1
|
Mardani M, Siahtiri S, Besati M, Baghani M, Baniassadi M, Nejad AM. Microencapsulation of natural products using spray drying; an overview. J Microencapsul 2024; 41:649-678. [PMID: 39133055 DOI: 10.1080/02652048.2024.2389136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
AIMS This study examines microencapsulation as a method to enhance the stability of natural compounds, which typically suffer from inherent instability under environmental conditions, aiming to extend their application in the pharmaceutical industry. METHODS We explore and compare various microencapsulation techniques, including spray drying, freeze drying, and coacervation, with a focus on spray drying due to its noted advantages. RESULTS The analysis reveals that microencapsulation, especially via spray drying, significantly improves natural compounds' stability, offering varied morphologies, sizes, and efficiencies in encapsulation. These advancements facilitate controlled release, taste modification, protection from degradation, and extended shelf life of pharmaceutical products. CONCLUSION Microencapsulation, particularly through spray drying, presents a viable solution to the instability of natural compounds, broadening their application in pharmaceuticals by enhancing protection and shelf life.
Collapse
Affiliation(s)
- Mahshid Mardani
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
- Department of Medicinal Chemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Saeed Siahtiri
- Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, USA
| | - Masoud Besati
- Department of Medicinal Chemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Mahdavi Nejad
- Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA, USA
| |
Collapse
|
2
|
Li Y, Li S, Huang Z, Zhang D, Jia Q. Research progress of fluorescent composites based on cyclodextrins: Preparation strategies, fluorescence properties and applications in sensing and bioimaging. Anal Chim Acta 2024; 1316:342878. [PMID: 38969399 DOI: 10.1016/j.aca.2024.342878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024]
Abstract
Fluorescence analysis has been regarded as one of the commonly used analytical methods because of its advantages of simple operation, fast response, low cost and high sensitivity. So far, various fluorescent probes, with noble metal nanoclusters, quantum dots, organic dyes and metal organic frameworks as representatives, have been widely reported. However, single fluorescent probe often suffers from some deficiencies, such as low quantum yield, poor chemical stability, low water solubility and toxicity. To overcome these disadvantages, the introduction of cyclodextrins into fluorescent probes has become a fascinating approach. This review (with 218 references) systematically covers the research progress of fluorescent composites based on cyclodextrins in recent years. Preparation strategies, fluorescence properties, response mechanisms and applications in sensing (ions, organic pollutants, bio-related molecules, temperature, pH) and bioimaging of fluorescent composites based on cyclodextrins are summarized in detail. Finally, the current challenges and future perspectives of these composites in relative research fields are discussed.
Collapse
Affiliation(s)
- Yiqi Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songrui Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dawei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Iduoku K, Ngongang M, Kulathunga J, Daghighi A, Casanola-Martin G, Simsek S, Rasulev B. Phenolic Acid-β-Cyclodextrin Complexation Study to Mask Bitterness in Wheat Bran: A Machine Learning-Based QSAR Study. Foods 2024; 13:2147. [PMID: 38998653 PMCID: PMC11241027 DOI: 10.3390/foods13132147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The need to solvate and encapsulate hydro-sensitive molecules drives noticeable trends in the applications of cyclodextrins in the pharmaceutical industry, in foods, polymers, materials, and in agricultural science. Among them, β-cyclodextrin is one of the most used for the entrapment of phenolic acid compounds to mask the bitterness of wheat bran. In this regard, there is still a need for good data and especially for a robust predictive model that assesses the bitterness masking capabilities of β-cyclodextrin for various phenolic compounds. This study uses a dataset of 20 phenolic acids docked into the β-cyclodextrin cavity to generate three different binding constants. The data from the docking study were combined with topological, topographical, and quantum-chemical features from the ligands in a machine learning-based structure-activity relationship study. Three different models for each binding constant were computed using a combination of the genetic algorithm (GA) and multiple linear regression (MLR) approaches. The developed ML/QSAR models showed a very good performance, with high predictive ability and correlation coefficients of 0.969 and 0.984 for the training and test sets, respectively. The models revealed several factors responsible for binding with cyclodextrin, showing positive contributions toward the binding affinity values, including such features as the presence of six-membered rings in the molecule, branching, electronegativity values, and polar surface area.
Collapse
Affiliation(s)
- Kweeni Iduoku
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58102, USA
| | - Marvellous Ngongang
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | - Jayani Kulathunga
- Cereal Science Graduate Program, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA (S.S.)
- Department of Multidisciplinary Studies, Faculty of Urban and Aquatic Bioresources, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Amirreza Daghighi
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58102, USA
| | - Gerardo Casanola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | - Senay Simsek
- Cereal Science Graduate Program, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA (S.S.)
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
4
|
Kaboudi N, Asl SG, Nourani N, Shayanfar A. Solubilization of drugs using beta-cyclodextrin: Experimental data and modeling. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:663-672. [PMID: 38340807 DOI: 10.1016/j.pharma.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Many drug candidates fail to complete the entire drug development process because of poor physicochemical properties. Solubility is an important physicochemical property which plays a vital role in various stages of drug discovery and development. Several methods have been proposed to enhance the solubility of drugs, and complex formation with cyclodextrins is among them. Beta-cyclodextrin (βCD) is a common excipient for solubilization of drugs. The aim of this study is to develop the mechanistic QSPR models to predict the solubility enhancement of a drug in the presence of βCD. In this study, the solubility enhancement of some drugs in the presence of 10mM βCD at 25°C was experimentally determined or collected from the literature. Two different models to predict the solubilization by βCD were developed by binary logistic regression using structural properties of drugs with more than 80% accuracy. Polar surface area and excess molar refraction are the main parameters for estimating solubilization by βCD. Moreover, other descriptors related to hydrophobicity and the capability of hydrogen bonding formation of molecules could improve the accuracy of the established models.
Collapse
Affiliation(s)
- Navid Kaboudi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Ghasemi Asl
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Nourani
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Ruini C, Ferrari E, Durante C, Lanciotti G, Neri P, Ferrari AM, Rosa R. Integrated Approach of Life Cycle Assessment and Experimental Design in the Study of a Model Organic Reaction: New Perspectives in Renewable Vanillin-Derived Chemicals. Molecules 2024; 29:2132. [PMID: 38731622 PMCID: PMC11085093 DOI: 10.3390/molecules29092132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
This work is focused on performing a quantitative assessment of the environmental impacts associated with an organic synthesis reaction, optimized using an experimental design approach. A nucleophilic substitution reaction was selected, employing vanillin as the substrate, a phenolic compound widely used in the food industry and of pharmaceutical interest, considering its antioxidant and antitumoral potential. To carry out the reaction, three different solvents have been chosen, namely acetonitrile (ACN), acetone (Ace), and dimethylformamide (DMF). The syntheses were planned with the aid of a multivariate experimental design to estimate the best reaction conditions, which simultaneously allow a high product yield and a reduced environmental impact as computed by Life Cycle Assessment (LCA) methodology. The experimental results highlighted that the reactions carried out in DMF resulted in higher yields with respect to ACN and Ace; these reactions were also the ones with lower environmental impacts. The multilinear regression models allowed us to identify the optimal experimental conditions able to guarantee the highest reaction yields and lowest environmental impacts for the studied reaction. The identified optimal experimental conditions were also validated by experimentally conducting the reaction in those conditions, which indeed led to the highest yield (i.e., 93%) and the lowest environmental impacts among the performed experiments. This work proposes, for the first time, an integrated approach of DoE and LCA applied to an organic reaction with the aim of considering both conventional metrics, such as reaction yield, and unconventional ones, such as environmental impacts, during its lab-scale optimization.
Collapse
Affiliation(s)
- Chiara Ruini
- Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, v. Amendola 2, 42122 Reggio Emilia, Italy; (P.N.); (A.M.F.); (R.R.)
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, v. Campi 103, 41125 Modena, Italy; (E.F.); (C.D.)
| | - Caterina Durante
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, v. Campi 103, 41125 Modena, Italy; (E.F.); (C.D.)
| | - Giulia Lanciotti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, v. Campi 103, 41125 Modena, Italy; (E.F.); (C.D.)
| | - Paolo Neri
- Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, v. Amendola 2, 42122 Reggio Emilia, Italy; (P.N.); (A.M.F.); (R.R.)
| | - Anna Maria Ferrari
- Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, v. Amendola 2, 42122 Reggio Emilia, Italy; (P.N.); (A.M.F.); (R.R.)
- Interdepartmental Center En&Tech, University of Modena and Reggio Emilia, Tecnopolo di Reggio Emilia, Piazzale Europa 1, 42123 Reggio Emilia, Italy
| | - Roberto Rosa
- Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, v. Amendola 2, 42122 Reggio Emilia, Italy; (P.N.); (A.M.F.); (R.R.)
- Interdepartmental Center En&Tech, University of Modena and Reggio Emilia, Tecnopolo di Reggio Emilia, Piazzale Europa 1, 42123 Reggio Emilia, Italy
- Department of Economics, Science, Engineering and Design, University of San Marino Republic, v. Consiglio dei Sessanta 99, 47891 Dogana, San Marino
| |
Collapse
|
6
|
Alabrahim OA, Azzazy HMES. Antimicrobial Activities of Pistacia lentiscus Essential Oils Nanoencapsulated into Hydroxypropyl-beta-cyclodextrins. ACS OMEGA 2024; 9:12622-12634. [PMID: 38524461 PMCID: PMC10955754 DOI: 10.1021/acsomega.3c07413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 03/26/2024]
Abstract
The rising risks of food microbial contamination and foodborne pathogens resistance have prompted an increasing interest in natural antimicrobials as promising alternatives to synthetic antimicrobials. Essential oils (EOs) obtained from natural sources have shown promising anticancer, antimicrobial, and antioxidant activities. EOs extracted from the resins of Pistacia lentiscus var. Chia are widely utilized for the treatment of skin inflammations, gastrointestinal disorders, respiratory infections, wound healing, and cancers. The therapeutic benefits of P. lentiscusessential oils (PO) are limited by their low solubility, poor bioavailability, and high volatility. Nanoencapsulation of PO can improve their physicochemical properties and consequently their therapeutic efficacy while overcoming their undesirable side effects. Hence, PO was extracted from the resins of P. lentiscusvia hydrodistillation. Then, PO was encapsulated into (2-hydroxypropyl)-beta-cyclodextrin (HPβCD) via freeze-drying. The obtained inclusion complexes (PO-ICs) appeared as round vesicles (22.62 to 63.19 nm) forming several agglomerations (180 to 350 nm), as detected by UHR-TEM, with remarkable entrapment efficiency (89.59 ± 1.47%) and a PDI of 0.1475 ± 0.0005. Furthermore, the encapsulation and stability of PO-ICs were confirmed via FE-SEM, 1H NMR, 2D HNMR (NOESY), FT-IR, UHR-TEM, and DSC. DSC revealed a higher thermal stability of the PO-ICs, reaching 351.0 °C. PO-ICs exerted substantial antibacterial activity against Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli as compared to free PO. PO-ICs showed significant enhancement in the antibacterial activity of the encapsulated PO against S. aureus with an MIC90 of 2.84 mg/mL and against P. aeruginosa with MIC90 of 3.62 mg/mL and MIC50 of 0.56 mg/mL. In addition, PO-ICs showed greater antimicrobial activity against E. coli by 6-fold with an MIC90 of 0.89 mg/mL, compared to free PO, which showed an MIC90 of 5.38 mg/mL. In conclusion, the encapsulation of PO into HPβCD enhanced its aqueous solubility, stability, and penetration ability, resulting in a significantly higher antibacterial activity.
Collapse
Affiliation(s)
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute of
Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
7
|
Alabrahim OAA, Alwahibi S, Azzazy HMES. Improved antimicrobial activities of Boswellia sacra essential oils nanoencapsulated into hydroxypropyl-beta-cyclodextrins. NANOSCALE ADVANCES 2024; 6:910-924. [PMID: 38298595 PMCID: PMC10825941 DOI: 10.1039/d3na00882g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
Natural antimicrobials have recently gained increasing interest over synthetic antimicrobials to overcome foodborne pathogens and food microbial contamination. Essential oils (EOs) obtained from Boswellia sacra resins (BO) were utilized for respiratory disorders, rheumatoid arthritis, malignant tumors, and viral infections. Like other EOs, the therapeutic potential of BO is hindered by its low solubility and bioavailability, poor stability, and high volatility. Several studies have shown excellent physicochemical properties and outstanding therapeutic capabilities of EOs encapsulated into various nanocarriers. This study extracted BO from B. sacra resins via hydrodistillation and encapsulated it into hydroxypropyl-beta-cyclodextrins (HPβCD) using the freeze-drying method. The developed inclusion complexes of BO (BO-ICs) had high encapsulation efficiency (96.79 ± 1.17%) and a polydispersity index of 0.1045 ± 0.0006. BO-ICs showed presumably spherical vesicles (38.5 to 59.9 nm) forming multiple agglomerations (136.9 to 336.8 nm), as determined by UHR-TEM. Also, the formation and stability of BO-ICs were investigated using DSC, FTIR, FE-SEM, UHR-TEM, 1H NMR, and 2D HNMR (NOESY). BO-ICs showed greater thermal stability (362.7 °C). Moreover, compared to free BO, a remarkable enhancement in the antimicrobial activities of BO-ICs was shown against three different bacteria: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. BO-ICs displayed significant antibacterial activity against Pseudomonas aeruginosa with an MIC90 of 3.93 mg mL-1 and an MIC50 of 0.57 mg mL-1. Also, BO-ICs showed an increase in BO activity against Escherichia coli with an MIC95 of 3.97 mg mL-1, compared to free BO, which failed to show an MIC95. Additionally, BO-ICs showed a more significant activity against Staphylococcus aureus with an MIC95 of 3.92 mg mL-1. BO encapsulation showed significantly improved antimicrobial activities owing to the better stability, bioavailability, and penetration ability imparted by encapsulation into HPβCD.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt +20 02 2615 2559
| | | | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt +20 02 2615 2559
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Jena Germany
| |
Collapse
|
8
|
Caruso M, Distefano A, Emma R, Zuccarello P, Copat C, Ferrante M, Carota G, Pulvirenti R, Polosa R, Missale GA, Rust S, Raciti G, Li Volti G. In vitro cytoxicity profile of e-cigarette liquid samples on primary human bronchial epithelial cells. Drug Test Anal 2023; 15:1145-1155. [PMID: 35434934 DOI: 10.1002/dta.3275] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/08/2022]
Abstract
Cigarette smoke is associated to severe chronic diseases. The most harmful components of cigarette smoke derive from the combustion process, which are significantly reduced in the electronic cigarette aerosol, thus providing a valid option in harm reduction strategies. To develop safer products, it is therefore necessary to screen electronic cigarette liquids (e-liquids) to meet high safety standards defined by government regulations. The aim of the present study was to evaluate the presence of metal- and plastic-derived contaminants in four different commercial e-liquids with high concentration of nicotine and their cytotoxic effect in normal human bronchial epithelial cells by a number of in vitro assays, in comparison with the 1R6F reference cigarette, using an air-liquid interface (ALI) exposure system. Moreover, we evaluated the effect of aerosol exposure on oxidative stress by measuring the production of reactive oxygen species and mitochondrial potential. Our results showed no contaminants in all e-liquids and a significantly reduced cytotoxic effect of e-liquid aerosol compared to cigarette smoke as well as a maintained mitochondria integrity. Moreover, no production of reactive oxygen species was detected with e-cigarette aerosol. In conclusion, these results support the reduced toxicity potential of e-cigs compared to tobacco cigarettes in an in vitro model resembling real life smoke exposure.
Collapse
Affiliation(s)
- Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction, University of Catania, Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pietro Zuccarello
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania, Italy
| | - Chiara Copat
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania, Italy
| | - Margherita Ferrante
- Center of Excellence for the Acceleration of Harm Reduction, University of Catania, Catania, Italy
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania, Italy
| | - Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Riccardo Polosa
- Center of Excellence for the Acceleration of Harm Reduction, University of Catania, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- ECLAT Srl, University of Catania, Catania, Italy
| | | | - Sonja Rust
- ECLAT Srl, University of Catania, Catania, Italy
| | - Giuseppina Raciti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Tachikawa R, Saito H, Moteki H, Kimura M, Kitagishi H, Arce F, See GL, Tanikawa T, Inoue Y. Preparation, Characterization, and In Vitro Evaluation of Inclusion Complexes Formed between S-Allylcysteine and Cyclodextrins. ACS OMEGA 2022; 7:31233-31245. [PMID: 36092555 PMCID: PMC9453967 DOI: 10.1021/acsomega.2c03489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
The present study prepared inclusion complexes of S-allylcysteine (SAC) and cyclodextrin (α, β, γ) by the freeze-drying (FD) method and verified the inclusion behavior of the solid dispersion. Also, the study investigated the effect of SAC/CD complex formation on liver tumor cells. Isothermal titration calorimetry (ITC) measurements confirmed the exothermic titration curve for SAC/αCD, suggesting a molar ratio of SAC/αCD = 1/1, but no exothermic/endothermic reaction was obtained for the SAC/βCD and SAC/γCD system. Powder X-ray diffraction (PXRD) results showed that the characteristic diffraction peaks of SAC and CDs disappeared in FD (SAC/αCD) and FD (SAC/γCD), indicated by a halo pattern. On the other hand, diffraction peaks originating from SAC and βCDs were observed in FD (SAC/βCD). Near-infrared (NIR) absorption spectroscopy results showed that CH and OH groups derived from SAC and OH groups derived from αCD and γCD cavity were shifted, suggesting complex formation due to intermolecular interactions occurring in SAC/αCD and SAC/γCD. Stability test results showed that the stability was maintained with FD (SAC/αCD) over FD (SAC/βCD) and FD (SAC/γCD). In 1H-1H of NOESY NMR measurement, FD (SAC/αCD) was confirmed to have a cross peak at the CH group of the alkene of SAC and the proton (H-3, -5, -6) in the αCD cavity. In FD (SAC/γCD), a cross peak was confirmed at the alkyl group on the carbonyl group side of SAC and the proton (H-3) in the cavity of γCD. From the above, it was suggested that the inclusion mode of SAC is different on FD (SAC/CDs). The results of the hepatocyte proliferation inhibition test using HepG2 cells showed that FD (SAC/βCD) inhibited cell proliferation. On the other hand, FD (SAC/αCD) and FD (SAC/γCD) did not show a significant decrease in the number of viable cells. These results suggest that the difference in the inclusion mode may contribute to the stability and cell proliferation inhibition.
Collapse
Affiliation(s)
- Rino Tachikawa
- Laboratory
of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and
Pharmaceutical Sciences, Josai University, Sakado, Saitama 3500295, Japan
| | - Hiroki Saito
- Laboratory
of Clinical Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama 3500295, Japan
| | - Hajime Moteki
- Laboratory
of Clinical Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama 3500295, Japan
| | - Mitsutoshi Kimura
- Laboratory
of Clinical Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama 3500295, Japan
| | - Hiroaki Kitagishi
- Department
of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 6100321, Japan
| | - Florencio Arce
- Pharmaceutical
Research and Drug Development Laboratories, Department of Pharmacy,
School of Health Care Professions, University
of San Carlos, Cebu City 6000, The Philippines
| | - Gerard Lee See
- Pharmaceutical
Research and Drug Development Laboratories, Department of Pharmacy,
School of Health Care Professions, University
of San Carlos, Cebu City 6000, The Philippines
| | - Takashi Tanikawa
- Laboratory
of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and
Pharmaceutical Sciences, Josai University, Sakado, Saitama 3500295, Japan
| | - Yutaka Inoue
- Laboratory
of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and
Pharmaceutical Sciences, Josai University, Sakado, Saitama 3500295, Japan
| |
Collapse
|
10
|
Elmowafy E, Pavoni L, Perinelli DR, Tiboni M, Casettari L, Cespi M, El-khouly A, Soliman ME, Bonacucina G. Hyperlipidemia control using the innovative association of lupin proteins and chitosan and α-cyclodextrin dietary fibers: food supplement formulation, molecular docking study, and in vivo evaluation. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Mangiferin/β-cyclodextrin complex: determination of the Inclusion constant in aqueous solution by Higuchi–Connors method and molecular absorption and photoluminescence UV spectroscopies at pH 3.4. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Salahuddin N, Awad S, Elfiky M. Vanillin-crosslinked chitosan/ZnO nanocomposites as a drug delivery system for 5-fluorouracil: study on the release behavior via mesoporous ZrO 2-Co 3O 4 nanoparticles modified sensor and antitumor activity. RSC Adv 2022; 12:21422-21439. [PMID: 35975070 PMCID: PMC9346502 DOI: 10.1039/d2ra02717h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 01/10/2023] Open
Abstract
Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM. Changing the weight% of ZnO NPs in the prepared NCs resulted in an improvement in their antibacterial activity against Gram-negative and Gram-positive bacteria strains compared with the unmodified CS, and the encapsulation efficiency of 5-fluorouracil (5-FU) was found to be in the range of 61.4–69.2%. Subsequently, the release of 5-FU was monitored utilizing the mesoporous ZrO2–Co3O4 NPs modified carbon paste sensor via the square-wave adsorptive anodic stripping voltammetry (SW-AdASV) technique. Also, the release mechanism of 5-FU from each NC was studied by applying the zero-order, first-order, Hixson–Crowell and Higuchi models to the experimental results. The cytotoxicity of prepared NCs and 5-FU-encapsulated NCs was evaluated against the HePG-2, MCF-7 and HCT-116 cancer cell lines, in addition to the WI-38 and WISH normal cell lines using the MTT assay. Notably, 5-FU/CV10 NC exhibited the highest antitumor activity towards all tested cancer cell lines and a moderate activity against WI-38 and WISH normal cell lines with IC50 values of 28.02 ± 2.5 and 31.65 ± 2.7 μg mL−1, respectively. The obtained nanocomposites exhibited suitable selectivity with minimum toxicity against normal cells. Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM.![]()
Collapse
Affiliation(s)
| | - Salem Awad
- Chemistry Department, Faculty of Science Tanta 31527 Egypt
| | - Mona Elfiky
- Chemistry Department, Faculty of Science Tanta 31527 Egypt
| |
Collapse
|
13
|
Yin P, Zhang S, Liu J, Liao X, Zhou G, Yang J, Wang B, Yang B. Preparation, binding behaviours and thermal stability of inclusion complexes between (Z)‐jasmone and acyclic cucurbit[n]urils. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peipei Yin
- R&D Center of China Tobacco Yunnan Industrial Co. Kunming China
| | - Shuqing Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Jing Liu
- R&D Center of China Tobacco Yunnan Industrial Co. Kunming China
| | - Xiali Liao
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Guiyuan Zhou
- R&D Center of China Tobacco Yunnan Industrial Co. Kunming China
| | - Jing Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Baoxing Wang
- R&D Center of China Tobacco Yunnan Industrial Co. Kunming China
| | - Bo Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| |
Collapse
|
14
|
dos Santos Ferreira CI, Gonzales AP, Mazzobre MF, Ulrih NP, Buera MDP. Solubility, sorption isotherms and thermodynamic parameters of β-cyclodextrin complexes with poplar propolis components: Practical implicances. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Dong G, Zhou J, Zhou G, Yin P, Yang J, Lu W, Gao C, Liao X, Wang B, Yang B. A heat-controlled release system of ethyl vanillin based on acyclic cucurbit[n]urils. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ethyl vanillin (EVA) is one of the most popular spices in the world, but it is unstable and is prone to lose its aroma. Host–Guest encapsulation by supramolecular hosts can improve stability of fragrance molecules and endow them with excellent heat-controlled release properties to satisfy requirements in food, cosmetic and tobacco, etc. Herein, two acyclic cucurbit[n]urils (ACBs, M1 and M2) inclusion complexes of EVA were prepared. Their binding behaviors were investigated by 1H NMR, SEM, XRD, FT-IR and TGA. The stoichiometric ratio was 1:1 by Job’s plot and the binding constant was determined by fluorescence titration. The intermolecular interaction between host and guest was studied by 2D-ROESY NMR and the inclusion mode was proposed. Finally, the heat-controlled release experiment indicated that the inclusion complexes of ACBs/EVA possess less volatilization at higher temperature, longer retention time and heat-controlled release. This study provides theoretical and technical guidance for expanding the application of EVA.
Collapse
Affiliation(s)
- Gaofeng Dong
- R&D Center of China Tobacco Yunnan Industrial Co. , Kunming 650231 , P. R. China
| | - Jiawei Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , P. R. China
| | - Guiyuan Zhou
- R&D Center of China Tobacco Yunnan Industrial Co. , Kunming 650231 , P. R. China
| | - Peipei Yin
- R&D Center of China Tobacco Yunnan Industrial Co. , Kunming 650231 , P. R. China
| | - Jing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , P. R. China
| | - Wei Lu
- R&D Center of China Tobacco Yunnan Industrial Co. , Kunming 650231 , P. R. China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , P. R. China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , P. R. China
| | - Baoxing Wang
- R&D Center of China Tobacco Yunnan Industrial Co. , Kunming 650231 , P. R. China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , P. R. China
| |
Collapse
|
16
|
Purewal SS, Sandhu KS, Kaur P, Punia S. Effect of processing on bioactive profile, minerals and bitterness causing compounds of Kinnow jam. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sukhvinder Singh Purewal
- Department of Food Science & Technology Maharaja Ranjit Singh Punjab Technical University Bathinda India
| | - Kawaljit Singh Sandhu
- Department of Food Science & Technology Maharaja Ranjit Singh Punjab Technical University Bathinda India
| | - Pinderpal Kaur
- Department of Food Science & Technology Maharaja Ranjit Singh Punjab Technical University Bathinda India
| | - Sneh Punia
- Department of Food Science & Technology Chaudhary Devi Lal University Sirsa India
| |
Collapse
|
17
|
Doan AT, Doan VTH, Katsuki J, Fujii S, Kono H, Sakurai K. Dramatically Increased Binding Constant of Water-Soluble Cyclodextrin Hyperbranched Polymers: Explored with Diffusion Ordered NMR Spectroscopy (DOSY). ACS OMEGA 2022; 7:10890-10900. [PMID: 35415377 PMCID: PMC8991930 DOI: 10.1021/acsomega.1c06194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/08/2022] [Indexed: 05/13/2023]
Abstract
We report that the polymerization of cyclodextrin (CD) with epichlorohydrin (ECH) dramatically increases the binding constant of CD to vanillin, from 55 to 8.4 × 103 M-1, by approximately 100 times, as determined by diffusion ordered spectroscopy (DOSY)-1H NMR. The binding constant increased with an increase of the ECH content of the polymer, although ECH polymers without CDs showed no affinity at all, suggesting that the hydrophobicity of the ECH network outside of CDs helps to enhance the binding. This increased binding constant allows CD-ECH polymers to increase the drug loading ratio, which may be one of the most critical issues for drug delivery systems.
Collapse
Affiliation(s)
- Anh Thi
Ngoc Doan
- Department
of Chemistry and Biochemistry, University
of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Van Thi Hong Doan
- Department
of Chemistry and Biochemistry, University
of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Jun Katsuki
- Department
of Chemistry and Biochemistry, University
of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shota Fujii
- Department
of Chemistry and Biochemistry, University
of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Hiroyuki Kono
- Division
of Applied Chemistry and Biochemistry, National
Institute of Technology Tomakomai College, 443 Nishikioka, Tomakomai, Hokkaido 059-1275, Japan
| | - Kazuo Sakurai
- Department
of Chemistry and Biochemistry, University
of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
18
|
Xiao Z, Liu H, Zhao Q, Niu Y, Chen Z, Zhao D. Application of microencapsulation technology in silk fibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
- School of Agriculture and Biology Shanghai Jiaotong University Shanghai China
| | - Huiqin Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Yunwei Niu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Ziqian Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Di Zhao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| |
Collapse
|
19
|
Liu Y, Sameen DE, Ahmed S, Wang Y, Lu R, Dai J, Li S, Qin W. Recent advances in cyclodextrin-based films for food packaging. Food Chem 2022; 370:131026. [PMID: 34509938 DOI: 10.1016/j.foodchem.2021.131026] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Abstract
Cyclodextrins are garnering increasing attention because they offer several benefits. For instance, cyclodextrins can form several complexes and supramolecular structures not only for food packaging but also for applications in other fields of science. In this review, we discussed the physical and chemical properties of cyclodextrins and the mechanism of their inclusion complex formation. The use of cyclodextrins in various types of food packaging is elaborated upon. We also explain the effects of cyclodextrins on the packaging of fruits, vegetables, meat, fish, and processed foods. Furthermore, some feasible suggestions for future applications are provided. In addition to the positive attributes of cyclodextrins, there are some limitations and drawbacks, which are discussed briefly in this review. In summary, this review can serve as a guide for researchers exploring cyclodextrins for the development of various packaging films.
Collapse
Affiliation(s)
- Yaowen Liu
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China; CaliforniaNano Systems Institute, University of California, Los Angeles, CA 90095, USA.
| | - Dur E Sameen
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Saeed Ahmed
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yue Wang
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Rui Lu
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianwu Dai
- Collegeof Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
20
|
Deng C, Cao C, Zhang Y, Hu J, Gong Y, Zheng M, Zhou Y. Formation and stabilization mechanism of β-cyclodextrin inclusion complex with C10 aroma molecules. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Angelini G, Gasbarri C. Green synthesis and properties of silver nanoparticles in sulfobutylether-β-cyclodextrin aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Bi Q, Lu Y, Zhao C, Ma X, Khanal S, Xu S. A facile approach to prepare anhydrous
MgCO
3
and its effect on the mechanical and flame retardant properties of
PVC
composites. J Appl Polym Sci 2021. [DOI: 10.1002/app.51349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qiuyan Bi
- School of Chemical Engineering Qinghai University Xining China
| | - Yunhua Lu
- School of Artificial Intelligence Chongqing University of Technology Chongqing China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Chunyan Zhao
- School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Xiaohong Ma
- School of Chemical Engineering Qinghai University Xining China
| | - Santosh Khanal
- School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Shiai Xu
- School of Chemical Engineering Qinghai University Xining China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
23
|
Unraveling the efficacy of different treatments towards suppressing limonin and naringin content of Kinnow juice: An innovative report. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Guan T, Zhang G, Sun Y, Zhang J, Ren L. Preparation, characterization, and evaluation of HP-β-CD inclusion complex with alcohol extractives from star anise. Food Funct 2021; 12:10008-10022. [PMID: 34505612 DOI: 10.1039/d1fo02097h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The active compounds in star anise alcohol extractives (SAAE) have potent bioactivity. However, their poor solubility and stability limit their applications. In this study, SAAE/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complexes were prepared as a strategy to overcome the abovementioned disadvantages. The phase solubility results indicated that the solubility of the inclusion complex was enhanced. Complexation was confirmed by complementary methods, including Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy, and transmission electron microscopy, which proved to be extremely insightful for studying the inclusion formation phenomenon between SAAE and HP-β-CD. Despite there being no apparent improvements in the antioxidant capacity and antimicrobial activity, the results of the stability studies presented higher thermal, volatile, and photostability after encapsulation. Further, molecular modeling was used to investigate the factors influencing complex formation and provide the most stable molecular conformation. Thus, based on the obtained results, this study strongly demonstrates the potential of the SAAE/HP-β-CD inclusion complex in the food industry.
Collapse
Affiliation(s)
- Tianzhu Guan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China. .,School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Guangjie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
25
|
Zhang S, Wang H, Dai J, Niu Y, Yin Q, Zhou L. Solubility determination, model evaluation and solution thermodynamics of isovanillin in 15 pure solvents and 4 binary solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Taheri Y, Herrera-Bravo J, Huala L, Salazar LA, Sharifi-Rad J, Akram M, Shahzad K, Melgar-Lalanne G, Baghalpour N, Tamimi K, Mahroo-Bakhtiyari J, Kregiel D, Dey A, Kumar M, Suleria HAR, Cruz-Martins N, Cho WC. Cyperus spp.: A Review on Phytochemical Composition, Biological Activity, and Health-Promoting Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4014867. [PMID: 34539969 PMCID: PMC8443348 DOI: 10.1155/2021/4014867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Cyperaceae are a plant family of grass-like monocots, comprising 5600 species with a cosmopolitan distribution in temperate and tropical regions. Phytochemically, Cyperus is one of the most promising health supplementing genera of the Cyperaceae family, housing ≈950 species, with Cyperus rotundus L. being the most reported species in pharmacological studies. The traditional uses of Cyperus spp. have been reported against various diseases, viz., gastrointestinal and respiratory affections, blood disorders, menstrual irregularities, and inflammatory diseases. Cyperus spp. are known to contain a plethora of bioactive compounds such as α-cyperone, α-corymbolol, α-pinene, caryophyllene oxide, cyperotundone, germacrene D, mustakone, and zierone, which impart pharmacological properties to its extract. Therefore, Cyperus sp. extracts were preclinically studied and reported to possess antioxidant, anti-inflammatory, antimicrobial, anticancer, neuroprotective, antidepressive, antiarthritic, antiobesity, vasodilator, spasmolytic, bronchodilator, and estrogenic biofunctionalities. Nonetheless, conclusive evidence is still sparse regarding its clinical applications on human diseases. Further studies focused on toxicity data and risk assessment are needed to elucidate its safe and effective application. Moreover, detailed structure-activity studies also need time to explore the candidature of Cyperus-derived phytochemicals as upcoming drugs in pharmaceuticals.
Collapse
Affiliation(s)
- Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Huala
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Khuram Shahzad
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Guiomar Melgar-Lalanne
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n. Col Industrial Ánimas, 91192 Xalapa, Veracruz, Mexico
| | - Navid Baghalpour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Katayoun Tamimi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mahroo-Bakhtiyari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | | | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
27
|
Lachowicz M, Stańczak A, Kołodziejczyk M. Characteristic of Cyclodextrins: Their Role and Use in the Pharmaceutical Technology. Curr Drug Targets 2021; 21:1495-1510. [PMID: 32538725 DOI: 10.2174/1389450121666200615150039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
About 40% of newly-discovered entities are poorly soluble in water, and this may be an obstacle in the creation of new drugs. To address this problem, the present review article examines the structure and properties of cyclodextrins and the formation and potential uses of drug - cyclodextrin inclusion complexes. Cyclodextrins are cyclic oligosaccharides containing six or more D-(+)- glucopyranose units linked by α-1,4-glycosidic bonds, which are characterized by a favourable toxicological profile, low local toxicity and low mucous and eye irritability; they are virtually non-toxic when administered orally. They can be incorporated in the formulation of new drugs in their natural form (α-, β-, γ-cyclodextrin) or as chemically-modified derivatives. They may also be used as an excipient in drugs delivered by oral, ocular, dermal, nasal and rectal routes, as described in the present paper. Cyclodextrins are promising compounds with many beneficial properties, and their use may be increasingly profitable for pharmaceutical scientists.
Collapse
Affiliation(s)
- Malwina Lachowicz
- Department of Technology of Drug Form, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Andrzej Stańczak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Michał Kołodziejczyk
- Department of Technology of Drug Form, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
28
|
Stephen Robert J, Peddha MS, Srivastava AK. Effect of Silymarin and Quercetin in a Miniaturized Scaffold in Wistar Rats against Non-alcoholic Fatty Liver Disease. ACS OMEGA 2021; 6:20735-20745. [PMID: 34423182 PMCID: PMC8374897 DOI: 10.1021/acsomega.1c00555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/26/2021] [Indexed: 05/02/2023]
Abstract
Silymarin and quercetin (SQ) are known antioxidants with substantial free radical scavenging activities. The efficacy of SQ activity is restricted due to poor absorption and availability. This study aims to increase the hepatoprotective activity of SQ by a newer delivery technique. We have optimized a technique, miniaturized scaffold (MS), for the delivery of active compounds of SQ. SQ molecules were embedded in MS and characterized by morphology, particle size, miniaturization efficiency, and functional group. Further, the hepatoprotective effects of MSQ were investigated through in vitro and in vivo methods. Hepatotoxicity was induced in rats by carbon tetrachloride (CCl4), and subsequently, hepatotoxic rats were treated with the miniaturized scaffold of SQ (MSQ) for 8 weeks. The body weight were significantly high in groups fed with MSQ. A substantial decrease in triglyceride, total cholesterol, low-density lipoprotein, alanine aminotransferase, and aspartate aminotransferase activities were observed in rats treated with MSQ. Similarly, rats treated with MSQ exhibited lower lipid accumulation in the hepatocytes. The experiments clearly demonstrated the efficacy of MSQ as a superior hepatoprotective agent against non-alcoholic fatty liver disease simulated through toxicity induced by CCl4.
Collapse
Affiliation(s)
- Jaisheela
Marry Stephen Robert
- Department
of Food Safety and Analytical Quality Control Laboratory, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muthukumar Serva Peddha
- Department
of Biochemistry, CSIR- Central Food Technological
Research Institute, Mysuru, 570 020 Karnataka, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alok Kumar Srivastava
- Department
of Food Safety and Analytical Quality Control Laboratory, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- .
Phone: 91-821-2514972. Fax: 91-821-2517233
| |
Collapse
|
29
|
Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135778] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Natural food antimicrobials and especially essential oils (EOs) possess strong antimicrobial activities that could play a remarkable role as a novel source of food preservatives. Despite the excellent efficacy of EOs, they have not been widely used in the food industry due to some major intrinsic barriers, such as low water solubility, bioavailability, volatility, and stability in food systems. Recent advances in nanotechnology have the potential to address these existing barriers in order to use EOs as preservatives in food systems at low doses. Thus, in this review, we explored the latest advances of using natural actives as antimicrobial agents and the different strategies for nanoencapsulation used for this purpose. The state of the art concerning the antibacterial properties of EOs will be summarized, and the main latest applications of nanoencapsulated antimicrobial agents in food systems will be presented. This review should help researchers to better choose the most suitable encapsulation techniques and materials.
Collapse
|
30
|
Functionalized chitosan as a novel support for stabilizing palladium in Suzuki reactions. Carbohydr Polym 2021; 260:117815. [DOI: 10.1016/j.carbpol.2021.117815] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
|
31
|
Narayanan V, Alam M, Ahmad N, Balakrishnan SB, Ganesan V, Shanmugasundaram E, Rajagopal B, Thambusamy S. Electrospun poly (vinyl alcohol) nanofibers incorporating caffeic acid/cyclodextrins through the supramolecular assembly for antibacterial activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119308. [PMID: 33360058 DOI: 10.1016/j.saa.2020.119308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Here, we prepared the solid inclusion complexes between Caffeic acid (CA) and Cyclodextrins (β- and γ-CDs) (CA/CDs) that were effectively embedded into Poly (vinyl alcohol) (PVA) electrospun nanofibers via electrospinning technique to enhanced solubility and antibacterial activity. In tested Cyclodextrins are β-and γ-CDs with CA in the ratio of 1:1 resulting in the formation of CA/CDs by co-precipitation method. The physical properties of CA/CDs were examined by FT-IR, UV, and Raman Spectroscopy. The phase solubility test showed a much higher solubility of CA due to inclusion complexes (ICs). Furthermore, CA/β-CD and CA/γ-CD perfected achieved 0.70:1 and 0.80:1 the molar ratio of ICs, confirmed by NMR studies. The fiber size distribution, average diameter, and morphology features were evaluated by SEM analysis. The dissolution profile of PVA/CA and PVA/CA/CDs were tested within 150 min, resulting in CA dissolved in PVA/CA/CDs slightly higher than PVA/CA nanofibers due to enhanced solubility of ICs. Moreover, PVA/CA/CDs exhibit high antibacterial activity against gram-positive bacteria of E-Coli and gram-negative bacteria of S. aureus. Finally, these results suggest that PVA/CA/CDs may be promising materials for active food packaging applications.
Collapse
Affiliation(s)
- Vimalasruthi Narayanan
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Vigneshkumar Ganesan
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India
| | | | - Brindha Rajagopal
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India
| | - Stalin Thambusamy
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India.
| |
Collapse
|
32
|
Main Applications of Cyclodextrins in the Food Industry as the Compounds of Choice to Form Host-Guest Complexes. Int J Mol Sci 2021; 22:ijms22031339. [PMID: 33572788 PMCID: PMC7866268 DOI: 10.3390/ijms22031339] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligomers broadly used in food manufacturing as food additives for different purposes, e.g., to improve sensorial qualities, shelf life, and sequestration of components. In this review, the latest advancements of their applications along with the characteristics of the uses of the different CDs (α, β, γ and their derivatives) were reviewed. Their beneficial effects can be achieved by mixing small amounts of CDs with the target material to be stabilized. Essentially, they have the capacity to form stable inclusion complexes with sensitive lipophilic nutrients and constituents of flavor and taste. Their toxicity has been also studied, showing that CDs are innocuous in oral administration. A review of the current legislation was also carried out, showing a general trend towards a wider acceptance of CDs as food additives. Suitable and cost-effective procedures for the manufacture of CDs have progressed, and nowadays it is possible to obtain realistic prices and used them in foods. Therefore, CDs have a promising future due to consumer demand for healthy and functional products.
Collapse
|
33
|
Xu X, Peng S, Bao G, Zhang H, Yin C. β-cyclodextrin inclusion complexes with vitamin A and its esters: A comparative experimental and molecular modeling study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Meryem G, Rabah K, Fatiha M, Leila N, Aziz BA, Imane D, Rachid M. Computational investigation of vanillin@βéta-cyclodextrin inclusion complex: Electronic and intermolecular analysis. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Zhu D, Xu L, Sethupathy S, Si H, Ahmad F, Zhang R, Zhang W, Yang B, Sun J. Decoding lignin valorization pathways in the extremophilic Bacillus ligniniphilusL1 for vanillin biosynthesis. GREEN CHEMISTRY 2021; 23:9554-9570. [DOI: 10.1039/d1gc02692e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An efficient bioconversion procedure for the accumulation of vanillin from lignin by pathway engineering and milking fermentation has been developed.
Collapse
Affiliation(s)
- Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lingxia Xu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Haibing Si
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Fiaz Ahmad
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Rongxian Zhang
- School of chemistry and chemical engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington 99354, USA
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
36
|
Electrospinning preparation and spectral characterizations of the inclusion complex of ferulic acid and γ-cyclodextrin with encapsulation into polyvinyl alcohol electrospun nanofibers. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Mai NNS, Nakai R, Kawano Y, Hanawa T. Enhancing the Solubility of Curcumin Using a Solid Dispersion System with Hydroxypropyl-β-Cyclodextrin Prepared by Grinding, Freeze-Drying, and Common Solvent Evaporation Methods. PHARMACY 2020; 8:E203. [PMID: 33147710 PMCID: PMC7712988 DOI: 10.3390/pharmacy8040203] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 01/21/2023] Open
Abstract
Cyclodextrins (CDs) and their derivatives significantly increase drug solubility by forming drug/CD complexes known as solid dispersions (SDs), which consist of an inclusion complex (IC), where the drug is entrapped within the CD cavity, and a non-IC. Here, the SDs of curcumin (CUR) and hydroxypropyl-β-cyclodextrin (HPβCD) were prepared using the grinding, freeze-drying (FD), and common solvent evaporation (CSE) methods and were physicochemically characterized using solubility, powder X-ray diffraction, Fourier transform infrared, differential scanning calorimetry, and dissolution studies. The second or higher order complex of CUR-HPβCD indicated the co-existence of ICs and non-ICs known as the SD system. When comparing the soluble drug amount with CUR crystals, the solubility of SDs was enhanced by up to 299-, 180-, and 489-fold, corresponding to the ground mixtures (GMs), freeze-drying mixtures (FDs), and common solvent evaporation mixtures (CSEs), respectively. The total transformation into the amorphous phase of CUR was observed in GMs and in CSE12, CSE14, and CSE18. The drug was well dispersed within HPβCD in GMs and CSEs, suggesting the formation of hydrogen bonds between CUR and HPβCD, whereas the dispersed behavior of FDs was similar to that of physical mixtures. In SDs, the melting temperature of CUR was in an increased order of CUR in 1:2 ICs, CUR in 1:1 ICs, and CUR crystals. The dissolution rate of CUR was positively improved as the amount of HPβCD in SDs increased. The SD system consisting of CUR and HPβCD significantly increased the drug solubility compared to ICs.
Collapse
Affiliation(s)
| | | | - Yayoi Kawano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (N.N.S.M.); (R.N.)
| | - Takehisa Hanawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (N.N.S.M.); (R.N.)
| |
Collapse
|
38
|
Naik J, Rajput R, Singh MK. Development and Evaluation of Ibuprofen Loaded Hydrophilic Biocompatible Polymeric Nanoparticles for the Taste Masking and Solubility Enhancement. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00798-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
An effort to augment solubility and efficiency of the oral bosentan-bucco-adhesive drug delivery system using graft co-polymer as the carrier. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03412-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Kendre PN, Kadam PD, Jain SP, Vibhute SK, Pote AK. Design, fabrication, and characterization of graft co-polymer assisted ocular insert: a state of art in reducing post-operative pain. Drug Dev Ind Pharm 2020; 46:1988-1999. [PMID: 33026260 DOI: 10.1080/03639045.2020.1833908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Targeted delivery of drugs at appropriate concentrations to ocular tissues is required to avoid wastage. Hence, advanced systems that maximize the release of poorly soluble drugs and deliver them at ocular sites must be designed. METHODS In this study, Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol-graft copolymer) was selected as a solubilizer as well as film former for preparing ocular inserts and polyethylene glycol 400 (PEG-400) as a plasticizer. On the basis of an initial phase solubility study, the maximum concentration of Soluplus® possible was used for developing the inserts. An optimized formulation was obtained using a 32-factorial design. Two factors at three levels were used to design the ocular inserts. Soluplus® (X 1) and the plasticizer, PEG-400 (X 2), were set as the independent variables at various levels, and the Rel4h (drug release in 4 h, Y 1) and tensile strength (Y 2) were set as the dependent variables. A pre-formulation study was conducted to select suitable materials. RESULTS Various physico-chemical parameters of the optimized formulation, including the tensile strength and folding endurance, were studied using FT-IR, DSC, XRD, and SEM. An in vitro dissolution study was conducted to determine the amount of drug released. There was no redness, swelling, or watering of the rabbit eye. CONCLUSION It was concluded that the ocular inserts of the poorly soluble nepafenac developed using a graft-co-polymer enhanced the solubility and utilization of the drug for a prolonged period.
Collapse
Affiliation(s)
- Prakash N Kendre
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Buldana, India
| | - Pooja D Kadam
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | | | - Somnath K Vibhute
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Buldana, India
| | - Ajinkya K Pote
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Buldana, India
| |
Collapse
|
41
|
Paulo F, Santos L. Encapsulation of the Antioxidant Tyrosol and Characterization of Loaded Microparticles: an Integrative Approach on the Study of the Polymer-Carriers and Loading Contents. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02407-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Tian B, Xiao D, Hei T, Ping R, Hua S, Liu J. The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: a review. POLYM INT 2020. [DOI: 10.1002/pi.5992] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bingren Tian
- College of Chemistry and Chemical EngineeringXinjiang University Urumchi China
| | - Dong Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing China
| | - Tingting Hei
- School of PharmacyNingxia Medical University Yinchuan China
| | - Rui Ping
- School of Clinical MedicineNingxia Medical University Yinchuan China
| | - Shiyao Hua
- School of PharmacyNingxia Medical University Yinchuan China
| | - Jiayue Liu
- School of PharmacyNingxia Medical University Yinchuan China
| |
Collapse
|
43
|
Zheng D, Xia L, Ji H, Jin Z, Bai Y. A Cyclodextrin-Based Controlled Release System in the Simulation of In Vitro Small Intestine. Molecules 2020; 25:molecules25051212. [PMID: 32156096 PMCID: PMC7179424 DOI: 10.3390/molecules25051212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 11/16/2022] Open
Abstract
A novel cyclodextrin (CD)-based controlled release system was developed in the small intestine to control the rate of drug release, on the premise of enteric-coated tablets. The system was designed based on the enzymes exogenous β-cyclodextrin glycosyltransferase (β-CGTase) and endogenous maltase-glucoamylase (MG), wherein MG is secreted in the small intestine and substituted by a congenerous amyloglucosidase (AG). The vanillin-/curcumin-β-CD complexes were prepared and detected by Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), and host CD degradation was measured based on the glucose yield. The combination of β-CGTase and AG was also functional in the CD complex system. The variations in the concentrations of added β-CGTase, with AG constantly in excess, could effectively alter the rate of host CD degradation and guest release by monitoring glucose production and color disappearance, thus, demonstrating that guest release in the CD complex system could be precisely controlled by changing the amount of β-CGTase used. Thus, the in vitro simulation of the system indicated that a novel controlled release system, based on endogenous MG, could be established in the small intestine. The CD-based controlled release system can be potentially applied in drug delivery and absorption in the small intestine.
Collapse
Affiliation(s)
- Danni Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (D.Z.); (L.X.); (H.J.); (Z.J.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Liuxi Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (D.Z.); (L.X.); (H.J.); (Z.J.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- Wuxi Biologice, Wuxi 214100, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (D.Z.); (L.X.); (H.J.); (Z.J.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (D.Z.); (L.X.); (H.J.); (Z.J.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (D.Z.); (L.X.); (H.J.); (Z.J.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-0510-85328571
| |
Collapse
|
44
|
Lee SJ, Choi JS, Eom MR, Jo HH, Kwon IK, Kwon SK, Park SA. Dexamethasone loaded bilayered 3D tubular scaffold reduces restenosis at the anastomotic site of tracheal replacement: in vitro and in vivo assessments. NANOSCALE 2020; 12:4846-4858. [PMID: 32016227 DOI: 10.1039/c9nr10341d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite recent developments in the tracheal tissue engineering field, the creation of a patient specific substitute possessing both appropriate mechanical and biointerfacial properties remains challenging. Most tracheal replacement therapies fail due to restenosis at the anastomosis site. In this study, we designed a robust, biodegradable, 3D tubular scaffold by combining electrospinning (ELSP) and 3D (three-dimensional) printing techniques for use in transplantation therapy. After that, we loaded dexamethasone (DEX) onto the 3D tubular scaffold using mild surface modification reactions by using polydopamine (PDA), polyethyleneimine (PEI), and carboxymethyl-β-cyclodextrin (βCD). As a result, the fabricated 3D tubular scaffold had robust mechanical properties and the chemical modifications were confirmed to have proceeded successfully by physico-chemical analysis. The surface treatments allowed for a larger amount of DEX to be loaded onto the βCD modified scaffold as compared to the bare group. In vitro and in vivo studies demonstrated that the DEX loaded 3D tubular scaffold exhibited significantly enhanced anti-inflammation activity, enhanced tracheal mucosal regeneration, and formation of a patent airway. From our results, we believe that our system may represent an innovative paradigm in tracheal tissue engineering by providing proper mechanical properties and successful formation of tracheal tissue as a means of remodeling and healing tracheal defects for use in transplantation therapy.
Collapse
Affiliation(s)
- Sang Jin Lee
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea. and Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ji Suk Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Min Rye Eom
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Ha Hyeon Jo
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea.
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. and Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea.
| |
Collapse
|
45
|
Jiang L, Zong J, Ma C, Chen S, Li H, Zhang D. Characterization of sustained-release chitosan film loaded with rutin-β-cyclodextrin complex and glucoamylase. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:734-744. [PMID: 32116382 PMCID: PMC7016053 DOI: 10.1007/s13197-019-04106-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
ABSTRACT Edible chitosan film incorporated with rutin-β-cyclodextrin was developed and characterized. The delivery of rutin was improved via the hydrolyzation function of glucoamylase, and the antioxidant activity of the chitosan film was enhanced by the addition of rutin. Sodium bicarbonate solution at different pHs (pH-adjusting reagent) was employed to afford the mild condition for the incorporated glucoamylase. The enzyme exhibited its hydrolyzation function to improve the release rate of rutin by destabilizing the rutin-β-cyclodextrin complex (RCC) in chitosan film. The optimum pH of glucoamylase was achieved with 5 mL addition amount of 0.5 mol/L sodium bicarbonate solution, and the glucoamylase improved the radical scavenging ratio of chitosan film. The yellowness of chitosan film was enhanced with the addition of RCC solution. The films prepared without water demonstrated coarse and rough surface, while the water-based films had smoother and even surface as examined by scanning electron microscopy. In contrast, these observations disappeared in the water immersion groups. X-ray diffraction suggested that the hydrolyzation of β-cyclodextrin and the interlinkage between β-cyclodextrin and the chitosan chain exerted a negative function on maintaining the crystal structure of pure chitosan film. Further, the destabilization of RCC complex with the glucoamylase activity was evidenced by the absence of peak associated with β-cyclodextrin as observed from Fourier transform infrared spectra. The enzyme improved the release of rutin and the addition of RCC successfully endowed antioxidant activity to the chitosan film. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zhangdian District, No. 12, Zhangzhou Road, Zibo, Shandong Province, China
| | - Jinhuan Zong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zhangdian District, No. 12, Zhangzhou Road, Zibo, Shandong Province, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zhangdian District, No. 12, Zhangzhou Road, Zibo, Shandong Province, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zhangdian District, No. 12, Zhangzhou Road, Zibo, Shandong Province, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zhangdian District, No. 12, Zhangzhou Road, Zibo, Shandong Province, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zhangdian District, No. 12, Zhangzhou Road, Zibo, Shandong Province, China
| |
Collapse
|
46
|
Comparative effects of β-cyclodextrin, HP-β-cyclodextrin and SBE7-β-cyclodextrin on the solubility and dissolution of docetaxel via inclusion complexation. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-00977-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Zhu G, Zhu G, Xiao Z. Study of formation constant, thermodynamics and β-ionone release characteristic of β-ionone-hydroxypropyl-β-cyclodextrin inclusion complex. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03108-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Liu G, Yang J, Xu X. Synthesis of biodiesel from waste cooking oil catalyzed by β-cyclodextrin modified Mg–Al–La composite oxide. RSC Adv 2020; 10:26358-26363. [PMID: 35519753 PMCID: PMC9055395 DOI: 10.1039/d0ra05307d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, Mg–Al–La composite oxide loaded with ionic liquid [Bmim]OH was used as a catalyst for the synthesis of fatty acid isobutyl ester (FAIBE) via transesterification between waste cooking oil and isobutanol. Mg–Al–La composite oxide was synthesized from the β-cyclodextrin (β-CD) intercalation modification of Mg–Al–La layered double hydroxides. The structure of the catalyst was characterized via XRD, BET and EDS. The results showed that the interlayer space of the catalyst was increased due to β-CD intercalation modification. The IL/CD–Mg–Al–La catalyst exhibited significant catalytic activity and regeneration performance in transesterification due to large interlayer space and strongly alkaline ionic liquid. The yield of FAIBE achieved was 98.3% under the optimum reaction condition and 95.2% after regeneration for six times. The viscosity–temperature curve of FAIBE was determined and the phase transition temperature was −1 °C. The pour point of FAIBE was only −10 °C, which exhibited excellent low temperature fluidity. In this study, Mg–Al–La composite oxide loaded with ionic liquid [Bmim]OH was used as a catalyst for the synthesis of fatty acid isobutyl ester (FAIBE) via transesterification between waste cooking oil and isobutanol.![]()
Collapse
Affiliation(s)
- Guanhao Liu
- Research Institute of Petroleum Processing
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Jingyi Yang
- Research Institute of Petroleum Processing
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Xinru Xu
- Research Institute of Petroleum Processing
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
49
|
Li J, Yu X, Zhao Y, Zhang H, Li MH, Hu J. Biobased thermosensitive polyrotaxanes constructed by polymerization of cyclodextrin-triterpenoid inclusion complexes. Polym Chem 2020. [DOI: 10.1039/d0py00966k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three biobased thermosensitive polyrotaxanes with alternating multiblock structures have been constructed through polymerization of inclusion complexes in a convenient tandem way.
Collapse
Affiliation(s)
- Jiawei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xia Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yiran Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Min-Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Chimie ParisTech
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
50
|
Yang Z, Chai Y, Zhou D, Yao X, Ji H. Mechanism for efficient separation of eugenol and eugenol acetate with β-cyclodextrin as a selective solvent. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1702663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zujin Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, P.R.China
- School of Chemical Engineering, Huizhou Research Institute of Sun Yat-sen University, Huizhou, China
| | - Yuxin Chai
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, P.R.China
| | - Dan Zhou
- Nansha Research Institute, School of Pharmaceutical Sciences, SunYat-Sen University, Guangzhou, China
| | - Xingdong Yao
- The Key laboratory of Forest Chemistry & Engineering of Guangxi, Guangxi University for Nationalities, Nanning, China
| | - Hongbing Ji
- School of Chemical Engineering, Huizhou Research Institute of Sun Yat-sen University, Huizhou, China
- Fine Chemical Industry Research Institute, The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maomen, China
| |
Collapse
|