μmol per g creatinine, and when cooked broccoli was consumed with mustard powder, this increased significantly to 44.7 ± 33.9 μmol SF-NAC per gram creatinine. CONCLUSION These results conclude that when powdered brown mustard is added to cooked broccoli, the bioavailability of sulforaphane is over four times greater than that from cooked broccoli ingested alone.
Collapse
Affiliation(s)
- Olukayode Okunade
- Department of Food Technology, Federal Polytechnic, Ado Ekiti, Nigeria
| | - Keshavan Niranjan
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Sameer K Ghawi
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Gunter Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| |
Collapse
|
17
|
Oliviero T, Lamers S, Capuano E, Dekker M, Verkerk R. Bioavailability of Isothiocyanates From Broccoli Sprouts in Protein, Lipid, and Fiber Gels. Mol Nutr Food Res 2018. [PMID: 29532635 PMCID: PMC6174964 DOI: 10.1002/mnfr.201700837] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SCOPE Optimization of bioavailability of dietary bioactive health-beneficial compounds is as important as increasing their concentration in foods. The aim of this study is to explore the change in bioavailability of isothiocyanates (ITCs) in broccoli sprouts incorporated in protein, fiber, and lipid gels. METHODS AND RESULTS Five participants took part in a cross-over study and collected timed urine samples up to 24 h after consumption of proteins, dietary fibers, and lipid gels containing broccoli sprouts powder. Sulforaphane and iberin metabolites were determined in the urine samples. Samples in which sulforaphane and iberin were preformed by myrosinase led to a higher bioavailability of those compounds. Compared to the control broccoli sprout, incorporation of sprouts in gels led to lower bioavailability for preformed sulforaphane and iberin (although for sulforaphane the lower bioavailability was not significantly different) whereas for the gels rich in their precursors, glucoraphanin and glucoiberin, the opposite trend was observed (although not significantly different). CONCLUSION This explorative study suggests that ITCs bioavailability can be modulated by food structure and composition and further and deeper investigations are needed to develop food products that lead to an optimized ITCs bioavailability.
Collapse
Affiliation(s)
- Teresa Oliviero
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Simone Lamers
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Matthijs Dekker
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Ruud Verkerk
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
18
|
Tian S, Liu X, Lei P, Zhang X, Shan Y. Microbiota: a mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1255-1260. [PMID: 28869285 DOI: 10.1002/jsfa.8654] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/24/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
Isothiocyanates (ITCs), such as sulforaphane (SFN), exhibit powerful biological functions in fighting cancers, and cardiovascular and neurodegenerative diseases. They normally exist as glucosinolates (GLSs) in cruciferous vegetables, which are not themselves bioactive until they are degraded by myrosinase to form ITCs. Myrosinase coexists in the same plants but is normally kept apart from GLSs in different apparatus. A key point is that myrosinase is temperature sensitive and can be inactivated upon exposure to temperatures over 60 °, as typically occurs during cooking. However, studies using animal models and population trials have suggested that human gut bacteria might act like an 'organ' in that they can secrete their own myrosinase. In this review, the hydrolysis of GLS by myrosinase is discussed, with an important focus on the gut microflora and their myrosinase-producing roles. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sicong Tian
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaodong Liu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Peng Lei
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaohong Zhang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Zhejiang, China
| | - Yujuan Shan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
19
|
Wang J, Barba FJ, Sørensen JC, Frandsen HB, Sørensen S, Olsen K, Orlien V. High pressure effects on myrosinase activity and glucosinolate preservation in seedlings of Brussels sprouts. Food Chem 2017; 245:1212-1217. [PMID: 29287344 DOI: 10.1016/j.foodchem.2017.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
Combinations of pressure, temperature and time (100-600 MPa, 30-60 °C, 3-10 min) influence enzyme activity of the myrosinase-glucosinolate system. Seedlings of Brussels sprouts were used as a model, which constitutes a well-defined and homogenous sample matrix with simple cell structures. A response surface methodology approach was used to determine the combined effect of pressure level, temperature and time on glucosinolate concentration and myrosinase activity in Brussels sprouts seedlings. The effects on residual myrosinase activity and intact glucosinolate concentration differed according to combinations of pressure, time and temperature. The results showed that maximum inactivation of myrosinase and preservation of glucosinolate (85% of the untreated level) was obtained after HP treatment at 600 MPa, 60 °C, 10 min. The highest preservation of myrosinase activity compared to untreated seedlings was after HP at 100 MPa, 30 °C, 3 min and 10 min with low degree of cell permeabilization.
Collapse
Affiliation(s)
- Jia Wang
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Francisco J Barba
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Jens C Sørensen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Heidi B Frandsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Susanne Sørensen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Karsten Olsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Vibeke Orlien
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
20
|
Westphal A, Riedl KM, Cooperstone JL, Kamat S, Balasubramaniam VM, Schwartz SJ, Böhm V. High-Pressure Processing of Broccoli Sprouts: Influence on Bioactivation of Glucosinolates to Isothiocyanates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8578-8585. [PMID: 28929757 PMCID: PMC7104659 DOI: 10.1021/acs.jafc.7b01380] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Effects of high-pressure processing (HPP, 100-600 MPa for 3 min at 30 °C) on the glucosinolate content, conversion to isothiocyanates, and color changes during storage in fresh broccoli sprouts were investigated. A mild heat treatment (60 °C) and boiling (100 °C) were used as positive and negative controls, respectively. Glucosinolates were quantified using liquid chromatography-mass spectrometry, and isothiocyanates were quantified using high-performance liquid chromatography-photodiode array detection. A formation of isothiocyanates was observed in all high-pressure-treated sprouts. The highest degree of conversion (85%) was observed after the 600 MPa treatment. Increased isothiocyanate formation at 400-600 MPa suggests an inactivation of the epithiospecifier protein. During storage, color changed from green to brownish, reflected by increasing a* values and decreasing L* values. This effect was less pronounced for sprouts treated at 100 and 600 MPa, indicating an influence on the responsible enzymes. In summary, HPP had no negative effects on the glucosinolate-myrosinase system in broccoli sprouts.
Collapse
Affiliation(s)
- Anna Westphal
- Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Straße 25-29, 07743 Jena, Germany
| | - Kenneth M. Riedl
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, 110 Parker Food Science and Technology Building, Columbus, Ohio 43210, United States
| | - Jessica L. Cooperstone
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, 110 Parker Food Science and Technology Building, Columbus, Ohio 43210, United States
| | - Shreya Kamat
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, 110 Parker Food Science and Technology Building, Columbus, Ohio 43210, United States
| | - V. M. Balasubramaniam
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, 110 Parker Food Science and Technology Building, Columbus, Ohio 43210, United States
| | - Steven J. Schwartz
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, 110 Parker Food Science and Technology Building, Columbus, Ohio 43210, United States
| | - Volker Böhm
- Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Straße 25-29, 07743 Jena, Germany
- Corresponding Author: Telephone: +49-3641-949633. Fax: +49-3641-949702.
| |
Collapse
|
21
|
Croat JR, Karki B, Berhow M, Iten L, Muthukumarappan K, Gibbons WR. Utilizing pretreatment and fungal incubation to enhance the nutritional value of canola meal. J Appl Microbiol 2017; 123:362-371. [PMID: 28703403 DOI: 10.1111/jam.13507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/12/2017] [Accepted: 06/04/2017] [Indexed: 11/26/2022]
Abstract
AIMS The objective of this study was to determine the optimal pretreatment and fungal strain to reduce glucosinolates (GLS), fibre and residual sugars while increasing the nutritional value of canola meal. METHODS AND RESULTS Submerged incubation conditions were used to evaluate four pretreatment methods (extrusion, hot water cook, dilute acid and dilute alkali) and three fungal cultures (Aureobasidium pullulans Y-2311-1, Fusarium venenatum NRRL-26139 and Trichoderma reesei NRRL-3653) in hexane-extracted (HE) and cold-pressed (CP) canola meal. CONCLUSIONS The combination of extrusion pretreatment followed by incubation with T. reesei resulted in the greatest overall improvement to HE canola meal, increasing protein to 51·5%, while reducing NDF, GLS and residual sugars to 18·6%, 17·2 μmol l-1 g-1 and 5% w/w, respectively. Extrusion pretreatment and incubation with F. venenatum performed the best with CP canola meal, resulting in 54·4% protein while reducing NDF, GLS and residual sugars to 11·6%, 6·7 μmol l-1 g-1 and 3·8% w/w respectively. SIGNIFICANCE AND IMPACT OF THE STUDY The work is significant in that it provides a method of reducing GLS (up to 98%) and neutral detergent fibre (up to 65%) while increasing the protein content (up to 45%) of canola meal. This novel pretreatment and submerged incubation process could be used to produce a canola product with higher nutritional value for livestock consumption.
Collapse
Affiliation(s)
- J R Croat
- Biology & Microbiology Department, South Dakota State University, Brookings, SD, USA
| | - B Karki
- Agricultural & Biosystems Engineering Department, South Dakota State University, Brookings, SD, USA
| | - M Berhow
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - L Iten
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - K Muthukumarappan
- Agricultural & Biosystems Engineering Department, South Dakota State University, Brookings, SD, USA
| | - W R Gibbons
- Biology & Microbiology Department, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
22
|
Chen JJ, Zhao QS, Liu YL, Gong PF, Cao LL, Wang XD, Zhao B. Macamides present in the commercial maca (Lepidium meyenii) products and the macamide biosynthesis affected by postharvest conditions. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1274905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jin-jin Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Qing-sheng Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yi-lan Liu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Peng-fei Gong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Department of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Li-li Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiao-dong Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Hanschen FS, Klopsch R, Oliviero T, Schreiner M, Verkerk R, Dekker M. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana. Sci Rep 2017; 7:40807. [PMID: 28094342 PMCID: PMC5240131 DOI: 10.1038/srep40807] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022] Open
Abstract
Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables.
Collapse
Affiliation(s)
- Franziska S Hanschen
- Department of Plant Quality, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Rebecca Klopsch
- Department of Plant Quality, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Teresa Oliviero
- Food Quality and Design Group, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Monika Schreiner
- Department of Plant Quality, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Ruud Verkerk
- Food Quality and Design Group, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Matthijs Dekker
- Food Quality and Design Group, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
24
|
Klingaman CA, Wagner MJ, Brown JR, Klecker JB, Pauley EH, Noldner CJ, Mays JR. HPLC-based kinetics assay facilitates analysis of systems with multiple reaction products and thermal enzyme denaturation. Anal Biochem 2016; 516:37-47. [PMID: 27742213 DOI: 10.1016/j.ab.2016.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/20/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022]
Abstract
Glucosinolates are plant secondary metabolites abundant in Brassica vegetables that are substrates for the enzyme myrosinase, a thioglucoside hydrolase. Enzyme-mediated hydrolysis of glucosinolates forms several organic products, including isothiocyanates (ITCs) that have been explored for their beneficial effects in humans. Myrosinase has been shown to be tolerant of non-natural glucosinolates, such as 2,2-diphenylethyl glucosinolate, and can facilitate their conversion to non-natural ITCs, some of which are leads for drug development. An HPLC-based method capable of analyzing this transformation for non-natural systems has been described. This current study describes (1) the Michaelis-Menten characterization of 2,2-diphenyethyl glucosinolate and (2) a parallel evaluation of this analogue and the natural analogue glucotropaeolin to evaluate effects of pH and temperature on rates of hydrolysis and product(s) formed. Methods described in this study provide the ability to simultaneously and independently analyze the kinetics of multiple reaction components. An unintended outcome of this work was the development of a modified Lambert W(x) which includes a parameter to account for the thermal denaturation of enzyme. The results of this study demonstrate that the action of Sinapis alba myrosinase on natural and non-natural glucosinolates is consistent under the explored range of experimental conditions and in relation to previous accounts.
Collapse
Affiliation(s)
- Chase A Klingaman
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA
| | - Matthew J Wagner
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA
| | - Justin R Brown
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA
| | - John B Klecker
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA
| | - Ethan H Pauley
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA
| | - Colin J Noldner
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA
| | - Jared R Mays
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA.
| |
Collapse
|
25
|
Golmohamadi A, Morra MJ, Popova I, Nindo CI. Optimizing the use of Sinapis alba seed meal extracts as a source of thiocyanate (SCN−) for the lactoperoxidase system. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Wentian C, Eric K, Jingyang Y, Shuqin X, Biao F, Xiaoming Z. Improving red radish anthocyanin yield and off flavor removal by acidified aqueous organic based medium. RSC Adv 2016. [DOI: 10.1039/c6ra16936h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In view of the high content of the highly stable anthocyanin in red radish roots, the plant is considered as a potent source of natural anthocyanins.
Collapse
Affiliation(s)
- Chen Wentian
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Karangwa Eric
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yu Jingyang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Xia Shuqin
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Feng Biao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Zhang Xiaoming
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
27
|
Bhat R, Kaur T, Khajuria M, Vyas R, Vyas D. Purification and Characterization of a Novel Redox-Regulated Isoform of Myrosinase (β-Thioglucoside Glucohydrolase) from Lepidium latifolium L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10218-10226. [PMID: 26527478 DOI: 10.1021/acs.jafc.5b04468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Myrosinase (ExPASy entry EC 3.2.1.147) is involved in the hydrolysis of glucosinolates to isothiocyanates, nitriles, and thiocyanates that are responsible for various ecological and health benefits. Myrosinase was purified from the leaves of Lepidium latifolium, a high-altitude plant, to homogeneity in a three-step purification process. Purified enzyme exists as dimer in native form (∼160 kDa) with a subunit size of ∼70 kDa. The enzyme exhibited maximum activity at pH 6.0 and 50 °C. With sinigrin as substrate, the enzyme showed Km and Vmax values of 171 ± 23 μM and 0.302 μmol min(-1) mg(-1), respectively. The enzyme was found to be redox-regulated, with an increase in Vmax and Kcat in the presence of GSH. Reduced forms of the enzyme were found to be more active. This thiol-regulated kinetic behavior of myrosinase signifies enzyme's strategy to fine-tune its activity in different redox environments, thus regulating its biological effects.
Collapse
Affiliation(s)
- Rohini Bhat
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| | - Tarandeep Kaur
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| | - Manu Khajuria
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| | - Ruchika Vyas
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| | - Dhiraj Vyas
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| |
Collapse
|
28
|
Okunade OA, Ghawi SK, Methven L, Niranjan K. Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J. Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds. Food Chem 2015; 187:485-90. [PMID: 25977054 DOI: 10.1016/j.foodchem.2015.04.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/20/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
This study investigates the effects of temperature and pressure on inactivation of myrosinase extracted from black, brown and yellow mustard seeds. Brown mustard had higher myrosinase activity (2.75 un/mL) than black (1.50 un/mL) and yellow mustard (0.63 un/mL). The extent of enzyme inactivation increased with pressure (600-800 MPa) and temperature (30-70° C) for all the mustard seeds. However, at combinations of lower pressures (200-400 MPa) and high temperatures (60-80 °C), there was less inactivation. For example, application of 300 MPa and 70 °C for 10 min retained 20%, 80% and 65% activity in yellow, black and brown mustard, respectively, whereas the corresponding activity retentions when applying only heat (70° C, 10 min) were 0%, 59% and 35%. Thus, application of moderate pressures (200-400 MPa) can potentially be used to retain myrosinase activity needed for subsequent glucosinolate hydrolysis.
Collapse
Affiliation(s)
- Olukayode Adediran Okunade
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, P.O. Box 226, Reading RG6 6AP, UK.
| | - Sameer Khalil Ghawi
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, P.O. Box 226, Reading RG6 6AP, UK
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, P.O. Box 226, Reading RG6 6AP, UK
| | - Keshavan Niranjan
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, P.O. Box 226, Reading RG6 6AP, UK
| |
Collapse
|
29
|
Wade KL, Ito Y, Ramarathnam A, Holtzclaw WD, Fahey JW. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2015; 26:47-53. [PMID: 25130502 PMCID: PMC4262704 DOI: 10.1002/pca.2535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (from broccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. OBJECTIVE To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. METHODS A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). RESULTS Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. CONCLUSION Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable.
Collapse
Affiliation(s)
- Kristina L. Wade
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Yoichiro Ito
- Laboratory of Bioseparation Technology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room 8N230, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Aarthi Ramarathnam
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - W. David Holtzclaw
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Jed W. Fahey
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
- Center for Human Nutrition, Department of International Health, Johns Hopkins University Bloomberg School of Public Health, 625 North Wolfe Street, Baltimore, MD, 21205, USA
| |
Collapse
|
30
|
Giambanelli E, Verkerk R, Fogliano V, Capuano E, D'Antuono LF, Oliviero T. Broccoli glucosinolate degradation is reduced performing thermal treatment in binary systems with other food ingredients. RSC Adv 2015. [DOI: 10.1039/c5ra11409h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glucosinolate (GL) stability has been widely studied in differentBrassicaspecies.
Collapse
Affiliation(s)
- E. Giambanelli
- Department of Agri-Food Science and Technology
- Food Science University Campus
- University of Bologna
- Cesena
- Italy
| | - R. Verkerk
- Food Quality and Design Group
- Wageningen University
- 6700 AA Wageningen
- The Netherlands
| | - V. Fogliano
- Food Quality and Design Group
- Wageningen University
- 6700 AA Wageningen
- The Netherlands
| | - E. Capuano
- Food Quality and Design Group
- Wageningen University
- 6700 AA Wageningen
- The Netherlands
| | - L. F. D'Antuono
- Department of Agri-Food Science and Technology
- Food Science University Campus
- University of Bologna
- Cesena
- Italy
| | - T. Oliviero
- Food Quality and Design Group
- Wageningen University
- 6700 AA Wageningen
- The Netherlands
| |
Collapse
|
31
|
Mahn A, Angulo A, Cabañas F. Purification and characterization of broccoli (Brassica oleracea var. italica) myrosinase (β-thioglucosidase glucohydrolase). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11666-11671. [PMID: 25390544 DOI: 10.1021/jf504957c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Myrosinase (β-thioglucosidase glucohydrolase, EC 3.2.1.147) from broccoli (Brassica oleracea var. italica) was purified by ammonium sulfate precipitation followed by concanavalin A affinity chromatography, with an intermediate dialysis step, resulting in 88% recovery and 1318-fold purification. These are the highest values reported for the purification of any myrosinase. The subunits of broccoli myrosinase have a molecular mass of 50-55 kDa. The native molecular mass of myrosinase was 157 kDa, and accordingly, it is composed of three subunits. The maximum activity was observed at 40 °C and at pH below 5.0. Kinetic assays demonstrated that broccoli myrosinase is subjected to substrate (sinigrin) inhibition. The Michaelis-Menten model, considering substrate inhibition, gave Vmax equal to 0.246 μmol min(-1), Km equal to 0.086 mM, and K(I) equal to 0.368 mM. This is the first study about purification and characterization of broccoli myrosinase.
Collapse
Affiliation(s)
- Andrea Mahn
- Department of Chemical Engineering, University of Santiago of Chile , Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | | | | |
Collapse
|
32
|
Jin X, Oliviero T, van der Sman R, Verkerk R, Dekker M, van Boxtel A. Impact of different drying trajectories on degradation of nutritional compounds in broccoli (Brassica oleracea var. italica). Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.05.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Retention of glucosinolates during fermentation of Brassica juncea: a case study on production of sayur asin. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2355-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Oliviero T, Verkerk R, Van Boekel MAJS, Dekker M. Effect of water content and temperature on inactivation kinetics of myrosinase in broccoli (Brassica oleracea var. italica). Food Chem 2014; 163:197-201. [PMID: 24912716 DOI: 10.1016/j.foodchem.2014.04.099] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 03/11/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
Abstract
Broccoli belongs to the Brassicaceae plant family consisting of widely eaten vegetables containing high concentrations of glucosinolates. Enzymatic hydrolysis of glucosinolates by endogenous myrosinase (MYR) can form isothiocyanates with health-promoting activities. The effect of water content (WC) and temperature on MYR inactivation in broccoli was investigated. Broccoli was freeze dried obtaining batches with WC between 10% and 90% (aw from 0.10 to 0.96). These samples were incubated for various times at different temperatures (40-70°C) and MYR activity was measured. The initial MYR inactivation rates were estimated by the first-order reaction kinetic model. MYR inactivation rate constants were lower in the driest samples (10% WC) at all studied temperatures. Samples with 67% and 90% WC showed initial inactivation rate constants all in the same order of magnitude. Samples with 31% WC showed intermediate initial inactivation rate constants. These results are useful to optimise the conditions of drying processes to produce dried broccoli with optimal MYR retention for human health.
Collapse
Affiliation(s)
- T Oliviero
- Food Quality and Design Group, Wageningen University, Postbox 17/bode 30, 6700 AA Wageningen, The Netherlands.
| | - R Verkerk
- Food Quality and Design Group, Wageningen University, Postbox 17/bode 30, 6700 AA Wageningen, The Netherlands.
| | - M A J S Van Boekel
- Food Quality and Design Group, Wageningen University, Postbox 17/bode 30, 6700 AA Wageningen, The Netherlands.
| | - M Dekker
- Food Quality and Design Group, Wageningen University, Postbox 17/bode 30, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
35
|
Oliviero T, Verkerk R, Vermeulen M, Dekker M. In vivo formation and bioavailability of isothiocyanates from glucosinolates in broccoli as affected by processing conditions. Mol Nutr Food Res 2014; 58:1447-56. [PMID: 24687744 DOI: 10.1002/mnfr.201300894] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 11/08/2022]
Abstract
SCOPE To study the effect of residual myrosinase (MYR) activity in differently processed broccoli on sulforaphane (SR) and iberin (IB) formation, bioavailability, and excretion in human volunteers. METHODS AND RESULTS Five different broccoli products were obtained with similar glucoraphanin (GR) and glucoiberin (GI) content, yet different MYR activity. Excretion of SR and IB conjugates in urine were determined in 15 participants after ingestion of the broccoli products. A reduction of 80% of MYR in the product did not cause differences in the total amount of SR and IB found in urine compared to the product with 100% MYR. Complete inactivation of MYR gave the lowest total amount of SR and IB in urine (10 and 19%). A residual MYR of only 2% in the product gave an intermediate amount (17 and 29%). The excretion half-lives of SR and IB conjugates were comparable for all the products (2.5 h on average), although the maximum excretion peak times were clearly shorter when the residual MYR was higher (2.3-6.1 h). CONCLUSION For the first time, the effect of residual MYR activity on isothiocyanate bioavailability was systematically and quantitatively studied. Processing conditions have a large effect on the kinetics and bioavailability of isothiocyanates from broccoli.
Collapse
Affiliation(s)
- Teresa Oliviero
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
36
|
|
37
|
Dai R, Lim LT. Release of Allyl Isothiocyanate from Mustard Seed Meal Powder. J Food Sci 2013; 79:E47-53. [DOI: 10.1111/1750-3841.12322] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/31/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Ruyan Dai
- Dept. of Food Science; Univ. of Guelph; 50 Stone Rd. East Guelph Ontario ON N1G 2W1 Canada
| | - Loong-Tak Lim
- Dept. of Food Science; Univ. of Guelph; 50 Stone Rd. East Guelph Ontario ON N1G 2W1 Canada
| |
Collapse
|
38
|
Terefe NS, Buckow R, Versteeg C. Quality-Related Enzymes in Fruit and Vegetable Products: Effects of Novel Food Processing Technologies, Part 1: High-Pressure Processing. Crit Rev Food Sci Nutr 2013; 54:24-63. [DOI: 10.1080/10408398.2011.566946] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Li S, Aliani M, Holley RA. Sensory Evaluation of Dry-fermented Sausage Containing Ground Deodorized Yellow Mustard. J Food Sci 2013; 78:S1595-S1601. [DOI: 10.1111/1750-3841.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/31/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Shuliu Li
- Dept. of Food Science, Faculty of Agriculture and Food Sciences; Univ. of Manitoba, Winnipeg, Manitoba R3T 2N2; Canada
| | - Michel Aliani
- Dept. of Human Nutritional Sciences; Univ. of Manitoba, Winnipeg, Manitoba R3T 2N2; Canada
| | - Richard A. Holley
- Dept. of Food Science, Faculty of Agriculture and Food Sciences; Univ. of Manitoba, Winnipeg, Manitoba R3T 2N2; Canada
| |
Collapse
|
40
|
Guo RF, Yuan GF, Wang QM. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J Zhejiang Univ Sci B 2013; 14:124-31. [PMID: 23365011 DOI: 10.1631/jzus.b1200096] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To understand the regulation mechanism of NaCl on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCl were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCl. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCl at relatively low concentrations (20, 40, and 60 mmol/L). NaCl treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCl treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCl could be desirable for human nutrition.
Collapse
Affiliation(s)
- Rong-fang Guo
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|
41
|
Xu F, Chen X, Yang Z, Jin P, Wang K, Shang H, Wang X, Zheng Y. Maintaining quality and bioactive compounds of broccoli by combined treatment with 1-methylcyclopropene and 6-benzylaminopurine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:1156-1161. [PMID: 22936606 DOI: 10.1002/jsfa.5867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 07/22/2012] [Accepted: 07/24/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Broccoli deteriorates very quickly after harvest at ambient temperature due to the loss of green colour and the consequent yellowing of florets. To search for an effective method to control quality deterioration, the effect of 1-methylcyclopropene (1-MCP) combined with 6-benzylaminopurine (6-BA) treatment on visual quality, antioxidant enzymes and bioactive compounds in broccoli florets were investigated. RESULTS A combined treatment of 2.5 µL L⁻¹ 1-MCP and 200 mg L⁻¹ 6-BA significantly reduced the increase of lightness (L*) value, and retained a high level for the hue value (H) and chlorophyll content. Superoxide dismutase, ascobate peroxidase and catalase activities increased while the activity of peroxidase decreased during storage in treated samples in comparison with the controls. The combined treatment enhanced the biosynthesis of glucosinolate and the formation of the anticarcinogen sulforaphane, which improved the health benefit of broccoli. CONCLUSION These results indicate that a combined treatment of 1-MCP and 6-BA could be a good candidate for maintaining the visual quality and enhancing the nutritional value in broccoli during storage at 15 °C.
Collapse
Affiliation(s)
- Feng Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food Chem 2012; 138:1734-41. [PMID: 23411305 DOI: 10.1016/j.foodchem.2012.10.119] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 11/20/2022]
Abstract
Sulforaphane, a naturally occurring cancer chemopreventive, is the hydrolysis product of glucoraphanin, the main glucosinolate in broccoli. The hydrolysis requires myrosinase isoenzyme to be present in sufficient activity; however, processing leads to its denaturation and hence reduced hydrolysis. In this study, the effect of adding mustard seeds, which contain a more resilient isoform of myrosinase, to processed broccoli was investigated with a view to intensify the formation of sulforaphane. Thermal inactivation of myrosinase from both broccoli and mustard seeds was studied. Thermal degradation of broccoli glucoraphanin was investigated in addition to the effects of thermal processing on the formation of sulforaphane and sulforaphane nitrile. Limited thermal degradation of glucoraphanin (less than 12%) was observed when broccoli was placed in vacuum sealed bag (sous vide) and cooked in a water bath at 100°C for 8 and 12 min. Boiling broccoli in water prevented the formation of any significant levels of sulforaphane due to inactivated myrosinase. However, addition of powdered mustard seeds to the heat processed broccoli significantly increased the formation of sulforaphane.
Collapse
|
43
|
Kiebooms JAL, Vanden Bussche J, Hemeryck LY, Fievez V, Vanhaecke L. Intestinal microbiota contribute to the endogenous formation of thiouracil in livestock. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7769-7776. [PMID: 22834937 DOI: 10.1021/jf3017145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In recent years, the frequent detection of the banned substance thiouracil (TU) in livestock urine has been related to its endogenous formation following consumption of glucosinolate-rich Brassicaceae crops. Besides, TU residues have been recovered in these crops upon plant-derived myrosinase hydrolysis. Through in vitro bovine and porcine static digestive simulations, the influence of gastrointestinal digestion of Brassicaceae-derived matrixes on TU formation was assessed. Following derivatization and LC-MS(2) analysis, TU was detected in colonic suspensions with traditional rapeseed, coarse colza "00" meal, cauliflower, and broccoli ranging from 3.47 to 30.96 μg kg(-1) (bovine) and from 3.55 to 26.34 μg kg(-1) (porcine). In stomach and small intestinal fluids, TU remained unfound, whereas upon rumen simulation TU was detected for coarse colza "00" meal (4.43 μg kg(-1)) and grounded traditional rapeseed (0.35 μg kg(-1)). The origin of this detection was investigated through filter-sterilizing and autoclaving the fecal inoculum causing a significant decrease in TU concentration, thereby reinforcing the possibility of an active bacterial involvement, which however was characterized with a high interanimal variation. In conclusion, these results support the previously proven endogenous origin of TU and acknowledge the active role of the gastrointestinal bacteria in TU formation, through production of an extracellular component.
Collapse
Affiliation(s)
- Julie A L Kiebooms
- Faculty of Veterinary Medicine, Department of Veterinary, Public Health and Food Safety, Ghent University, Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
44
|
Ekanayake A, Zoutendam PH, Strife RJ, Fu X, Jayatilake GS. Development of white mustard (Sinapis alba L.) essential oil, a food preservative. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Herzallah S, Holley R. Determination of sinigrin, sinalbin, allyl- and benzyl isothiocyanates by RP-HPLC in mustard powder extracts. Lebensm Wiss Technol 2012. [DOI: 10.1016/j.lwt.2012.01.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Oliviero T, Verkerk R, Dekker M. Effect of water content and temperature on glucosinolate degradation kinetics in broccoli (Brassica oleracea var. italica). Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.12.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
47
|
Ghawi SK, Methven L, Rastall RA, Niranjan K. Thermal and high hydrostatic pressure inactivation of myrosinase from green cabbage: A kinetic study. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Lara-Lledó M, Olaimat A, Holley RA. Inhibition of Listeria monocytogenes on bologna sausages by an antimicrobial film containing mustard extract or sinigrin. Int J Food Microbiol 2012; 156:25-31. [PMID: 22424932 DOI: 10.1016/j.ijfoodmicro.2012.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/17/2012] [Accepted: 02/23/2012] [Indexed: 11/18/2022]
Abstract
The ability of Listeria (L.) monocytogenes to convert glucosinolates into antimicrobial isothiocyanates was investigated. Mustard glucosinolates in pure (sinigrin) or extract forms (sinigrin, oriental; sinalbin, yellow mustard) were used in broth media and in a polyvinyl polyethylene glycol graft copolymer (PPG) packaging film with bologna to examine their value as antimicrobial precursors for the control of L. monocytogenes viability and extension of bologna shelf-life at 4 °C. During broth tests with deodorized (myrosinase-inactivated) mustard extracts (10 d at 20 °C) or with purified sinigrin (21 d at 20 °C) L. monocytogenes was only inhibited when exogenous myrosinase was added. None the less, the organism was able to hydrolyze almost half the pure sinigrin by 21 d in tests without added enzyme. Reductions in sinigrin levels were measured by reversed-phase liquid chromatography, and in the absence of L. monocytogenes or added myrosinase the glucosinolate was stable. When pure sinigrin, oriental or yellow mustard extracts were incorporated in PPG films containing 3, 5 and 6% (w/w) of the corresponding glucosinolate and used to package bologna inoculated with 4 log CFU/g L. monocytogenes, the pathogen became undetectable in bologna packed with the oriental mustard extract at 52 d storage and remained undetectable at 70 d. The yellow mustard extract was less inhibitory and the pure sinigrin was not antimicrobial. L. monocytogenes numbers reached >7 log CFU/g in the film and untreated controls at 17 d storage. At 35 d storage, samples packed with control film contained sufficient numbers of lactic acid bacteria (LAB) (>7 log CFU/g) to be considered spoiled, whereas treatments containing mustard or sinigrin remained <7 log CFU/g LAB for ≤ 70 d. L. monocytogenes played a key role in exerting control over its own viability in bologna by hydrolysis of the glucosinolate in the oriental mustard film, but other antimicrobials in treatments may have contributed.
Collapse
Affiliation(s)
- Marta Lara-Lledó
- Materials and Packaging System Department, Packaging, Transport & Logistics Research Centre-ITENE, 46980 Paterna-Valencia, Spain
| | | | | |
Collapse
|
49
|
Listeria monocytogenes inhibition by defatted mustard meal-based edible films. Int J Food Microbiol 2012; 153:99-105. [DOI: 10.1016/j.ijfoodmicro.2011.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/15/2011] [Accepted: 10/25/2011] [Indexed: 11/17/2022]
|
50
|
Saini AK, Tyler RT, Shim YY, Reaney MJT. Allyl isothiocyanate induced stress response in Caenorhabditis elegans. BMC Res Notes 2011; 4:502. [PMID: 22093285 PMCID: PMC3471387 DOI: 10.1186/1756-0500-4-502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 11/17/2011] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Allyl isothiocyanate (AITC) from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP) 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. FINDINGS An assay to determine the concentration of AITC in ground mustard seed was improved to allow the measurement of AITC release in the first minutes after exposure of ground mustard seed to water. Using this assay, we determined that temperatures above 67°C decreased sinigrin conversion to AITC in hydrated ground B. juncea seed. A pH near 6.0 was found to be necessary for AITC release. RT-qPCR revealed no significant change in HSP70A mRNA expression at low concentrations of AITC (< 0.1 μM). However, treatment with higher concentrations (> 1.0 μM) resulted in a four- to five-fold increase in expression. A HSP70 ELISA showed that AITC toxicity in C. elegans was ameliorated by the presence of ground seed from low sinigrin B. juncea cv. Arrid. CONCLUSIONS • AITC induced toxicity in C. elegans, as measured by HSP70 expression.• Conditions required for the conversion of sinigrin to AITC in ground B. juncea seed were determined.• The use of C. elegans as a bioassay to test AITC or mustard biopesticide efficacy is discussed.
Collapse
Affiliation(s)
- AkalRachna K Saini
- 51 Campus Drive, Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
- 343-111 Research Drive, Helix BioPharma Corp, Saskatoon, Saskatchewan S7N 3R2, Canada
| | - Robert T Tyler
- 51 Campus Drive, Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Youn Young Shim
- 51 Campus Drive, Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Martin JT Reaney
- 51 Campus Drive, Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|