1
|
Wang X, Jia Y, He H. The Role of Linoleic Acid in Skin and Hair Health: A Review. Int J Mol Sci 2024; 26:246. [PMID: 39796110 PMCID: PMC11719646 DOI: 10.3390/ijms26010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Lipids are intimately associated with skin condition. This review aims to discuss the function of linoleic acid (LA, 18:2, ω-6), an essential fatty acid, in skin health and hair growth. In skin, LA can be metabolized into ω-6 unsaturated fatty acid, oxidized derivatives and incorporated into complex lipid molecules, including ω-hydroxy-ceramides. Previous research has revealed that skin diseases including acne, atopic dermatitis and psoriasis are associated with disordered LA metabolism. Studies based on animal or skin cell models suggest that LA or LA-rich vegetable oils, topically applied, exhibit diverse biological activities, including the repair of the skin barrier, the promotion of wound healing, skin whitening, photoprotection, anti-inflammatory effects and the stimulation of hair growth. Moreover, the underlying mechanisms of LA's beneficial effects on skin are summarized. Further research on the correlation of LA metabolism and skin disorders, a deeper exploration of the mechanisms underlying the function of LA in skin management and more investigations of its clinical application are required to enhance the understanding and utilization of LA in cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Xi Wang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (Y.J.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (Y.J.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, China
| | - Huaming He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (Y.J.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Ali S, Aman A, Hengphasatporn K, Oopkaew L, Todee B, Fujiki R, Harada R, Shigeta Y, Krusong K, Choowongkomon K, Chavasiri W, Wolschann P, Mahalapbutr P, Rungrotmongkol T. Evaluating solubility, stability, and inclusion complexation of oxyresveratrol with various β-cyclodextrin derivatives using advanced computational techniques and experimental validation. Comput Biol Chem 2024; 112:108111. [PMID: 38879954 DOI: 10.1016/j.compbiolchem.2024.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Oxyresveratrol (OXY), a natural stilbenoid in mulberry fruits, is known for its diverse pharmacological properties. However, its clinical use is hindered by low water solubility and limited bioavailability. In the present study, the inclusion complexes of OXY with β-cyclodextrin (βCD) and its three analogs, dimethyl-β-cyclodextrin (DMβCD), hydroxypropyl-β-cyclodextrin (HPβCD) and sulfobutylether-β-cyclodextrin (SBEβCD), were investigated using in silico and in vitro studies. Molecular docking revealed two binding orientations of OXY, namely, 4',6'-dihydroxyphenyl (A-form) and 5,7-benzenediol ring (B-form). Molecular Dynamics simulations suggested the formation of inclusion complexes with βCDs through two distinct orientations, with OXY/SBEβCD exhibiting maximum atom contacts and the lowest solvent-exposed area in the hydrophobic cavity. These results corresponded well with the highest binding affinity observed in OXY/SBEβCD when assessed using the MM/GBSA method. Beyond traditional simulation methods, Ligand-binding Parallel Cascade Selection Molecular Dynamics method was employed to investigate how the drug enters and accommodates within the hydrophobic cavity. The in silico results aligned with stability constants: SBEβCD (2060 M-1), HPβCD (1860 M-1), DMβCD (1700 M-1), and βCD (1420 M-1). All complexes exhibited a 1:1 binding mode (AL type), with SBEβCD enhancing OXY solubility (25-fold). SEM micrographs, DSC thermograms, FT-IR and 1H NMR spectra confirm the inclusion complex formation, revealing novel surface morphologies, distinctive thermal behaviors, and new peaks. Notably, the inhibitory impact on the proliferation of breast cancer cell lines, MCF-7, exhibited by inclusion complexes particularly OXY/DMβCD, OXY/HPβCD, and OXY/SBEβCD were markedly superior compared to that of OXY alone.
Collapse
Affiliation(s)
- Saba Ali
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aamir Aman
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Lipika Oopkaew
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bunyaporn Todee
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Horablaga A, Şibu Ciobanu A, Megyesi CI, Gligor Pane D, Bujancă GS, Velciov AB, Morariu FE, Hădărugă DI, Mişcă CD, Hădărugă NG. Estimation of the Controlled Release of Antioxidants from β-Cyclodextrin/Chamomile ( Matricaria chamomilla L.) or Milk Thistle ( Silybum marianum L.), Asteraceae, Hydrophilic Extract Complexes through the Fast and Cheap Spectrophotometric Technique. PLANTS (BASEL, SWITZERLAND) 2023; 12:2352. [PMID: 37375976 DOI: 10.3390/plants12122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
This is the first study on the modeling of the controlled release of the estimated antioxidants (flavonoids or flavonolignans) from β-cyclodextrin (β-CD)/hydrophilic vegetable extract complexes and the modeling of transdermal pharmaceutical formulations based on these complexes using an overall estimation by the spectrophotometric method. The Korsmeyer-Peppas model was chosen for evaluating the release mechanisms. β-CD/chamomile (Matricaria chamomilla L., Asteraceae) ethanolic extract and β-CD/milk thistle (Silybum marianum L., Asteraceae) ethanolic extract complexes were obtained by the co-crystallization method with good recovering yields of 55-76%, slightly lower than for β-CD/silibinin or silymarin complexes (~87%). According to differential scanning calorimetry (DSC) and Karl Fischer water titration (KFT), the thermal stability of complexes is similar to β-CD hydrate while the hydration water content is lower, revealing the formation of molecular inclusion complexes. In the Korsmeyer-Peppas model, β-CD/M. chamomilla flower extract complexes reveal Case II transport mechanisms, while the corresponding complexes with leaf extracts indicate non-Fickian diffusion for the controlled release of antioxidants in ethanol 60 and 96%. The same non-Fickian diffusion was revealed by β-CD/S. marianum extract and β-CD/silibinin complexes. On the contrary, almost all model transdermal pharmaceutical formulations based on β-CD/M. chamomilla extract complexes and all those based on β-CD/S. marianum extract complexes revealed non-Fickian diffusion for the antioxidant release. These results indicate that H-bonding is mainly involved in the diffusion of antioxidants into a β-CD based matrix, while the controlled release of antioxidants in model formulations is mainly due to hydrophobic interactions. Results obtained in this study can be further used for studying the particular antioxidants (namely rutin or silibinin, quantified, for example, by liquid chromatographic techniques) for their transdermal transport and biological effects in innovatively designed pharmaceutical formulations that can be obtained using "green" methods and materials.
Collapse
Affiliation(s)
- Adina Horablaga
- Department of Sustainable Development and Environmental Engineering, University of Life Sciences "King Mihai I" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Alina Şibu Ciobanu
- Doctoral School "Engineering of Vegetable and Animal Resources", University of Life Sciences "King Mihai I" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Corina Iuliana Megyesi
- Department of Food Science, University of Life Sciences "King Mihai I" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Dina Gligor Pane
- Doctoral School "Engineering of Vegetable and Animal Resources", University of Life Sciences "King Mihai I" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Gabriel Stelian Bujancă
- Department of Food Control, University of Life Sciences "King Mihai I" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Ariana Bianca Velciov
- Department of Food Science, University of Life Sciences "King Mihai I" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Florica Emilia Morariu
- Department of Biotechnologies, University of Life Sciences "King Mihai I" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Daniel Ioan Hădărugă
- Doctoral School "Engineering of Vegetable and Animal Resources", University of Life Sciences "King Mihai I" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| | - Corina Dana Mişcă
- Department of Food Control, University of Life Sciences "King Mihai I" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Nicoleta Gabriela Hădărugă
- Doctoral School "Engineering of Vegetable and Animal Resources", University of Life Sciences "King Mihai I" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Department of Food Science, University of Life Sciences "King Mihai I" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| |
Collapse
|
4
|
Singh S, Aeri V, Sharma V. Encapsulated natural pigments: Techniques and applications. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Shivani Singh
- Department of Food Technology Jamia Hamdard New Delhi India
| | - Vidhu Aeri
- Department of Pharmacognosy and Phytochemistry School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi India
| | - Vasudha Sharma
- Department of Food Technology Jamia Hamdard New Delhi India
| |
Collapse
|
5
|
Runeberg P, Ryabukhin D, Lagerquist L, Rahkila J, Eklund P. Transformations and antioxidative activities of lignans and stilbenes at high temperatures. Food Chem 2023; 404:134641. [DOI: 10.1016/j.foodchem.2022.134641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 11/22/2022]
|
6
|
Hădărugă NG, Popescu G, Gligor (Pane) D, Mitroi CL, Stanciu SM, Hădărugă DI. Discrimination of β-cyclodextrin/hazelnut ( Corylus avellana L.) oil/flavonoid glycoside and flavonolignan ternary complexes by Fourier-transform infrared spectroscopy coupled with principal component analysis. Beilstein J Org Chem 2023; 19:380-398. [PMID: 37025496 PMCID: PMC10071518 DOI: 10.3762/bjoc.19.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
The goal of the study was the discrimination of β-cyclodextrin (β-CD)/hazelnut (Corylus avellana L.) oil/antioxidant ternary complexes through Fourier-transform infrared spectroscopy coupled with principal component analysis (FTIR-PCA). These innovative complexes combine the characteristics of the three components and improve the properties of the resulting material such as the onsite protection against oxidative degradation of hazelnut oil unsaturated fatty acid glycerides. Also, the apparent water solubility and bioaccessibility of the hazelnut oil components and antioxidants can be increased, as well as the controlled release of bioactive compounds (fatty acid glycerides and antioxidant flavonoids, namely hesperidin, naringin, rutin, and silymarin). The appropriate method for obtaining the ternary complexes was kneading the components at various molar ratios (1:1:1 and 3:1:1 for β-CD hydrate:hazelnut oil (average molar mass of 900 g/mol):flavonoid). The recovering yields of the ternary complexes were in the range of 51.5-85.3% and were generally higher for the 3:1:1 samples. The thermal stability was evaluated by thermogravimetry and differential scanning calorimetry. Discrimination of the ternary complexes was easily performed through the FTIR-PCA coupled method, especially based on the stretching vibrations of CO groups in flavonoids and/or CO/CC groups in the ternary complexes at 1014.6 (± 3.8) and 1023.2 (± 1.1) cm-1 along the second PCA component (PC2), respectively. The wavenumbers were more appropriate for discrimination than the corresponding intensities of the specific FTIR bands. On the other hand, ternary complexes were clearly distinguishable from the starting β-CD hydrate along the first component (PC1) by all FTIR band intensities and along PC2 by the wavenumber of the asymmetric stretching vibrations of the CH groups at 2922.9 (± 0.4) cm-1 for ternary complexes and 2924.8 (± 1.4) cm-1 for β-CD hydrate. The first two PCA components explain 70.38% from the variance of the FTIR data (from a total number of 26 variables). Other valuable classifications were obtained for the antioxidant flavonoids, with a high similarity for hesperidin and naringin, according to FTIR-PCA, as well as for ternary complexes depending on molar ratios. The FTIR-PCA coupled technique is a fast, nondestructive and cheap method for the evaluation of quality and similarity/characteristics of these new types of cyclodextrin-based ternary complexes having enhanced properties and stability.
Collapse
Affiliation(s)
- Nicoleta G Hădărugă
- Doctoral School “Engineering of Vegetable and Animal Resources”, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Research Institute for Biosecurity and Bioengineering, Calea Aradului 119, 300645 Timişoara, Romania
- Department of Food Science, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Gabriela Popescu
- Department of Rural Management and Development, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Dina Gligor (Pane)
- Doctoral School “Engineering of Vegetable and Animal Resources”, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Cristina L Mitroi
- Department of Food Science, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Sorin M Stanciu
- Department of Economy and Company Financing, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Daniel Ioan Hădărugă
- Doctoral School “Engineering of Vegetable and Animal Resources”, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 30001 Timişoara, Romania
| |
Collapse
|
7
|
FTIR-PCA Approach on Raw and Thermally Processed Chicken Lipids Stabilized by Nano-Encapsulation in β-Cyclodextrin. Foods 2022; 11:foods11223632. [PMID: 36429225 PMCID: PMC9689604 DOI: 10.3390/foods11223632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
This study evaluated similarities/dissimilarities of raw and processed chicken breast and thigh lipids that were complexed by β-cyclodextrin, using a combined FTIR-PCA technique. Lipid fractions were analyzed as non-complexed and β-cyclodextrin-complexed samples via thermogravimetry, differential scanning calorimetry and ATR-FTIR. The lipid complexation reduced the water content to 7.67-8.33%, in comparison with the β-cyclodextrin hydrate (~14%). The stabilities of the complexes and β-cyclodextrin were almost the same. ATR-FTIR analysis revealed the presence of important bands that corresponded to the C=O groups (1743-1744 cm-1) in both the non-complexed and nano-encapsulated lipids. Furthermore, the bands that corresponded to the vibrations of double bonds corresponding to the natural/degraded (cis/trans) fatty acids in lipids appeared at 3008-3011 and 938-946 cm-1, respectively. The main FTIR bands that were involved in the discrimination of raw and processed chicken lipids, and of non-complexed and complexed lipids, were evaluated with PCA. The shifting of specific FTIR band wavenumbers had the highest influence, especially vibrations of the α(1→4) glucosidic bond in β-cyclodextrin for PC1, and CH2/3 groups from lipids for PC2. This first approach on β-cyclodextrin nano-encapsulation of chicken lipids revealed the possibility to stabilize poultry fatty components for further applications in various ingredients for the food industry.
Collapse
|
8
|
Abstract
For the past few years, there has been a surge in the use of nutraceuticals. The global nutraceuticals market in 2020 was USD 417.66 billion, and the market value is expected to increase by 8.9% compound annual growth rate from 2020 to 2028. This is because nutraceuticals are used to treat and prevent various diseases such as cancer, skin disorders, gastrointestinal, ophthalmic, diabetes, obesity, and central nervous system-related diseases. Nutritious food provides the required amount of nutrition to the human body through diet, whereas most of the bioactive agents present in the nutrients are highly lipophilic, with low aqueous solubility leading to poor dissolution and oral bioavailability. Also, the nutraceuticals like curcumin, carotenoids, anthocyanins, omega-3 fatty acids, vitamins C, vitamin B12, and quercetin have limitations such as poor solubility, chemical instability, bitter taste, and an unpleasant odor. Additionally, the presence of gastrointestinal (GIT) membrane barriers, varied pH, and reaction with GIT enzymes cause the degradation of some of the nutraceuticals. Nanotechnology-based nutrient delivery systems can be used to improve oral bioavailability by increasing nutraceutical stability in foods and GIT, increasing nutraceutical solubility in intestinal fluids, and decreasing first-pass metabolism in the gut and liver. This article has compiled the properties and applications of various nanocarriers such as polymeric nanoparticles, micelles, liposomes, niosomes, solid lipid nanocarriers, nanostructured lipid carrier, microemulsion, nanoemulsion, dendrimers in organic nanoparticles, and nanocomposites for effective delivery of bioactive molecules.
Collapse
|
9
|
Tan JYB, Yoon BK, Cho NJ, Lovrić J, Jug M, Jackman JA. Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. Int J Mol Sci 2021; 22:9664. [PMID: 34575831 PMCID: PMC8465605 DOI: 10.3390/ijms22189664] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
There is enormous interest in utilizing biologically active fatty acids and monoglycerides to treat phospholipid membrane-related medical diseases, especially with the global health importance of membrane-enveloped viruses and bacteria. However, it is difficult to practically deliver lipophilic fatty acids and monoglycerides for therapeutic applications, which has led to the emergence of lipid nanoparticle platforms that support molecular encapsulation and functional presentation. Herein, we introduce various classes of lipid nanoparticle technology and critically examine the latest progress in utilizing lipid nanoparticles to deliver fatty acids and monoglycerides in order to treat medical diseases related to infectious pathogens, cancer, and inflammation. Particular emphasis is placed on understanding how nanoparticle structure is related to biological function in terms of mechanism, potency, selectivity, and targeting. We also discuss translational opportunities and regulatory needs for utilizing lipid nanoparticles to deliver fatty acids and monoglycerides, including unmet clinical opportunities.
Collapse
Affiliation(s)
- Jia Ying Brenda Tan
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
| |
Collapse
|
10
|
Jug M, Yoon BK, Jackman JA. Cyclodextrin-based Pickering emulsions: functional properties and drug delivery applications. J INCL PHENOM MACRO 2021; 101:31-50. [PMID: 34366706 PMCID: PMC8330820 DOI: 10.1007/s10847-021-01097-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
Cyclodextrins (CDs) are biocompatible, cyclic oligosaccharides that are widely used in various industrial applications and have intriguing interfacial science properties. While CD molecules typically have low surface activity, they are capable of stabilizing emulsions by inclusion complexation of oil-phase components at the oil/water interface, which results in Pickering emulsion formation. Such surfactant-free formulations have gained considerable attention in recent years, owing to their enhanced physical stability, improved tolerability, and superior environmental compatibility compared to conventional, surfactant-based emulsions. In this review, we critically describe the latest insights into the molecular mechanisms involved in CD stabilization of Pickering emulsions, including covering practical aspects such as methods to prepare CD-based Pickering emulsions, lipid encapsulation, and relevant stability issues. In addition, the rheological and textural features of CD-based Pickering emulsions are discussed and particular attention is focused on promising examples for drug delivery, cosmetic, and nutraceutical applications. The functionality of currently developed CD-based Pickering emulsions is also summarised, including examples such as antifungal uses, and we close by discussing emerging possibilities to utilize the molecular encapsulation of CD-based emulsions for translational medicine applications in the antiviral and antibacterial spaces.
Collapse
Affiliation(s)
- Mario Jug
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, Zagreb, Croatia
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419 Republic of Korea
| |
Collapse
|
11
|
Liang Z, Shang XB, Su J, Li GY, Fu FH, Guo JJ, Shan Y. Alternative Extraction Methods of Essential Oil From the Flowers of Citrus aurantium L. Var Daidai Tanaka: Evaluation of Oil Quality and Sedative-Hypnotic Activity. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211004061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to analyze the content of hypnotic components in the essential oil from Citrus aurantium flowers (EDD), extracted by different methods, and to characterize its sedative-hypnotic effects. The sedative-hypnotic capacity of EDD was evaluated using pentobarbital-induced sleeping assays, locomotor activity tests and GABAA receptor antagonists. The results showed that EDD extracted by steam and water distillation (SWD), hydrodistillation (HD), and ultrasound-assisted hydrodistillation (UHD) had as their main components linalool, linalyl acetate, and limonene, comprising more than 55% of the total peak area. Compared with EDD extracted by HD and UHD, the total content of linalool and linalyl acetate in EDD obtained by SWD was highest, whereas the content of limonene in EDD extracted by the 3 different methods was not different. Oral and intraperitoneal administration of EDD resulted in reduced sleep latency and increased sleep duration of mice, as well as reduced locomotor activity, which was proven by decreases in the total distance travelled, average velocity, number of activities, and central distance. Interestingly, intraperitoneal injection of EDD had better sedative and hypnotic effects than oral ingestion. In vitro assays using SH-SY5Y cells showed that EDD dose-dependently increased Cl− influx, which could be blocked by the GABAA receptor antagonists, picrotoxin, bicuculline, and flumazenil, suggesting that EDD promoted sedative-hypnotic activity by potentiating GABAA receptor-mediated Cl− current responses. Altogether, these results suggest that the important hypnotic-sedative activity of EDD appears to be due to the effects of limonene, and particularly the high contents of linalool and linalyl acetate, which were effectively extracted by SWD.
Collapse
Affiliation(s)
- Zengenni Liang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xue-bo Shang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jin Su
- Longping Branch Graduate School, Hunan University, Changsha, China
| | - Gao-yang Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Fu-hua Fu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jia-jing Guo
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
12
|
Fatty Acid Profile of Lipid Fractions of Mangalitza ( Sus scrofa domesticus) from Northern Romania: A GC-MS-PCA Approach. Foods 2021; 10:foods10020242. [PMID: 33530301 PMCID: PMC7912583 DOI: 10.3390/foods10020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/12/2023] Open
Abstract
Mangalitza pig (Sus scrofa domesticus) becomes more popular in European countries. The goal of this study was to evaluate the fatty acid profile of the raw and thermally processed Mangalitza hard fat from Northern Romania. For the first time, the gas chromatography-mass spectrometry-Principal component analysis technique (GC-MS-PCA)—was applied to evaluate the dissimilarity of Mangalitza lipid fractions. Three specific layers of the hard fat of Mangalitza from Northern Romania were subjected to thermal treatment at 130 °C for 30 min. Derivatized samples were analyzed by GC-MS. The highest relative content was obtained for oleic acid (methyl ester) in all hard fat layers (36.1–42.4%), while palmitic acid was found at a half (21.3–24.1%). Vaccenic or elaidic acids (trans) were found at important concentrations of 0.3–4.1% and confirmed by Fourier-transform infrared spectroscopy. These concentrations are consistently higher in thermally processed top and middle lipid layers, even at double values. The GC-MS-PCA coupled technique allows us to classify the unprocessed and processed Mangalitza hard fat specific layers, especially through the relative concentrations of vaccenic/elaidic, palmitic, and stearic acids. Further studies are needed in order to evaluate the level of degradation of various animal fats by the GC-MS-PCA technique.
Collapse
|
13
|
Raju N, Singh A, Benjakul S. Recovery, reusability and stability studies of beta cyclodextrin used for cholesterol removal from shrimp lipid. RSC Adv 2021; 11:23113-23121. [PMID: 35480417 PMCID: PMC9034381 DOI: 10.1039/d1ra03282h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/22/2021] [Indexed: 01/23/2023] Open
Abstract
Beta cyclodextrin (β-CD) was used for cholesterol removal from shrimp lipid using ethyl acetate and water as solvents. The cholesterol incorporating β-CD complex (β-CD–CL) was collected and β-CD recovery was performed using a β-CD–CL : ethanol mixture (1 : 15 ratio) with the aid of ultrasonication and a water bath at 55 °C for 40 min. Recycled β-CD (R-β-CD) was compared with pure β-CD (P-β-CD) for the reusability of cholesterol removal from shrimp lipid. R-β-CD showed 94% cholesterol removal, while 95% was achieved for P-β-CD. Differential Scanning Calorimetry (DSC) showed a slight decrease in the melting point of R-β-CD. Nevertheless, FTIR and NMR results revealed that functional groups and the proton spectrum of R-β-CD was negligibly altered. Fatty acid contents of treated oil were slightly higher when treated with R-β-CD than those of the lipid subjected to P-β-CD treatment. Reusability of β-CD could be achieved as confirmed by the maintained capacity in cholesterol removal and unaltered structure. Beta cyclodextrin (β-CD) used for cholesterol removal from shrimp lipid was reused after the cholesterol bound with β-CD was removed. Efficenicy of recycled β-CD was similar to pure β-CD.![]()
Collapse
Affiliation(s)
- Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation
- Faculty of Agro-Industry
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation
- Faculty of Agro-Industry
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation
- Faculty of Agro-Industry
- Prince of Songkla University
- Hat Yai
- Thailand
| |
Collapse
|
14
|
Enhanced Solubility and Anticancer Potential of Mansonone G By β-Cyclodextrin-Based Host-Guest Complexation: A Computational and Experimental Study. Biomolecules 2019; 9:biom9100545. [PMID: 31569832 PMCID: PMC6843486 DOI: 10.3390/biom9100545] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022] Open
Abstract
Mansonone G (MG), a plant-derived compound isolated from the heartwood of Mansonia gagei, possesses a potent antitumor effect on several kinds of malignancy. However, its poor solubility limits the use for practical applications. Beta-cyclodextrin (βCD), a cyclic oligosaccharide composed of seven (1→4)-linked α-D-glucopyranose units, is capable of encapsulating a variety of poorly soluble compounds into its hydrophobic interior. In this work, we aimed to enhance the water solubility and the anticancer activity of MG by complexation with βCD and its derivatives (2,6-di-O-methyl-βCD (DMβCD) and hydroxypropyl-βCD). The 90-ns molecular dynamics simulations and MM/GBSA-based binding free energy results suggested that DMβCD was the most preferential host molecule for MG inclusion complexation. The inclusion complex formation between MG and βCD(s) was confirmed by DSC and SEM techniques. Notably, the MG/βCDs inclusion complexes exerted significantly higher cytotoxic effect (~2–7 fold) on A549 lung cancer cells than the uncomplexed MG.
Collapse
|
15
|
Hădărugă NG, Szakal RN, Chirilă CA, Lukinich-Gruia AT, Păunescu V, Muntean C, Rusu G, Bujancă G, Hădărugă DI. Complexation of Danube common nase (Chondrostoma nasus L.) oil by β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. Food Chem 2019; 303:125419. [PMID: 31470276 DOI: 10.1016/j.foodchem.2019.125419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 11/29/2022]
Abstract
β-Cyclodextrin- and 2-hydroxypropyl-β-cyclodextrin/Danube common nase (Chondrostoma nasus L.) oil complexes (β-CD- and HP-β-CD/CNO) have been obtained for the first time. The fatty acid (FA) profile of the CNO indicates an important content of polyunsaturated fatty acids, the most important being eicosapentaenoic acid (EPA, 6.3%) and docosahexaenoic acid (DHA, 1.6%), both ω-3 FAs. The complexes have been obtained by kneading method. The moisture content and successful of molecular encapsulation have been evaluated by thermal and spectroscopic techniques. Thermogravimetry and differential scanning calorimetry analyses reveals that the moisture content of CD/CNO complexes significantly decreased, compared to starting CDs. On the other hand, the crystallinity index was for the first time determined for such type of complexes, the β-CD/CNO complex having values of 43.9(±18.3)%, according to X-ray diffractometry. FA profile and CD/CNO characteristics sustain the use of these ω-3 based complexes for food supplements or functional food products, but further studies are needed.
Collapse
Affiliation(s)
- Nicoleta G Hădărugă
- Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania.
| | - Raymond N Szakal
- Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Cosmina A Chirilă
- Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Alexandra T Lukinich-Gruia
- Centre for Gene and Cellular Therapies in the Treatment of Cancer - OncoGen, Clinical County Hospital of Timişoara, Liviu Rebreanu Blvd. 156, 300736 Timişoara, Romania
| | - Virgil Păunescu
- Centre for Gene and Cellular Therapies in the Treatment of Cancer - OncoGen, Clinical County Hospital of Timişoara, Liviu Rebreanu Blvd. 156, 300736 Timişoara, Romania; Department of Physiology and Immunology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. 2, 300041 Timişoara, Romania.
| | - Cornelia Muntean
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Polytechnic University of Timişoara, Vasile Pârvan Bd. 6, 300223 Timişoara, Romania; Research Institute for Renewable Energy, Polytechnic University of Timişoara, Gavril Musicescu 38, 300501 Timișoara, Romania.
| | - Gerlinde Rusu
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania.
| | - Gabriel Bujancă
- Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Daniel I Hădărugă
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania.
| |
Collapse
|
16
|
Cheng L, Zhu X, Hamaker BR, Zhang H, Campanella OH. Complexation process of amylose under different concentrations of linoleic acid using molecular dynamics simulation. Carbohydr Polym 2019; 216:157-166. [DOI: 10.1016/j.carbpol.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 02/09/2023]
|
17
|
Kibici D, Kahveci D. Effect of Emulsifier Type, Maltodextrin, and β-Cyclodextrin on Physical and Oxidative Stability of Oil-In-Water Emulsions. J Food Sci 2019; 84:1273-1280. [PMID: 31059587 DOI: 10.1111/1750-3841.14619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/12/2019] [Accepted: 03/30/2019] [Indexed: 11/28/2022]
Abstract
The effect of emulsifiers, emulsion stabilizer (maltodextrin, MD), and β-cyclodextrin (BCD) on physical and oxidative properties of oil-in-water (O/W) emulsions (5%, 20%, 40% of oil, w/w) was investigated. Four different emulsifiers were selected based on their structure: two types of protein-based emulsifiers (sodium caseinate, SC; and whey protein isolate, WPI), and two types low molecular weight emulsifiers (LMEWs: lecithin, LEC; and Citrem, CITREM). Physical and oxidative stability of emulsions prepared with these emulsifiers together with MD were compared based on their creaming index (CI), viscosity, droplet size, zeta potential, peroxide and p-anisidine values. LMWE-stabilized emulsions (with LEC or CITREM) had better creaming stability with lower droplet sizes whereas protein-stabilized emulsions (with SC or WPI) had higher viscosities. Droplet size was the lowest when CITREM was used, which increased with increasing oil concentration for all emulsifiers. Formulation with the lowest CI value and droplet size was considered to be more prone to oxidation; therefore, a 1:1 (w/w) combination of CITREM with BCD was used to stabilize the emulsions to improve the oxidative as well as physical stability. Added BCD significantly increased the storage stability of emulsions by reducing CI and droplet size values with a simultaneous increase in the viscosity, both at room temperature and at storage conditions (at 4 and 55 o C). However, the oxidative as well as physical stability of BCD added emulsions were not improved, neither toward heat- nor light-induced lipid oxidation. PRACTICAL APPLICATION: This work investigated the effects of emulsifiers and dextrins on the stability of oil-in-water (O/W) emulsions. Both maltodextrin (MD) and β-cyclodextrin (BCD) addition resulted in enhanced physical stability, the latter being more effective. The findings can be applied to formulate emulsions with improved shelf life within the limits of allowed daily intake (ADI) level of BCD (5 mg/kg bw per day).
Collapse
Affiliation(s)
- Duygu Kibici
- Faculty of Engineering, Depart. of Food Engineering, Yeditepe Univ., 34755, Istanbul, Turkey
| | - Derya Kahveci
- Faculty of Engineering, Depart. of Food Engineering, Yeditepe Univ., 34755, Istanbul, Turkey
| |
Collapse
|
18
|
Pisoschi AM, Pop A, Cimpeanu C, Turcuş V, Predoi G, Iordache F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. Eur J Med Chem 2018; 157:1326-1345. [DOI: 10.1016/j.ejmech.2018.08.076] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
|
19
|
Rocha MDS, de Lima SG, Viana BC, Costa JGM, Santos FEP. Characterization of the inclusion complex of the essential oil of Lantana camara L. and β-cyclodextrin by vibrational spectroscopy, GC–MS, and X-ray diffraction. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0799-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Thermal Analyses of Cyclodextrin Complexes. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-76159-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Rajaraman B, Seol YJ, Oh YK, Chang SS, Kim JG, Nam IS, Kim KH. Effects of caprylic acid and β-cyclodextrin complexes on digestibility, energy balance, and methane production in Korean Hanwoo heifers. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Recharla N, Riaz M, Ko S, Park S. Novel technologies to enhance solubility of food-derived bioactive compounds: A review. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Ephrem E, Elaissari H, Greige-Gerges H. Improvement of skin whitening agents efficiency through encapsulation: Current state of knowledge. Int J Pharm 2017; 526:50-68. [DOI: 10.1016/j.ijpharm.2017.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
24
|
Hădărugă DI, Birău Mitroi CL, Gruia AT, Păunescu V, Bandur GN, Hădărugă NG. Moisture evaluation of β-cyclodextrin/fish oils complexes by thermal analyses: A data review on common barbel (Barbus barbus L.), Pontic shad (Alosa immaculata Bennett), European wels catfish (Silurus glanis L.), and common bleak (Alburnus alburnus L.) living in Danube river. Food Chem 2017. [PMID: 28624089 DOI: 10.1016/j.foodchem.2017.03.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The moisture content of β-cyclodextrin/Danube fish oils complexes (common barbel, Pontic shad, European wels catfish, common bleak) was evaluated by thermal methods. Saturated and monounsaturated fatty acids were the most concentrated in fish oils (25.3-30.8% and 36.1-45.0%). ω-3 And ω-6 fatty acids were identified in low concentrations of 2.8-12.1% and 4.1-7.1%. The moisture content was significantly lowered after β-CD complexation, as revealed by thermogravimetric (TG) analysis (13.3% for β-CD, 2.5-6.5% for complexes). These results are consistent with the differential scanning calorimetry (DSC) data for the peaks corresponding to dissociation of water (calorimetric effect of 536Jg-1 for β-cyclodextrin and 304-422.5Jg-1 for complexes). Furthermore, both TG and DSC results support the formation of inclusion complexes. This is the first study on the nanoencapsulation of Danube fish oils in β-cyclodextrin.
Collapse
Affiliation(s)
- Daniel I Hădărugă
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania; Centre for Gene and Cellular Therapies in the Treatment of Cancer - OncoGen, Clinical County Hospital of Timişoara, Liviu Rebreanu Blvd. 156, 300736 Timişoara, Romania.
| | - Cristina L Birău Mitroi
- Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania.
| | - Alexandra T Gruia
- Centre for Gene and Cellular Therapies in the Treatment of Cancer - OncoGen, Clinical County Hospital of Timişoara, Liviu Rebreanu Blvd. 156, 300736 Timişoara, Romania.
| | - Virgil Păunescu
- Centre for Gene and Cellular Therapies in the Treatment of Cancer - OncoGen, Clinical County Hospital of Timişoara, Liviu Rebreanu Blvd. 156, 300736 Timişoara, Romania; Department of Physiology and Immunology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. 2, 300041 Timişoara, Romania.
| | - Geza N Bandur
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania.
| | - Nicoleta G Hădărugă
- Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania.
| |
Collapse
|
25
|
Donovan JD, Lee SY, Lee Y. R-Index Measure of Microencapsulated Tributyrin in Gamma-Cyclodextrin Influenced by Drying Method. J Food Sci 2016; 81:S2252-7. [DOI: 10.1111/1750-3841.13415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/14/2016] [Accepted: 07/13/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | - Soo-Yeun Lee
- The Univ. of Illinois at Urbana-Champaign; Champaign IL U.S.A
| | - Youngsoo Lee
- The Univ. of Illinois at Urbana-Champaign; Champaign IL U.S.A
| |
Collapse
|
26
|
Nano-encapsulation competitiveness of omega-3 fatty acids and correlations of thermal analysis and Karl Fischer water titration for European anchovy (Engraulis encrasicolus L.) oil/β-cyclodextrin complexes. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Kfoury M, Lounès-Hadj Sahraoui A, Bourdon N, Laruelle F, Fontaine J, Auezova L, Greige-Gerges H, Fourmentin S. Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins. Food Chem 2016; 196:518-25. [DOI: 10.1016/j.foodchem.2015.09.078] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 01/25/2023]
|
28
|
Donovan JD, Cadwallader KR, Lee Y. Volatile Retention and Morphological Properties of Microencapsulated Tributyrin Varied by Wall Material and Drying Method. J Food Sci 2016; 81:E643-50. [DOI: 10.1111/1750-3841.13243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 01/10/2016] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Youngsoo Lee
- The Univ. of IllinoisUrbana‐Champaign IL 61820 U.S.A
| |
Collapse
|
29
|
Hădărugă DI, Ünlüsayin M, Gruia AT, Birău Mitroi C, Rusu G, Hădărugă NG. Thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) and complexation with β-cyclodextrin. Beilstein J Org Chem 2016; 12:179-91. [PMID: 26977177 PMCID: PMC4778528 DOI: 10.3762/bjoc.12.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/20/2016] [Indexed: 11/23/2022] Open
Abstract
The thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) as well as its β-cyclodextrin (β-CD) complexation ability has been verified for the first time. The main omega-3 fatty acids, EPA and DHA, were significantly degraded, even at 50 °C. Their relative concentrations decrease from 6.1% for EPA and 4.1% for DHA to 1.7% and 1.5% after degradation at 150 °C, respectively. On the other hand, the relative concentrations of monounsaturated and saturated fatty acids remained constant or slightly increased by a few percent after degradation (e.g., from 10.7% to 12.9% for palmitic acid). Co-crystallization of ASO with β-CD at a host–guest ratio of 1:1 and 3:1 from an ethanol–water mixture and kneading methods has been used for the preparation of β-CD/ASO complexes. The analysis of the complexes by thermogravimetry, differential scanning calorimetry (DSC), and Karl Fischer titration (KFT) as well as the decrease of the “strongly-retained” water content confirm the formation of the inclusion compound. Furthermore, the DSC parameters correlate well with the KFT kinetic data for β-CD/ASO complexes.
Collapse
Affiliation(s)
- Daniel I Hădărugă
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| | - Mustafa Ünlüsayin
- Department of Fish Processing Technology, Akdeniz University, Dumlupinar Boulevard, Campus Antalya, 07058 Antalya, Turkey
| | - Alexandra T Gruia
- Regional Centre for Immunology and Transplant, County Clinical Emergency Hospital Timişoara, Iosif Bulbuca Blvd. 10, 300736 Timişoara, Romania
| | - Cristina Birău Mitroi
- Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Mihai I of Romania" - Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Gerlinde Rusu
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| | - Nicoleta G Hădărugă
- Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Mihai I of Romania" - Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| |
Collapse
|
30
|
Furune T, Ikuta N, Ishida Y, Okamoto H, Nakata D, Terao K, Sakamoto N. A study on the inhibitory mechanism for cholesterol absorption by α-cyclodextrin administration. Beilstein J Org Chem 2014; 10:2827-35. [PMID: 25550749 PMCID: PMC4273249 DOI: 10.3762/bjoc.10.300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/10/2014] [Indexed: 11/23/2022] Open
Abstract
Background: Micelle formation of cholesterol with lecithin and bile salts is a key process for intestinal absorption of lipids. Some dietary fibers commonly used to reduce the lipid content in the body are thought to inhibit lipid absorption by binding to bile salts and decreasing the lipid solubility. Amongst these, α-cyclodextrin (α-CD) is reportedly one of the most powerful dietary fibers for decreasing blood cholesterol. However, it is difficult to believe that α-CD directly removes cholesterol because it has a very low affinity for cholesterol and its mechanism of action is less well understood than those of other dietary fibers. To identify this mechanism, we investigated the interaction of α-CD with lecithin and bile salts, which are essential components for the dissolution of cholesterol in the small intestine, and the effect of α-CD on micellar solubility of cholesterol. Results: α-CD was added to Fed-State Simulated Intestinal Fluid (FeSSIF), and precipitation of a white solid was observed. Analytical data showed that the precipitate was a lecithin and α-CD complex with a molar ratio of 1:4 or 1:5. The micellar solubility of cholesterol in the mixture of FeSSIF and α-CD was investigated, and found to decrease through lecithin precipitation caused by the addition of α-CD, in a dose-dependent manner. Furthermore, each of several other water-soluble dietary fibers was added to the FeSSIF, and no precipitate was generated. Conclusion: This study suggests that α-CD decreases the micellar solubility of cholesterol in the lumen of the small intestine via the precipitation of lecithin from bile salt micelles by complex formation with α-CD. It further indicates that the lecithin precipitation effect on the bile salt micelles by α-CD addition clearly differs from addition of other water-soluble dietary fibers. The decrease in micellar cholesterol solubility in the FeSSIF was the strongest with α-CD addition.
Collapse
Affiliation(s)
- Takahiro Furune
- Division of Food and Drug Evaluation Science, Graduate School of Medicine, Kobe University, 650-0017, Japan ; CycloChem Bio Co., Ltd., 650-0047, Japan
| | - Naoko Ikuta
- Division of Food and Drug Evaluation Science, Graduate School of Medicine, Kobe University, 650-0017, Japan
| | | | | | | | - Keiji Terao
- Division of Food and Drug Evaluation Science, Graduate School of Medicine, Kobe University, 650-0017, Japan ; CycloChem Bio Co., Ltd., 650-0047, Japan
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Graduate School of Medicine, Kobe University, 650-0017, Japan
| |
Collapse
|
31
|
Hădărugă DI, Hădărugă NG, Costescu CI, David I, Gruia AT. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system. Beilstein J Org Chem 2014; 10:2809-20. [PMID: 25550747 PMCID: PMC4273302 DOI: 10.3762/bjoc.10.298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/20/2014] [Indexed: 01/21/2023] Open
Abstract
Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed-uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC-MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.
Collapse
Affiliation(s)
- Daniel I Hădărugă
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 300001, Timişoara, Romania
| | - Nicoleta G Hădărugă
- Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" - Timişoara, Calea Aradului 119, 300645, Timişoara, Romania
| | - Corina I Costescu
- Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" - Timişoara, Calea Aradului 119, 300645, Timişoara, Romania
| | - Ioan David
- Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" - Timişoara, Calea Aradului 119, 300645, Timişoara, Romania
| | - Alexandra T Gruia
- Regional Centre for Immunology and Transplant, County Clinical Emergency Hospital Timişoara, Iosif Bulbuca Blvd. 10, 300736, Timişoara, Romania
| |
Collapse
|
32
|
Makkumrai W, Sivertsen H, Sugar D, Ebeler SE, Negre-Zakharov F, Mitcham EJ. Effect of ethylene and temperature conditioning on sensory attributes and chemical composition of 'Comice' pears. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4988-5004. [PMID: 24844943 DOI: 10.1021/jf405047v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
'Comice' is among the pear varieties most difficult to ripen after harvest. Ethylene, cold temperature, and intermediate (10 °C) temperature conditioning have been successfully used to stimulate the ability of 'Comice' pears to ripen. However, the sensory quality of pears stimulated to ripen by different conditioning treatments has not been evaluated. In this study, a descriptive sensory analysis of 'Comice' pears conditioned to soften to 27, 18, and 9 N firmness with ethylene exposure for 3 or 1 days, storage at 0 °C for 25 or 15 days, or storage at 10 °C for 10 days was performed. Sensory attributes were then related to changes in chemical composition, including volatile components, water-soluble polyuronides, soluble solids content (SSC), and titratable acidity (TA). The sensory profile of fruit conditioned with ethylene was predominant in fibrous texture and low in fruity and pear aroma. Fruit conditioned at 0 °C was described as crunchy at 27 and 18 N firmness and became juicy at 9 N firmness. Fruit conditioned at 0 °C produced the highest quantity of alcohols and fewer esters than fruit conditioned at 10 °C, and they had higher fruity and pear aroma than fruit conditioned with ethylene, but lower than fruit conditioned at 10 °C. Fruit held at 10 °C were predominant in fruity and pear aroma and had the highest concentration of esters. Water-soluble polyuronides were strongly, positively correlated (r > 0.9) with sensory attributes generally associated with ripeness, including juiciness, butteriness, and sweetness and negatively correlated (r > -0.9) with sensory attributes generally associated with the unripe stage, such as firmness and crunchiness. However, water-soluble polyuronides were not significantly different among conditioning treatments. Sensory sweetness was not significantly correlated with SSC, but TA and SSC/TA were significantly correlated with sensory tartness. However, there were no significant differences among the conditioning treatments in sweet or sour taste perception when the fruit fully softened. The results indicate that the various methods of conditioning 'Comice' pear fruits for ripening had different effects on their sensory and chemical properties that may influence their sensory quality.
Collapse
Affiliation(s)
- Warangkana Makkumrai
- Department of Plant Sciences, ‡Department of Food Science and Technology, and #Department of Viticulture and Enology, University of California , Davis, California 95616, United States
| | | | | | | | | | | |
Collapse
|
33
|
Hermenean A, Ardelean A, Stan M, Hadaruga N, Mihali CV, Costache M, Dinischiotu A. Antioxidant and hepatoprotective effects of naringenin and its β-cyclodextrin formulation in mice intoxicated with carbon tetrachloride: a comparative study. J Med Food 2014; 17:670-7. [PMID: 24611872 DOI: 10.1089/jmf.2013.0007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The present study evaluated the antioxidant and hepatoprotective effects of the flavonoid naringenin (NGN) and its β-cyclodextrin formulation at a dose of 50 mg/kg b.w. The assessment was done by the investigation of serum-enzymatic and liver antioxidant activity, histopathological and ultrastructural changes in male Swiss mice, which were subjected to acute experimental intoxication with CCl4. Formulated and free flavonoid were orally given to mice for 7 days and then were intraperitoneally injected with 1.0 mL/kg CCl4 on the 8th day. After 24 h of CCl4 administration, an increase in the levels of transaminases aspartate aminotransferase and alanine aminotransferase activities and malondialdehyde concentration occurred and a significant decrease in superoxide dismutase, catalase glutathione-peroxidase activities, and glutathione levels was detected as well. These were accompanied by extended centrilobular necrosis, steatosis, fibrosis, and an altered ultrastructure of hepatocytes. Pretreatment with formulated or free flavonoid retained the biochemical markers to control values. Histopathological and electron-microscopic examination confirmed the biochemical results. In conclusion, both NGN and NGN/β-cyclodextrin complex showed antioxidant and hepatoprotective effects against injuries induced by CCl4.
Collapse
Affiliation(s)
- Anca Hermenean
- 1 Department of Histology, Faculty of Medicine, Pharmacy and Dentistry, Vasile Goldis Western University of Arad , Arad, Romania
| | | | | | | | | | | | | |
Collapse
|
34
|
López-Nicolás JM, Rodríguez-Bonilla P, García-Carmona F. Cyclodextrins and Antioxidants. Crit Rev Food Sci Nutr 2013; 54:251-76. [DOI: 10.1080/10408398.2011.582544] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Rajendiran N, Siva S. Inclusion complex of sulfadimethoxine with cyclodextrins: preparation and characterization. Carbohydr Polym 2013; 101:828-36. [PMID: 24299845 DOI: 10.1016/j.carbpol.2013.10.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/23/2013] [Accepted: 10/04/2013] [Indexed: 11/26/2022]
Abstract
The inclusion complexation behavior, characterization and binding ability of sulfadimethoxine (SDMO) with α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) have been investigated both in solution and solid state by means of absorption, fluorescence, time-resolved fluorescence, (1)H NMR, FT-IR, DSC, SEM, TEM, XRD and molecular modeling methods. The spectral shifts revealed that the part of pyrimidine and aniline rings of SDMO are entrapped in the CD cavity. The stoichiometric ratio and association constant were determined by Benesi-Hildebrand plots and spectroscopic studies respectively. FT-IR spectroscopy was used to compare inclusion systems with physical mixtures, and demonstrated the complex formation in the solid state. The morphology and size of the nanoparticles of SDMO/CD complexes in aqueous solution were observed by TEM. The DSC analysis showed that the thermal stability of SDMO was enhanced in the presence of CD. Investigations of energetic and thermodynamic properties by PM3 method confirmed the stability of the inclusion complexes.
Collapse
Affiliation(s)
- N Rajendiran
- Department of Chemistry, Annamalai University, Annamalai nagar 608 002, Tamilnadu, India.
| | | |
Collapse
|
36
|
Kayaci F, Umu OCO, Tekinay T, Uyar T. Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3901-3908. [PMID: 23590460 DOI: 10.1021/jf400440b] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Solid triclosan/cyclodextrin inclusion complexes (TR/CD-IC) were obtained and then incorporated in poly(lactic acid) (PLA) nanofibers via electrospinning. α-CD, β-CD, and γ-CD were tested for the formation of TR/CD-IC by a coprecipitation method; however, the findings indicated that α-CD could not form an inclusion complex with TR, whereas β-CD and γ-CD successfully formed TR/CD-IC crystals, and the molar ratio of TR to CD was found to be 1:1. The structural and thermal characteristics of TR/CD-IC were investigated by (1)H NMR, FTIR, XRD, DSC, and TGA studies. Then, the encapsulation of TR/β-CD-IC and TR/γ-CD-IC in PLA nanofibers was achieved. Electrospun PLA and PLA/TR nanofibers obtained for comparison were uniform, whereas the aggregates of TR/CD-IC crystals were present and distributed within the PLA fiber matrix as confirmed by SEM and XRD analyses. The antibacterial activity of these nanofibrous webs was investigated. The results indicated that PLA nanofibers incorporating TR/CD-IC showed better antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria compared to PLA nanofibers containing only TR without CD-IC. Electrospun nanofibrous webs incorporating TR/CD-IC may be applicable in active food packaging due to their very high surface area and nanoporous structure as well as efficient antibacterial property.
Collapse
Affiliation(s)
- Fatma Kayaci
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University , Ankara 06800, Turkey
| | | | | | | |
Collapse
|
37
|
Riviş A, Hădărugă NG, Gârban Z, Hădărugă DI. Titanocene / cyclodextrin supramolecular systems: a theoretical approach. Chem Cent J 2012; 6:129. [PMID: 23122334 PMCID: PMC3537657 DOI: 10.1186/1752-153x-6-129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/15/2012] [Indexed: 11/22/2022] Open
Abstract
Background Recently, various metallocenes were synthesized and analyzed by biological activity point of view (such as antiproliferative properties): ruthenocenes, cobaltoceniums, titanocenes, zirconocenes, vanadocenes, niobocenes, molibdocenes etc. Two main disadvantages of metallocenes are the poor hydrosolubility and the hydrolytic instability. These problems could be resolved in two ways: synthetically modifying the structure or finding new formulations with enhanced properties. The aqueous solubility of metallocenes with cytostatic activities could be enhanced by molecular encapsulation in cyclodextrins, as well as the hydrolytic instability of these compounds could be reduced. Results This study presents a theoretical approach on the nanoencapsulation of a series of titanocenes with cytotoxic activity in α-, β-, and γ-cyclodextrin. The HyperChem 5.11 package was used for building and molecular modelling of titanocene and cyclodextrin structures, as well as for titanocene/cyclodextrin complex optimization. For titanocene/cyclodextrin complex optimization experiments, the titanocene and cyclodextrin structures in minimal energy conformations were set up at various distances and positions between molecules (molecular mechanics functionality, MM+). The best interaction between titanocene structures and cyclodextrins was obtained in the case of β- and γ-cyclodextrin, having the hydrophobic moieties oriented to the secondary face of cyclodextrin. The hydrophobicity of titanocenes (logP) correlate with the titanocene-cyclodextrin interaction parameters, especially with the titanocene-cyclodextrin interaction energy; the compatible geometry and the interaction energy denote that the titanocene/β- and γ-cyclodextrin complex can be achieved. Valuable quantitative structure-activity relationships (QSARs) were also obtained in the titanocene class by using the same logP as the main parameter for the in vitro cytotoxic activity against HeLa, K562, and Fem-x cell lines. Conclusions According to our theoretical study, the titanocene/cyclodextrin inclusion compounds can be obtained (high interaction energy; the encapsulation is energetically favourable). Further, the most hydrophobic compounds are better encapsulated in β- and γ-cyclodextrin molecules and are more stable (from energetically point of view) in comparison with α-cyclodextrin case. This study suggests that the titanocene / β- and γ-cyclodextrin complexes (or synthetically modified cyclodextrins with higher water solubility) could be experimentally synthesized and could have enhanced cytotoxic activity and even lower toxicity.
Collapse
Affiliation(s)
- Adrian Riviş
- Department of Applied Chemistry and Organic-Natural Compounds Engineering, "Politehnica" University of Timişoara, Faculty of Industrial Chemistry and Environmental Engineering, Carol Telbisz 6, Timişoara 300001, Romania.
| | | | | | | |
Collapse
|
38
|
|
39
|
Kayaci F, Uyar T. Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.040] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Hădărugă NG, Hădărugă DI, Isengard HD. Water content of natural cyclodextrins and their essential oil complexes: A comparative study between Karl Fischer titration and thermal methods. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Hădărugă NG, Hădărugă DI, Isengard HD. “Surface water” and “strong-bonded water” in cyclodextrins: a Karl Fischer titration approach. J INCL PHENOM MACRO 2012. [DOI: 10.1007/s10847-012-0143-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Hădărugă NG. Ficaria verna Huds. extracts and their β-cyclodextrin supramolecular systems. Chem Cent J 2012; 6:16. [PMID: 22390207 PMCID: PMC3365867 DOI: 10.1186/1752-153x-6-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 03/05/2012] [Indexed: 11/17/2022] Open
Abstract
Background Obtaining new pharmaceutical materials with enhanced properties by using natural compounds and environment-friendly methods is a continuous goal for scientists. Ficaria verna Huds. is a widespread perennial plant with applications in the treat of haemorrhoids and to cure piles; it has also anti-inflammatory, astringent, and antibiotic properties. The goal of the present study is the obtaining and characterization of new F. verna extract/β-cyclodextrin complexes by using only natural compounds, solvents, and environment-friendly methods in order to increase the quality and acceptability versus toxicity indicator. Thus, the flavonoid content (as quercetin) of Ficaria verna Huds. flowers and leaves from the West side of Romania was determined and correlated with their antioxidant activity. Further, the possibility of obtaining β-cyclodextrin supramolecular systems was studied. Results F. verna flowers and leaves extracts were obtained by semi-continuous solid-liquid extraction. The raw concentrated extract was spectrophotometrically analyzed in order to quantify the flavonoids from plant parts and to evaluate the antioxidant activity of these extracts. The F. verna extracts were used for obtaining β-cyclodextrin complexes; these were analyzed by scanning electron microscopy and Karl Fischer water titration; spectrophotometry was used in order to quantifying the flavonoids and evaluates the antioxidant activity. A higher concentration of flavonoids of 0.5% was determined in complexes obtained by crystallisation method, while only a half of this value was calculated for kneading method. The antioxidant activity of these complexes was correlated with the flavonoid content and this parameter reveals possible controlled release properties. Conclusions The flavonoid content of F. verna Huds. from the West side of Romania (Banat county) is approximately the same in flowers and leaves, being situated at a medium value among other studies. β-Cyclodextrin complexes of F. verna extracts are obtained with lower yields by crystallisation than kneading methods, but the flavonoids (as quercetin) are better encapsulated in the first case most probably due to the possibility to attain the host-guest equilibrium in the slower crystallisation process. F. verna extracts and their β-cyclodextrin complexes have antioxidant activity even at very low concentrations and could be used in proper and valuable pharmaceutical formulations with enhanced bioactivity.
Collapse
Affiliation(s)
- Nicoleta G Hădărugă
- Chemical Engineering Department, Faculty of Food Processing Technology, Banat's University of Agricultural Sciences and Veterinary Medicine, C, Aradului 119, 300645 Timişoara, Romania.
| |
Collapse
|
43
|
Yang Y, Gu Z, Xu H, Li F, Zhang G. Interaction between amylose and beta-cyclodextrin investigated by complexing with conjugated linoleic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5620-5624. [PMID: 20377176 DOI: 10.1021/jf9043869] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Interaction between amylose, a common food component, and beta-cyclodextrin (betaCD), an often used food additive, was investigated by incorporating a third component of bioactive conjugated linoleic acid (CLA) that could form an inclusion complex with both amylose and betaCD. The existence of an amylose-betaCD interaction was first evidenced by a reduced thermal stability of amylose in the amylose-betaCD complex and a decrease of extractable betaCD from 60 to 51.40% after their complexation. The way of their interaction was then explored in a three-component system, in which the amount of CLA is high enough to oversaturate both amylose and betaCD. In comparison to the amylose-CLA and betaCD-CLA complexes, a self-assemblied amylose-CLA-betaCD three-component complex confirmed by differential scanning calorimetry (DSC), X-ray diffraction, and thermogravimetric analyses showed an in-between thermal stability, high acid stability, and the highest amylolytic digestibility (74.43%), which suggests that betaCD is likely sandwiched between the helical amylose chains in the amylose-betaCD complex. Therefore, betaCD can be used to manipulate the crystallization process of amylose to modulate food product quality, and the amylose-betaCD complex could also be applied to improve the delivery efficiency of CLA and other bioactive compounds.
Collapse
Affiliation(s)
- Ying Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
Hădărugă DI, Hădărugă NG, Butnaru G, Tatu C, Gruia A. Bioactive microparticles (10): thermal and oxidative stability of nicotine and its complex with β-cyclodextrin. J INCL PHENOM MACRO 2010. [DOI: 10.1007/s10847-010-9761-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Song LX, Xu P. A Comparative Study on the Thermal Decomposition Behaviors between β-Cyclodextrin and Its Inclusion Complexes of Organic Amines. J Phys Chem A 2008; 112:11341-8. [DOI: 10.1021/jp806026q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Le Xin Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Peng Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|