1
|
Wang S, Miao S, Hassan Kamani M, Murphy EG, Sun DW. Effects of mono- and dual-frequency ultrasounds on structure and physicochemical properties of faba bean proteins. ULTRASONICS SONOCHEMISTRY 2024; 111:107144. [PMID: 39520761 PMCID: PMC11585704 DOI: 10.1016/j.ultsonch.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Faba bean proteins are currently viewed as promising animal protein alternatives. However, certain functional properties e.g. relatively low solubility compared to whey protein isolates, can limit the application of faba bean protein isolates (FPIs) in certain food products. Therefore, it may be desirable to use modification approaches such as the application of ultrasound to alter such limiting physicochemical properties. In this study, Faba Bean Protein Isolates (FPIs) were treated by ultrasound with different frequencies (20 kHz, 40 kHz and 20 + 40 kHz) prior to hydration (1 %) at different pH levels (3, 7, and 9). Then the structure and physicochemical properties (i.e. particle size, ζ-potential, surface hydrophobicity, thermal behavior, and solubility) of control and untreated FPIs were investigated. Ultrasound treatment had no obvious effect on the molecular weight of FPIs, whereas it changed the secondary structure of FPIs from a more ordered structure to a more disordered structure. The applied treatment resulted in an increase in surface hydrophobicity across all treatment levels and pHs. It also decreased the particle size of FPI at pH 3, while it increased the particle size at pH 7 and 9, compared to the untreated FPI. In addition, the solubility and thermal properties of FPI were modified through the ultrasound treatment. The higher solubility of FPI could improve its potential to be used as a functional ingredient for many food applications. Ultrasound treatment at 20 kHz and 20 + 40 kHz had more effects on the physiochemical properties of FPI compared to that at 40 kHz. Overall, ultrasound treatment with different frequencies (20 kHz, 40 kHz, and 20 + 40 kHz) modified the structure and physiochemical properties of FPI to different degrees and may be beneficial for the development of FPI for certain food applications.
Collapse
Affiliation(s)
- Shuyang Wang
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| | - Song Miao
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.
| | - Mohammad Hassan Kamani
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Eoin G Murphy
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Da-Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Yu R, Huppertz T, Vasiljevic T. Impact of Reconstitution Conditions on the Solubility of Faba Bean Protein Isolate. Foods 2024; 13:3857. [PMID: 39682929 DOI: 10.3390/foods13233857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Faba bean protein isolate (FBPI) is emerging as a promising protein ingredient in the food industry. However, a lack of comprehensive scientific understanding of its functional properties, particularly solubility, limits broader application. This study investigated the reconstitution behaviour of FBPI under different conditions. For this purpose, FBPI dispersions (5% w/w protein) were prepared with varying pH (6.8 or 7.5), temperature (15, 40, or 65 °C), duration of stirring (30, 60, or 90 min), stirring intensity (1000 or 1500 rpm), and water hardness (0, 200, or 400 ppm). Low reconstitution temperature resulted in greater particle size and lower solubility, while elevated temperature minimised intermolecular attractions, improving solubility. Higher pH increased the net-negative charge and thus enhanced the repulsion between the proteins, leading to greater solubility. Water hardness was another important parameter, as greater hardness generally resulted in greater particle size and lower solubility, likely due to calcium bridging. The selection of conditions for the hydration of faba bean protein isolate is important to produce high-quality and high-stability suspensions.
Collapse
Affiliation(s)
- Rui Yu
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Sports, Health and Engineering, Victoria University, Melbourne 8001, Australia
| | - Thom Huppertz
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Sports, Health and Engineering, Victoria University, Melbourne 8001, Australia
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
- University College Cork, T12 K8AF Cork, Ireland
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Sports, Health and Engineering, Victoria University, Melbourne 8001, Australia
| |
Collapse
|
3
|
Turker I, Olgun GN, Isleroglu H. Fenugreek seed proteins: Ultrasonic-assisted extraction, characterization, and cupcake application. Food Sci Nutr 2024; 12:6353-6366. [PMID: 39554355 PMCID: PMC11561772 DOI: 10.1002/fsn3.4247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 11/19/2024] Open
Abstract
In this study, fenugreek seed proteins were extracted using ultrasonic-assisted extraction with varying solid:solvent ratios (20-60 g/L) and sonication amplitudes (30%-80%) to determine optimal conditions for the highest extraction yield. The functional, structural, and nutritional characteristics of the protein isolates of fenugreek seeds were investigated. The highest yield (98.74 ± 0.49%) was achieved at a solid:solvent ratio of 43.83 g/L and an amplitude of 67.51%. The coagulated protein values of fenugreek seed protein isolates ranged from ~15.8% to 31.2%, water-holding capacities ranged from ~2.2 to 3.2 g/g, oil-holding capacities ranged from ~2.6 to 4.1 g/g, foaming capacities ranged from ~16.3% to 21.3%, foam stabilities ranged from ~59.7% to 78.1%, emulsion stabilities ranged from ~30.2 to 34.5 min, emulsion activities ranged from ~73.8 to 76.8 m2/g, and emulsion capacities ranged from ~26.9% to 30.5% under different extraction conditions. SDS-PAGE analysis revealed three distinct bands (46, 59, and 80 kDa) for the protein isolates. FT-IR spectroscopy showed a high presence of β-sheet structures. The amino acid composition analysis of fenugreek seed protein isolates was determined, revealing richness in essential amino acids (317.97 g amino acid/kg protein isolate). In addition, cupcakes enriched with protein isolates (5%, 10%, and 20% as flour substitutes) were produced, and quality properties such as color change, browning index, moisture content, water activity, baking yield, bulk density, hardness, volume, symmetry, and uniformity indexes were determined. The application of protein isolates in cupcake production demonstrated the potential of fenugreek seeds as valuable ingredients for enhancing the nutritional profile of bakery products.
Collapse
Affiliation(s)
- Izzet Turker
- Faculty of Engineering and Architecture, Food Engineering DepartmentTokat Gaziosmanpasa UniversityTokatTurkey
| | - Gamze Nur Olgun
- Faculty of Engineering and Architecture, Food Engineering DepartmentTokat Gaziosmanpasa UniversityTokatTurkey
| | - Hilal Isleroglu
- Faculty of Engineering and Architecture, Food Engineering DepartmentTokat Gaziosmanpasa UniversityTokatTurkey
| |
Collapse
|
4
|
Quintero Quiroz J, Velazquez V, Torres JD, Ciro Gomez G, Delgado E, Rojas J. Effect of the Structural Modification of Plant Proteins as Microencapsulating Agents of Bioactive Compounds from Annatto Seeds ( Bixa orellana L.). Foods 2024; 13:2345. [PMID: 39123536 PMCID: PMC11312334 DOI: 10.3390/foods13152345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
This project studied the use of lentil protein (LP) and quinoa protein (QP) in their native and modified states as carrier material in the encapsulation process by the ionic gelation technique of annatto seed extract. Soy protein (SP) was used as a model of carrier material and encapsulated bioactive compounds, respectively. The plant proteins were modified by enzymatic hydrolysis, N acylation, and N-cationization to improve their encapsulating properties. Additionally, the secondary structure, differential scanning calorimetry (DSC), solubility as a function of pH, isoelectric point (pI), molecular weight (MW), the content of free thiol groups (SH), the absorption capacity of water (WHC) and fat (FAC), emulsifier activity (EAI), emulsifier stability (ESI), and gelation temperature (Tg) were assessed on proteins in native and modified states. The results obtained demonstrated that in a native state, LP (80.52% and 63.82%) showed higher encapsulation efficiency than QP (73.63% and 45.77%), both for the hydrophilic dye and for the annatto extract. Structural modifications on proteins improve some functional properties, such as solubility, WHC, FAC, EAI, and ESI. However, enzymatic hydrolysis on the proteins decreased the gels' formation, the annatto extract's encapsulated efficiency, and the hydrophilic dye by the ionic gelation method. On the other hand, the modifications of N-acylation and N-cationization increased but did not generate statistically significant differences (p-value > 0.05) in the encapsulation efficiency of both the annatto extract and the hydrophilic dye compared to those obtained with native proteins. This research contributes to understanding how plant proteins (LP and QP) can be modified to enhance their encapsulating and solubility properties. The better encapsulation of bioactive compounds (like annatto extract) can improve product self-life, potentially benefiting the development of functional ingredients for the food industry.
Collapse
Affiliation(s)
- Julián Quintero Quiroz
- Faculty of Ciencias de la Nutrición y los Alimentos, CES University, Calle 10 # 22-04, Medellin 050018, Colombia
- Department of Ciencias Farmacéuticas y Alimentarias, University of Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (J.D.T.); (G.C.G.); (J.R.)
| | - Víctor Velazquez
- Department of Family and Consumer Sciences, College of Agriculture, Consumer and Environmental Sciences, New Mexico State University, NMSU Gerald Thomas Hall Room, 308 P.O. Box 30003 MSC 3470, Las Cruces, NM 88003, USA;
| | - Juan D. Torres
- Department of Ciencias Farmacéuticas y Alimentarias, University of Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (J.D.T.); (G.C.G.); (J.R.)
| | - Gelmy Ciro Gomez
- Department of Ciencias Farmacéuticas y Alimentarias, University of Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (J.D.T.); (G.C.G.); (J.R.)
| | - Efren Delgado
- Department of Family and Consumer Sciences, College of Agriculture, Consumer and Environmental Sciences, New Mexico State University, NMSU Gerald Thomas Hall Room, 308 P.O. Box 30003 MSC 3470, Las Cruces, NM 88003, USA;
| | - John Rojas
- Department of Ciencias Farmacéuticas y Alimentarias, University of Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (J.D.T.); (G.C.G.); (J.R.)
| |
Collapse
|
5
|
Gu C, Kong L, Zhang X, Wang X, Dong M, Yang D, Li J, Hu X, Hao X, Liu X, Yang Q. Effects of black bean cell wall pectin by exogenous calcium ions: Insight into the metabolomics, physicochemical properties and anti-digestive capacity. Int J Biol Macromol 2024; 273:133127. [PMID: 38876245 DOI: 10.1016/j.ijbiomac.2024.133127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/04/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
In this work, the metabolomics, physicochemical and in vitro digestion properties of black beans influenced by different calcium ion solutions (0, 0.5 %, 1 %, and 2 %) were explored. The addition of calcium ions had a significant effect on the metabolic processing of black beans, including 16 differential metabolites and 4 metabolic pathways related to the cell wall. From the results of FT-IR and ICP-OES, it was confirmed that calcium ions can interact with COO- in non-methylated galacturonic acid in pectin to form calcium carboxylate strengthening the middle lamellae of the cell wall. Based on this mechanism, the soaked beans with an intact and dense cell structure were verified by the analyses of SEM and CLSM. Compared with other soaked beans, BB-2 exhibited lower cell permeability with electrical conductivity value decreased to 0.60 μs·cm-1. Additionally, BB-2 demonstrated slower digestion properties with digestion rate coefficient at 0.0020 min-1 and digestion extent only at 30.83 %, which is attributed to its increasingly compact cell wall and densely cellular matrix. This study illustrates the effect of calcium ions on the cellular structure of black beans, providing an effective process method for low glycemic index diets.
Collapse
Affiliation(s)
- Chenqi Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Lu Kong
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiling Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiaoming Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Mingyang Dong
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Dan Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Jiaxin Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiufa Hu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiaoliang Hao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| | - Xinnan Liu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, P. R. China.
| | - Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, P. R. China; Liaoning Province Key Laboratory of Typical Grain and Oil Processing and Quality Control, Shenyang 110034, P. R. China.
| |
Collapse
|
6
|
Li S, Liu S, Wu H, Zhao W, Zhang A, Li P, Liu J, Yi H. Insights into the starch and proteins molecular structure changes of foxtail millet sourdough: Effect of fermentation from grains of cereal to pre-meal. Int J Biol Macromol 2024; 272:132729. [PMID: 38821307 DOI: 10.1016/j.ijbiomac.2024.132729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
This study investigated the effects of foxtail millet sourdough fermentation time (0, 8, 16, and 24 h) on the protein structural properties, thermomechanical, fermentation, dynamic rheological, starch granules crystalline regions molecular mobility, and starch microstructural characteristics. The fermentation led to a significant increase in the concentration of free amino acids from protein hydrolysis. Fourier transform infrared spectroscopy (FTIR) revealed changes in protein secondary structure and the presence of functional groups of different bioactive compounds. The result of thermomechanical properties showed a significant increase in the stability (0.70-0.79 min) and anti-retrogradation ability (2.29-3.14 Nm) of lactic acid bacteria (LAB) sourdough compared to the control dough, showing a wider processing applicability with radar profiler index. In contrast, sourdoughs with lower tan δ values had higher elasticity and strength. Scanning electron microscopy showed that the surface of the starch appeared from smooth to uneven with patchy shapes and cavities, which declined the crystallinity from 34.00 % to 21.57 %, 23.64 %, 25.09 %, and 26.34 % respectively. Fermentation changed the To, Tp, Tc, and ΔH of the starch. The results of the study will have great potential for application in the whole grain sourdough industry.
Collapse
Affiliation(s)
- Shaohui Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Songyan Liu
- Shijiazhuang Livestock Products and Veterinary Feed Quality Testing Center, Shijiazhuang, Hebei 050041, People's Republic of China
| | - Hanmei Wu
- Shijiazhuang Agricultural Product Quality Testing Center, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Pengliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China.
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China.
| |
Collapse
|
7
|
Chang YB, Kim H, Lee SK, Kim HJ, Jeong AH, Suh HJ, Ahn Y. Characteristics and Absorption Rate of Whey Protein Hydrolysates Prepared Using Flavourzyme after Treatment with Alcalase and Protamex. Molecules 2023; 28:7969. [PMID: 38138458 PMCID: PMC10745520 DOI: 10.3390/molecules28247969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The purpose of this study was to evaluate the physicochemical properties of whey protein hydrolysate and determine changes in absorption rate due to enzymatic hydrolysis. The molecular weight distribution analysis of whey protein concentrate (WPC) and low-molecule whey protein hydrolysate (LMWPH) using the Superdex G-75 column revealed that LMWPH is composed of peptides smaller than those in WPC. Fourier-transform infrared spectroscopy indicated differences in peak positions between WPC and LMWPH, suggesting hydrolysis-mediated changes in secondary structures. Moreover, LMWPH exhibited higher thermal stability and faster intestinal permeation than WPC. Additionally, oral LMWPH administration increased serum protein content at 20 min, whereas WPC gradually increased serum protein content after 40 min. Although the total amount of WPC and LMWPH absorption was similar, LMWPH absorption rate was higher. Collectively, LMWPH, a hydrolysate of WPC, has distinct physicochemical properties and enhanced absorptive characteristics. Taken together, LMWPH is composed of low-molecular-weight peptides with low antigenicity and has improved absorption compared to WPC. Therefore, LMWPH can be used as a protein source with high bioavailability in the development of functional materials.
Collapse
Affiliation(s)
- Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (Y.B.C.); (H.K.)
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyeongyeong Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (Y.B.C.); (H.K.)
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Se Kyung Lee
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (Y.B.C.); (H.K.)
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hye-Jin Kim
- R&D Group, Maeil Health Nutrition Co., Ltd., Pyeongtaek 17714, Republic of Korea; (H.-J.K.); (A.-H.J.)
| | - A-Hyun Jeong
- R&D Group, Maeil Health Nutrition Co., Ltd., Pyeongtaek 17714, Republic of Korea; (H.-J.K.); (A.-H.J.)
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (Y.B.C.); (H.K.)
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (Y.B.C.); (H.K.)
| |
Collapse
|
8
|
Zhang J, Tang Y, Zhou S, Yin X, Zhuang X, Ren Y, Chen X, Fan J, Zhang Y. Novel strategy to improve the bioactivity and anti-hydrolysis ability of oat peptides via zinc ion-induced assembling. Food Chem 2023; 416:135468. [PMID: 36931140 DOI: 10.1016/j.foodchem.2023.135468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
This study aims to use metal ion coordinating method to improve the bioactivity and anti-hydrolysis ability of bioactive peptides. We demonstrated that zinc (Zn) coordination (10:1 mass ratio of peptide to Zn, pH 6.8, 37 °C) induced assembly of oat peptides, improved pancreatic lipase (PL) inhibitory activity by 30.4-36.8 % and anti-hydrolysis ability against intestinal proteases by 26.5-38.2 %; meanwhile, the peptide-Zn complex drastically reduced the PL affinity to the substrate. Detailed mechanism analysis showed that the high hydrophobicity (276 of fluorescent intensity) and dense eutectic structure of peptide-Zn complexes caused the hard hydrolysis of complexed peptides by proteases; in particular, the neutralized surface charges (∼-3.6 mV) of complexes imparted the peptide-Zn complex high affinity towards PL (-22.3 mV) thus robust PL inhibitory activity. These findings deepened our understanding of the interaction of peptides with metal elements and set the groundwork for the enhancement and protection of bioactive peptides.
Collapse
Affiliation(s)
- Junping Zhang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yingxue Tang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Saiping Zhou
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyu Yin
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xueying Zhuang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yanan Ren
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiangning Chen
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; Key Laboratory of Agricultural Product Processing and Quality Control of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Junfeng Fan
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Yanyan Zhang
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
9
|
Altan A, Yağci S. Physicochemical characteristics and structural changes of fermented faba bean extrudates prepared by twin-screw extrusion. Food Chem 2023; 411:135502. [PMID: 36682171 DOI: 10.1016/j.foodchem.2023.135502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
In this study, fermented faba bean blends with different locust bean gum (LBG) contents were processed in a co-rotating twin-screw extruder. The effects of extrusion process variables and the LBG level on physicochemical, sensory and structural characteristics of expanded extrudates were investigated. The results showed that physical characteristics of extrudates including expansion, apparent density and texture were significantly affected by variation of screw speed and die temperature, but the effect of LBG level was only significant for expansion and density. FTIR-ATR analysis revealed that a significant change occurred in the protein secondary structure as well as in the short-range ordered molecular structure of starch during fermentation and extrusion. The X-ray diffraction patterns of extrudates exhibited V-type pattern. Microstructure of the extrudates analyzed by FE-SEM exhibited variations in cell size and wall thickness depending on extrusion processing conditions and LBG level, which in turn lead to different textural perceptions.
Collapse
Affiliation(s)
- Aylin Altan
- Department of Food Engineering, Mersin University, Ciftlikköy, Mersin 33343, Turkey.
| | - Sibel Yağci
- Department of Food Engineering, Balıkesir University, Balıkesir, Turkey
| |
Collapse
|
10
|
Zhao L, Chen MH, Bi X, Du J. Physicochemical properties, structural characteristics and in vitro digestion of brown rice–pea protein isolate blend treated by microbial transglutaminase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
11
|
Devkota L, Kyriakopoulou K, Bergia R, Dhital S. Structural and Thermal Characterization of Protein Isolates from Australian Lupin Varieties as Affected by Processing Conditions. Foods 2023; 12:foods12050908. [PMID: 36900425 PMCID: PMC10001375 DOI: 10.3390/foods12050908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Proteins from the full and defatted flours of L. angustifolius cv Jurien and L. albus cv Murringo were prepared using alkaline extraction and iso-electric precipitation. Isolates were either freeze dried or spray dried or pasteurized at 75 ± 3 °C/5 min before freeze-drying. Various structural properties were investigated to elucidate the varietal and processing-induced effect on molecular and secondary structure. Irrespective of processing, isolated proteins had a similar molecular size, with α-conglutin (412 kDa) and β-conglutin (210 kDa) being principal fractions for the albus and angustifolius variety, respectively. Smaller peptide fragments were observed for the pasteurized and spray dried samples, indicating some degree of processing-induced changes. Furthermore, secondary structure characterization by Fourier-transform-infrared and circular dichroism spectroscopy showed β-sheet and α-helical structure being the dominant structure, respectively. Thermal characterization showed two denaturation peaks corresponding to β-conglutin (Td = 85-89 °C) and α-conglutin (Td = 102-105 °C) fractions. However, the enthalpy values for α-conglutin denaturation were significantly higher for albus species, which corroborates well with higher amounts of heat stable α-conglutin present. Amino acid profile was similar for all samples with limiting sulphur amino acid. In summary, commercial processing conditions did not have a profound effect on the various structural properties of lupin protein isolates, and properties were mainly determined by varietal differences.
Collapse
Affiliation(s)
- Lavaraj Devkota
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | | | - Robert Bergia
- Archer-Daniels-Midland (ADM), James R. Randall Research Centre, Decatur, IL 62521, USA
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Correspondence: ; Tel.: +61-3-9905-9344
| |
Collapse
|
12
|
Maghazechi A, Mohammadi Nafchi A, Tan T, Easa AM. Rheological characterization and fouling deposition behavior of coconut cream emulsion at heat processing temperature range. Food Sci Nutr 2022; 10:3801-3813. [PMID: 36348806 PMCID: PMC9632211 DOI: 10.1002/fsn3.2977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022] Open
Abstract
Fouling deposition in the coconut cream emulsion (CCE) is considered a severe technical issue in the industry. Since the fouling deposition results from the heating effect on the CCE bulk, the heat-induced structural changes in the CCE bulk at different temperatures were rheologically investigated in the first part of this study. The second part applied different heat treatment conditions to investigate generated fouling deposition (GFD). Chemical composition, FTIR, and SEM imaging were used to explore GFDs thoroughly. The increase in viscosity and storage modulus (G') reflect such heat-induced changes over the experimental conditions. More structural changes were predicted at around ≥85°C, accompanied by a sharp increase in viscosity and (G'), which was associated with the gelation of CCE. The conformational transition, fat agglomeration in CCE bulk, generated fouling deposits (GFDs) were significant around 70°C. The chemical composition of the GFD has shown an increasing trend in the protein, carbohydrates, and ash, meanwhile fluctuation in the fat contents with increasing temperature. The FTIR peaks showed novel peaks around temperature ≥85°C, which implied new amide groups or new protein conformation. The SEM images provided the different microstructures of GFDs at high-temperature levels. More likely the GFDs appeared at temperature ≥85°C are a gel deposit layer. These findings strongly suggest that emulsion gelation was the primary cause of coconut cream fouling.
Collapse
Affiliation(s)
- Avan Maghazechi
- Food Technology Division, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
- Food Science and Quality Control Department, College of Agricultural Engineering ScienceUniversity of SulaimaniSulaimaniIraq
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
- Food Biopolymer Research Group, Food Science and Technology Department, Damghan BranchIslamic Azad UniversityDamghanIran
| | - Thuan‐Chew Tan
- Food Technology Division, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
- Renewable Biomass Transformation Cluster, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| |
Collapse
|
13
|
Bozdemir A, Şensu E, Okudan EŞ, Özçelik B, Yucetepe A. Ultrasound‐assisted enzymatic extraction of proteins from
Gracilaria dura
: Investigation of antioxidant activity and techno‐functional properties. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ayşegül Bozdemir
- Department of Food Engineering, Faculty of Engineering Aksaray University Aksaray Turkey
| | - Eda Şensu
- Department of Food Technology, Istanbul Gelisim Higher Vocational School Gelisim University Istanbul Turkey
| | | | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
- BIOACTIVE Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI‐3, B110, Sarıyer, 34467 Istanbul Turkey
| | - Aysun Yucetepe
- Department of Food Engineering, Faculty of Engineering Aksaray University Aksaray Turkey
| |
Collapse
|
14
|
Youshanlouei YA, Kiani H, Mousavi M, Mousavi ZE. Grass pea (
Lathyrus sativus L.
) protein yield and functionality as affected by extraction method: alkaline, ultrasound assisted and ultrasound pretreatment extraction. Cereal Chem 2022. [DOI: 10.1002/cche.10549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yeganeh Azimi Youshanlouei
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science, Technology, and Engineering University of Tehran Karaj Iran
| | - Hossein Kiani
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science, Technology, and Engineering University of Tehran Karaj Iran
| | - Mohammad Mousavi
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science, Technology, and Engineering University of Tehran Karaj Iran
| | - Zeinab E. Mousavi
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science, Technology, and Engineering University of Tehran Karaj Iran
| |
Collapse
|
15
|
Kotsiou K, Sacharidis DD, Matsakidou A, Biliaderis CG, Lazaridou A. Physicochemical and functional aspects of composite wheat-roasted chickpea flours in relation to dough rheology, bread quality and staling phenomena. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Kilicli M, Toker OS. Some physicochemical and technological properties of cooking water of pulses as a canned industry waste: effect of ultrasound treatment during soaking. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Canned products are important part of human diet and therefore, many types of canned products with high amounts are produced worldwide. During canned production, cooking water of pulses (aquafaba) is an important waste. Therefore, recycling of it is important for sustainability and economic value. In the present study, it was aimed to determine technological properties of aquafabas obtained from canned production. For this aim, chickpea, bean, kidney bean, broad bean, green pea and lentil were used in this study, and conventional soaking and ultrasound soaking was both performed. Aquafaba is a cooking water of pulses not only chickpea and also lentil, pea and bean species. Aquafaba is used for foaming, emulsifying and gelling agent as a plant based food additive. Soaking with ultrasound has shortened the soaking time of all pules as well as increased the D
eff (effective diffusion constant) values. Diffusion is a basic physical mechanism for remove moisture or absorb and also give important information about physical and thermal properties of sample. “Remove moisture” term is using for drying and the other is using for hydration. The relationship between the physical properties of pulses and D
eff values was observed. The protein content of aquafaba on a dry basis changed between 20 and 35% and it has been observed that there are also positive correlation with their foaming properties. Foaming capacities of aquafabas varied between 167 and 567% in conventional soaking, and between 133 and 533% in ultrasonic soaking. In both methods, chickpea aquafaba showed the lowest foaming capacity and stability, while pea had the highest foaming capacity and stability. US process generally decreased the protein content and foaming capacity (FC) of aquafabas. The foam of pea and lentil aquafabas showed higher resistant against to gravity. In contrary to the foaming properties, an increase in emulsifying properties was observed as a result of US. It has been observed that the obtained aquafabas can be used in various products in the food industry thanks to their technological features instead of animal-based ingredients.
Collapse
Affiliation(s)
- Mahmut Kilicli
- Food Engineering Department , Yildiz Technical University, Chemical and Metallurgical Engineering Faculty , Istanbul , Turkey
- Department of Food Processing , Gaziantep University, Technical Sciences Vocational School , Gaziantep , Turkey
| | - Omer Said Toker
- Food Engineering Department , Yildiz Technical University, Chemical and Metallurgical Engineering Faculty , Istanbul , Turkey
| |
Collapse
|
17
|
Wu Z, He Y, Yan W, Zhang W, Liu X, Hui A, Wang H, Li H. Effect of high-pressure pre-soaking on texture and retrogradation properties of parboiled rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4201-4206. [PMID: 33420739 DOI: 10.1002/jsfa.11058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The poor palatability, low digestibility, and unpleasant color of parboiled rice (PR) have severely hampered its acceptance by consumers. It is hence necessary and urgent to develop a new method for producing high-quality PR. In the current study, the effect of high hydrostatic pressure (HHP) pre-soaking on the color, textural properties, and the degree of retrogradation of PR was investigated. RESULTS With HHP from 100 to 500 MPa, the water adsorption rate increased and cooking time decreased. Parboiled rice samples presented higher lightness scores (L) and had lower color intensity (B). Compared with a control group, PR samples treated with high-pressure pre-soaking showed a reduction of hardness values from 0.69% to 32.99%, and gumminess values also decreased from 8.58% to 33.62%. The differential scanning calorimetry (DSC) results indicated that the enthalpy values of PR samples decreased after high pressure pre-soaking. The molecular structure of PR characterized by Fourier transform infrared spectrometry confirmed that HHP pre-soaking could decrease the retrogradation level. CONCLUSION The findings outlined above suggest that the texture and retrogradation properties of PR were improved after high-pressure pre-soaking. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Yiwen He
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Weilong Yan
- Huiguan Agricultural Technology Co., Ltd, Hefei, P. R. China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Xuewu Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Haiyan Wang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Honghong Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| |
Collapse
|
18
|
Kotsiou K, Sacharidis DD, Matsakidou A, Biliaderis CG, Lazaridou A. Impact of Roasted Yellow Split Pea Flour on Dough Rheology and Quality of Fortified Wheat Breads. Foods 2021; 10:foods10081832. [PMID: 34441609 PMCID: PMC8391420 DOI: 10.3390/foods10081832] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023] Open
Abstract
Roasted yellow split pea (YSP) flours were used to substitute wheat flour, at 10–20% (flour basis) in wheat bread formulations. Rheometry showed that roasted YSP flour addition increased elasticity and resistance to deformation and flow of the composite doughs, particularly at 20% substitution; instead, at 10% addition (either raw or roasted YSP flour), there were no effects on dough rheology and bread textural properties. Breads fortified with roasted YSP flour at levels >10% exhibited lower loaf-specific volume and harder crumb compared to control (bread without YSP flour). Moreover, only breads with 20% roasted YSP flour displayed a significantly higher staling extent and rate, compared to control, as assessed by large deformation mechanical testing and calorimetry (starch retrogradation) of crumb preparations. This formulation also showed a large increase in β-sheets and β-turns at the expense of α-helix and random coil conformations in protein secondary structure as assessed by FTIR spectroscopy. Roasting of YSP effectively masked the “beany” and “grass-like” off-flavors of raw YSP flour at 10% substitution. Overall, roasted YSP flour at the 10% level was successfully incorporated into wheat bread formulations without adversely affecting dough rheology, bread texture, and shelf-life, resulting in final products with a pleasant flavor profile.
Collapse
|
19
|
Gómez A, Gay C, Tironi V, Avanza MV. Structural and antioxidant properties of cowpea protein hydrolysates. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Gunes ZS, Can Karaca A. Examining the amino acid composition, secondary structure, and physicochemical and functional properties of proteins isolated from local lentil landraces of Anatolia. Cereal Chem 2021. [DOI: 10.1002/cche.10446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zeynep Saliha Gunes
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Asli Can Karaca
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| |
Collapse
|
21
|
Effect of variety and environment on the physicochemical, functional, and nutritional properties of navy bean flours. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03745-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Mid-Infrared Spectroscopy as a Rapid Tool to Qualitatively Predict the Effects of Species, Regions and Roasting on the Nutritional Composition of Australian Acacia Seed Species. Molecules 2021; 26:molecules26071879. [PMID: 33810352 PMCID: PMC8036610 DOI: 10.3390/molecules26071879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/02/2022] Open
Abstract
In recent times, the popularity of adding value to under-utilized legumes have increased to enhance their use for human consumption. Acacia seed (AS) is an underutilized legume with over 40 edible species found in Australia. The study aimed to qualitatively characterize the chemical composition of 14 common edible AS species from 27 regions in Australia using mid-infrared (MIR) spectroscopy as a rapid tool. Raw and roasted (180 °C, 5, 7, and 9 min) AS flour were analysed using MIR spectroscopy. The wavenumbers (1045 cm−1, 1641 cm−1, and 2852–2926 cm−1) in the MIR spectra show the main components in the AS samples. Principal component analysis (PCA) of the MIR data displayed the clustering of samples according to species and roasting treatment. However, regional differences within the same AS species have less of an effect on the components, as shown in the PCA plot. Statistical analysis of absorbance at specific wavenumbers showed that roasting significantly (p < 0.05) reduced the compositions of some of the AS species. The results provided a foundation for hypothesizing the compositional similarity and/or differences among AS species before and after roasting.
Collapse
|
23
|
Enzymatic modification of rice bran protein: Impact on structural, antioxidant and functional properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Yu XY, Zou Y, Zheng QW, Lu FX, Li DH, Guo LQ, Lin JF. Physicochemical, functional and structural properties of the major protein fractions extracted from Cordyceps militaris fruit body. Food Res Int 2021; 142:110211. [PMID: 33773685 DOI: 10.1016/j.foodres.2021.110211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 01/24/2023]
Abstract
The physicochemical and functional as well as structural properties of major protein fractions (albumin, globulin, glutelin) sequentially extracted in water, salt, alkaline solution respectively from Cordyceps militaris Minfu20 fruit body were investigated. The glutelin (43.11%, w/w) was the predominant protein component of C. militaris fruit body followed by albumin (36.47%) and globulin (17.94%). The three proteins extracted from different solvents showed different characteristics, which were related to the alternation of amino acid composition, surface hydrophobicity, and structural feature. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the albumin and globulin mainly consisted of polypeptides with size < 20 kDa. The glutelin showed serious staining on the lane which may have a relatively bigger molecular weight. Intrinsic fluorescence intensity (FI) suggested glutelin contained more unfolding conformations (highest FI) which were probably resulted in a better foaming capacity of 151% and emulsion formation with the smallest size oil droplets (10.410 µm). The protein fractions showed great nutritional quality since they satisfied all recommended essential amino acid allowances for adults of Food & Agriculture Organization (FAO)/World Health Organization (WHO). Therefore, Cordyceps militaris Minfu20 fruit body proteins have potential alternative renewable edible fungi (mushroom) protein and could be used effectively as a food ingredient to improve food nutrition and product diversification compared with plant proteins.
Collapse
Affiliation(s)
- Xiao-Ying Yu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Yuan Zou
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Qian-Wang Zheng
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Feng-Xian Lu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - De-Huai Li
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China.
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China.
| |
Collapse
|
25
|
Alsalman FB, Ramaswamy HS. Evaluation of Changes in Protein Quality of High-Pressure Treated Aqueous Aquafaba. Molecules 2021; 26:E234. [PMID: 33466395 PMCID: PMC7795008 DOI: 10.3390/molecules26010234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 11/23/2022] Open
Abstract
Chickpea cooking water (CCW), known as aquafaba, has potential as a replacement for egg whites due to its emulsion and foaming properties which come from the proteins and starch that leach out from chickpeas into the cooking water. High pressure (HP) processing has the ability to modify the functional characteristics of proteins. It is hypothesized that HP processing could favorably affect the functional properties of CCW proteins by influencing their structure. The objective of this study to evaluate the effect of HP treatment on the associated secondary structure, emulsion properties and thermal characteristics of CCW proteins. A central composite rotatable design is used with pressure level (227-573 MPa) and treatment time (6-24 min) as HP variables, and concentration of freeze dried CCW aquafaba powder (11-29%) as product variable, and compared to untreated CCW powder. HP improves aquafaba emulsion properties compared to control sample. HP reduces protein aggregates by 33.3%, while β-sheets decreases by 4.2-87.6% in which both correlated to increasing protein digestibility. α-helices drops by 50%. It affects the intensity of some HP treated samples, but not the trend of bands in most of them. HP treatment decreases Td and enthalpy because of increasing the degree of denaturation.
Collapse
Affiliation(s)
- Fatemah B. Alsalman
- Food and Nutrition Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait;
| | - Hosahalli S. Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
26
|
Understanding the impact of moderate-intensity pulsed electric fields (MIPEF) on structural and functional characteristics of pea, rice and gluten concentrates. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02554-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractAimThe effect of moderate-intensity pulsed electric fields (MIPEF) was evaluated on vegetable protein concentrates from pea, rice, and gluten.MethodsFive percent (w/w) suspensions of protein concentrates (pH 5 and 6) were exposed to up to 60,000 MIPEF pulses at 1.65 kV/cm. Both structural modifications (absorbance at 280 nm, free sulfhydryl groups, FT-IR-spectra) and functional properties (solubility, water and oil holding capacity, foamability) were analyzed.ResultsMIPEF was able to modify protein structure by inducing unfolding, intramolecular rearrangement, and formation of aggregates. However, these effects were strongly dependent on protein nature and pH. In the case of rice and pea samples, structural changes were associated with negligible modifications in functional properties. By contrast, noticeable changes in these properties were observed for gluten samples, especially after exposure to 20,000 pulses. In particular, at pH 6, an increase in water and oil holding capacity of gluten was detected, while at pH 5, its solubility almost doubled.ConclusionThese results suggest the potential of MIPEF to steer structure of proteins and enhance their technological functionality.
Collapse
|
27
|
Application of near-infrared spectroscopy to predict the cooking times of aged common beans (Phaseolus vulgaris L.). J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Gundogan R, Can Karaca A. Physicochemical and functional properties of proteins isolated from local beans of Turkey. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109609] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Taheri S, Brodie G, Gupta D. Fluidisation of lentil seeds during microwave drying and disinfection could prevent detrimental impacts on their chemical and biochemical characteristics. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Hernández-Castillo JBE, Bernardino-Nicanor A, Vivar-Vera MDLÁ, Montañez-Soto JL, Teniente-Martínez G, Juárez-Goiz JMS, González-Cruz L. Modifications of the Protein Characteristics of Pacaya Caused by Thermal Treatment: A Spectroscopic, Electrophoretic and Morphological Study. Polymers (Basel) 2020; 12:E1016. [PMID: 32365750 PMCID: PMC7285206 DOI: 10.3390/polym12051016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 01/18/2023] Open
Abstract
The inflorescences of Chamaedorea tepejilote Liebm. are consumed as food in Central America and southern Mexico but is an underutilized food because of its sensory characteristics, principally due to its bitter taste. However, the inflorescences of Chamaedorea tepejilote Liebm. are nutritionally promising due to their high protein content (approximately 25%). Protein isolates from pacaya were modified via three different thermal treatments to determine the effect of the treatments on the protein structures. Scanning electron microscopy indicated that the pacaya protein isolate particles had less rough and irregular surfaces with larger particle sizes due to an aggregation process when a thermal treatment was used compared to those when no thermal treatment was used. An increase in the intensity of the low molecular weight protein fractions (≤20 kDa) in the electrophoretic pattern of the proteins was observed, which was generated by the hydrolysis of the proteins by heat treatment. The modifications in the FT-IR spectra showed that thermal treatment of pacaya affected the secondary structure of its proteins, mainly when microwave treatment was used. Raman spectroscopy revealed that the α-helical structure was dominant in the proteins of pacaya and that thermal treatment increased the fraction of the β-sheet structure at the expense of the α-helical structure.
Collapse
Affiliation(s)
- Jocelyn Blanca Esthela Hernández-Castillo
- Doctorado en Ciencias en Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico;
| | - Aurea Bernardino-Nicanor
- Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.B.-N.); (G.T.-M.); (J.M.S.J.-G.)
| | - María de los Ángeles Vivar-Vera
- Tecnológico Nacional de México/IT de Tuxtepec, Av. Dr. Víctor Bravo Ahuja S/N Col. 5 de Mayo, Tuxtepec 68350, Oaxaca, Mexico;
| | - José Luis Montañez-Soto
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional del Instituto Politécnico Nacional, Unidad Michoacán, Justo Sierra N°28, Jiquilpan 59510, Michoacán, Mexico;
| | - Gerardo Teniente-Martínez
- Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.B.-N.); (G.T.-M.); (J.M.S.J.-G.)
| | - José Mayolo Simitrio Juárez-Goiz
- Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.B.-N.); (G.T.-M.); (J.M.S.J.-G.)
| | - Leopoldo González-Cruz
- Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.B.-N.); (G.T.-M.); (J.M.S.J.-G.)
| |
Collapse
|
31
|
Arslan FN, Akin G, Karuk Elmas ŞN, Üner B, Yilmaz I, Janssen HG, Kenar A. FT-IR spectroscopy with chemometrics for rapid detection of wheat flour adulteration with barley flour. J Verbrauch Lebensm 2020. [DOI: 10.1007/s00003-019-01267-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Vera A, Tapia C, Abugoch L. Effect of high-intensity ultrasound treatment in combination with transglutaminase and nanoparticles on structural, mechanical, and physicochemical properties of quinoa proteins/chitosan edible films. Int J Biol Macromol 2019; 144:536-543. [PMID: 31862362 DOI: 10.1016/j.ijbiomac.2019.12.120] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 01/16/2023]
Abstract
The effect of high-intensity ultrasound (US) combined with transglutaminase treatment (TG) and the inclusion of nanoparticles (Np) on the structural, mechanical, barrier, and physicochemical properties of quinoa protein/chitosan composite edible films were evaluated. Structurally it was observed that the maximum temperatures of the thermal degradation increased with the use of combined US and TG treatment, generating films with superior thermal stability. FTIR results showed that in the amide zone I oscillations of the polypeptide structure were related to the stretching vibrations of CO in the US/TG-Np edible film. Which has generally been associated with changes in the structure and formation of covalent bonds by the action of TG. The US improved mechanical properties by increasing the tensile strength (with or without the application of TG). While combining US-TG produced a significant increase in thickness, decrease in elongation percentage, and increase in tensile strength. Which can be attributed to cross-linking produced by TG. Water vapour permeability increased in all cases. In general, the combination of US-TG treatments showed a more pronounced effect on the structure and mechanical properties.
Collapse
Affiliation(s)
- Antonia Vera
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago, Chile
| | - Cristian Tapia
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago, Chile.
| | - Lilian Abugoch
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago, Chile.
| |
Collapse
|
33
|
Tang H, Fu T, Feng Y, Zhang S, Wang C, Zhang D. Effect of heat treatment on solubility, surface hydrophobicity and structure of rice bran albumin and globulin. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- H. Tang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China P.R
| | - T. Fu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China P.R
| | - Y. Feng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China P.R
| | - S. Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China P.R
| | - C. Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China P.R
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang province, Daqing 163319, China P.R
| | - D. Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China P.R
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang province, Daqing 163319, China P.R
| |
Collapse
|
34
|
Effect of enzymatic hydrolysis using endo- and exo-proteases on secondary structure, functional, and antioxidant properties of chickpea protein hydrolysates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00296-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Bhunia AK, Saha S, Kamilya T. Microscopic and spectroscopic study of the corona formation and unfolding of human haemoglobin in presence of ZnO nanoparticles. LUMINESCENCE 2019; 35:144-155. [PMID: 31514262 DOI: 10.1002/bio.3707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/11/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022]
Abstract
The interaction of zinc oxide nanoparticles (ZnO NPs) with human haemoglobin (Hb) is studied for the biologically safe application of ZnO NPs in the human body. The Hb corona is formed around the ZnO nanoparticles, directly observed from high-resolution transmission electron microscopy (HRTEM) images. Hb formed 'hard corona' on the surface of ZnO NPs from an exponential association mechanism over a very short duration, as well as unfolding of Hb that occurred over a long lifetime. Dynamic light scattering measurements demonstrated that the ZnO NPs were completely covered by Hb with shell thickness of c. 6 nm that formed a 'hard corona'. Zeta potential measurements represented that the ZnO NPs were fully covered by Hb molecules using an exponential association mechanism. Tryptophans (TRY), as well as heme-porphyrin moieties of Hb, are the major binding sites for ZnO NPs. The nature of the interaction between ZnO NPs and Hb was analysed from the fluorescence quenching of TRYs. Electrostatic interaction, along with the hydrophobic interaction between ZnO NPs and Hb, is responsible for the conformational change in Hb due to increase in the percentage of β-sheets together with a decrease in α-helices.
Collapse
Affiliation(s)
- A K Bhunia
- Department of Physics & Technophysics, Vidyasagar University, Paschim Medinipur, India.,Department of Physics, Government General Degree College at Gopiballavpur-II, Jhargram, India
| | - S Saha
- Department of Physics & Technophysics, Vidyasagar University, Paschim Medinipur, India
| | - T Kamilya
- Department of Physics, Narajole Raj College, Paschim Medinip, India
| |
Collapse
|
36
|
Abstract
Lectin from loach skin mucus plays an important role in pathogen defense. However, hardly can any paper relevant to the character of lectin from loach skin mucus be found in recent years. In this study, a kind of new lectin (LML), with a high hemagglutination activity of 166.23 × 103 HU/mg, was successfully isolated and purified from loach skin mucus. LML was a kind of glycoprotein with a molecular weight of 245 kDa. Also, the monosaccharide composition suggested that its carbohydrate chain was composed of rhamnose, arabinose, xylose, mannose, glucose, and galactose with a molar ratio of 2.02 : 11.66 : 2.06 : 1.00 : 14.09 : 6.00. Besides, LML depended on Ca2+to induce hemagglutination and was strongly inhibited by D-lactose. The lectin exhibited powerful resistance to alkali and kept about 30% hemagglutination activity at pH 14.0, whereas its capacity of acid resistance was weak. The maximum hemagglutination activity of LML maintained at a temperature range from 20°C to 50°C. Moreover, the structure of LML was preliminarily studied, indicating it contained abundant glutamic acid, histidine, and serine, and its secondary structure containedα-helix (4.97%),β-sheet (27.55%), turns structure (49.78%), and unordered structure (17.70%).
Collapse
|
37
|
Rovalino-Córdova AM, Fogliano V, Capuano E. The effect of cell wall encapsulation on macronutrients digestion: A case study in kidney beans. Food Chem 2019; 286:557-566. [DOI: 10.1016/j.foodchem.2019.02.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/21/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
|
38
|
Di Cecco V, Di Musciano M, D'Archivio AA, Frattaroli AR, Di Martino L. Analysis of intraspecific seed diversity in Astragalus aquilanus (Fabaceae), an endemic species of Central Apennine. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:507-514. [PMID: 29779248 DOI: 10.1111/plb.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
This work aims to study seeds of the endemic species Astragalus aquilanus from four different populations of central Italy. We investigated seed morpho-colorimetric features (shape and size) and chemical differences (through infrared spectroscopy) among populations and between dark and light seeds. Seed morpho-colorimetric quantitative variables, describing shape, size and colour traits, were measured using image analysis techniques. Fourier transform infrared (FT-IR) spectroscopy was used to attempt seed chemical characterisation. The measured data were analysed by step-wise linear discriminant analysis (LDA). Moreover, we analysed the correlation between the four most important traits and six climatic variables extracted from WorldClim 2.0. The LDA on seeds traits shows clear differentiation of the four populations, which can be attributed to different chemical composition, as confirmed by Wilk's lambda test (P < 0.001). A strong correlation between morphometric traits and temperature (annual mean temperature, mean temperature of the warmest and coolest quarter), colorimetric traits and precipitation (annual precipitation, precipitation of wettest and driest quarter) was observed. The characterisation of A. aquilanus seeds shows large intraspecific plasticity both in morpho-colorimetric and chemical composition. These results confirm the strong relationship between the type of seed produced and the climatic variables.
Collapse
Affiliation(s)
- V Di Cecco
- Department of Life, Health & Environmental Science, University of L'Aquila, Coppito, L'Aquila, Italy
- Majella Seed Bank, Majella National Park, Loc. Colle Madonna, Lama dei Peligni (CH), Italy
| | - M Di Musciano
- Department of Life, Health & Environmental Science, University of L'Aquila, Coppito, L'Aquila, Italy
| | - A A D'Archivio
- Department of Physical and Chemical Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - A R Frattaroli
- Department of Life, Health & Environmental Science, University of L'Aquila, Coppito, L'Aquila, Italy
| | - L Di Martino
- Majella Seed Bank, Majella National Park, Loc. Colle Madonna, Lama dei Peligni (CH), Italy
| |
Collapse
|
39
|
Microwave Pretreatment and Enzymolysis Optimization of the Lotus Seed Protein. Bioengineering (Basel) 2019; 6:bioengineering6020028. [PMID: 30934736 PMCID: PMC6631956 DOI: 10.3390/bioengineering6020028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 11/17/2022] Open
Abstract
Pretreatment with a microwave was conducted before enzymolysis and shown to enhance the enzymolysis, which changed the secondary structure of the lotus seed protein. Under high-power microwave irradiation, sub bonds of the protein were broken, causing disaggregation and unfolding of the secondary structure, namely a decrease in the intermolecular aggregate structure and increase in the random coil structure, making the protein bonds susceptible to papain in the enzymolysis. On the other hand, a response surface methodology (RSM) was launched to investigate the influence of the enzymolysis process variables on the DH (degree of hydrolysis). The statistical analysis revealed that the optimized conditions were a protein substrate concentration of 15 g/L, pH of 5.5, enzymolysis temperature of 57 °C, papain amount of 0.5 g/L, and enzymolysis time of 45 min, for which the predicted value of the DH was 35.64%. The results indicated that a microwave also had better potential for applications in the enzymolysis of foods.
Collapse
|
40
|
Physicochemical, conformational properties and ACE-inhibitory activity of peanut protein marinated by aged vinegar. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Ochoa-Yepes O, Di Giogio L, Goyanes S, Mauri A, Famá L. Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydr Polym 2019; 208:221-231. [DOI: 10.1016/j.carbpol.2018.12.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 01/29/2023]
|
42
|
Vera A, Valenzuela MA, Yazdani-Pedram M, Tapia C, Abugoch L. Conformational and physicochemical properties of quinoa proteins affected by different conditions of high-intensity ultrasound treatments. ULTRASONICS SONOCHEMISTRY 2019; 51:186-196. [PMID: 30377080 DOI: 10.1016/j.ultsonch.2018.10.026] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/03/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
Quinoa proteins (QP) have promise as a potential source of novel food ingredients, and it is of great interest to know how high-intensity ultrasound (HIUS) treatments affect the properties of QP. This work aimed to study the impact of on-off time-pulses of HIUS treatments on the structural and physicochemical properties of QP; samples were treated at 5, 10, 20, and 30 min with on-off pulses of 10 s/10 s, 5 s/1 s, and 1 s/5 s). Structural changes were evaluated using PAGE-SDS, circular dichroism, fluorescence spectroscopy, and differential scanning calorimetry. Meanwhile, physicochemical properties were also examined, including solubility, Z-average, polydispersity index PDI, and Z-potential. PAGE-SDS showed the appearance of polypeptides over 190 kDa in HIUS samples-treated. All samples presented 15.6% α-helices, 31.3% β-sheets, 21.8% β-rotations, and 31.4% random coils independent of the HIUS treatment. β-Turn structures and "random coils" were not affected by HIUS. When US 10 s/10 s and 1 s/5 s were applied, an increase in the % α-helix and a decrease in β-fold were observed, which could indicate a small conversion of β-folds to α-helices. Fluorescence spectra for all HIUS showed a significant increase (23%) of average fluorescence intensity and a decrease of λmax in relation to that of the control (346 dnm and 340 nm average HIUS treatment). DSC showed one endotherm in all cases (81.6-99.8 °C), and an increase in Td was observed due to the effect of the HIUS treatment. HIUS caused a 48% increase in solubility. The Z-average of the HIUS samples compared to that of the controls showed an increase from 37.8 to 47.3 nm. PDI and Z-potential values from the QP controls and the HIUS samples did not show significance differences and presented average values of 0.466 ± 0.021 (PDI) and -16.63 ± 0.89 (Z-potential). It is possible to conclude that HIUS treatments affect the secondary and tertiary structure of quinoa proteins, and these changes resulted in an increase of solubility and particle size. HIUS treatment as a new and promising technology that can improve the QP solubility properties and in that way allow its use as an ingredient with a good source of protein to develop different types of beverages/protein sauces.
Collapse
Affiliation(s)
- A Vera
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago, Chile
| | - M A Valenzuela
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Santiago, Chile
| | - M Yazdani-Pedram
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Santiago, Chile
| | - C Tapia
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago, Chile.
| | - L Abugoch
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago, Chile.
| |
Collapse
|
43
|
Diversity in protein secondary structure, molecular weight, mineral and amino acid composition of lentil and horse gram germplasm. Journal of Food Science and Technology 2019; 56:1601-1612. [PMID: 30956341 DOI: 10.1007/s13197-019-03676-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
Lentil and horse gram germplasm was assessed for variety in seed and flour properties. Horsegram grains showed higher a* and b* and lower L* values as compared to lentil grains indicating lentil grains were lighter in color as compared to horse gram. Both the pulses showed significant differential accumulation of minerals. Flours from horse gram lines showed higher Mn, K, Mg, Na, Zn and Ca content and lower Cu and Fe content as compared to lentil lines. Polypeptide of 42 kDa was present in IC94636 and IC139555 only and 35 kDa PP subunit was absent in all the horse gram lines except IC94636. Major polymorphism among lentil lines was observed in 10, 35-37 and 55-49 kDa PP subunits. Amount of β-sheets and β-turns was the highest whereas that of antiparallel β-sheets was the lowest. NIC17550, NIC17551 and NIC17552 showed higher content of antiparallel β-sheets and random coils among lentil lines. PL1 showed the highest portion of α-helixes and β-turns whereas PL57 showed the highest proportion of β-sheets among lentil lines. Lentil flours showed higher proportion of aspartic acid, glutamic acid, asparagine, serine, citrulline and serine and lower proportion of histidine, threonine, GABA, tyrosine and cystine as compared to horse gram.
Collapse
|
44
|
Martínez-Velasco A, Lobato-Calleros C, Hernández-Rodríguez BE, Román-Guerrero A, Alvarez-Ramirez J, Vernon-Carter EJ. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. ULTRASONICS SONOCHEMISTRY 2018; 44:97-105. [PMID: 29680632 DOI: 10.1016/j.ultsonch.2018.02.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 05/24/2023]
Abstract
Response surface methodology was used for establishing the amplitude (72.67%) and time (17.29 min) high-intensity ultrasound (HIUS) conditions leading to an optimized faba bean protein isolate (OFPI) with lower interfacial tension, zeta potential and viscosity, and higher solubility than native faba bean protein isolate (NFPI). OFPI showed significantly higher adsorption dynamics at the air-water interface, and produced foam with significant smaller bubble diameter, higher overrun, stability and yield stress, and lower liquid drainage than NFPI. Fourier Transform Spectroscopy (FT-IR) revealed that the secondary structure of OFPI deferred from NFPI in terms of increases in β conformations (6.61% β-sheet, 19.6% β-turn, 0.8% anti-parallel β-sheet) and decreases in inter-molecular aggregates (43.54%). Multienzyme study pinpointed that the structural changes could have induced a decrease on the relative protein digestibility of OFPI respect that of NFPI. The results of this work demonstrate that HIUS technology improves the surface and foaming properties of faba bean protein isolate, which may favour the revalorisation of this crop.
Collapse
Affiliation(s)
- Alejandro Martínez-Velasco
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, México, Ciudad de México 09340, Mexico
| | - Consuelo Lobato-Calleros
- Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, Km. 38.5, Carretera México-Texcoco, 56230 Texcoco, Mexico.
| | - Blanca E Hernández-Rodríguez
- Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, Km. 38.5, Carretera México-Texcoco, 56230 Texcoco, Mexico
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, México, Ciudad de México 09340, Mexico
| | - Jose Alvarez-Ramirez
- Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, México, Ciudad de México 09340, Mexico
| | - E Jaime Vernon-Carter
- Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, México, Ciudad de México 09340, Mexico
| |
Collapse
|
45
|
Singh TP, Sogi DS. Comparative study of structural and functional characterization of bran protein concentrates from superfine, fine and coarse rice cultivars. Int J Biol Macromol 2018; 111:281-288. [DOI: 10.1016/j.ijbiomac.2017.12.161] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
|
46
|
Motoyama M, Vénien A, Loison O, Sandt C, Watanabe G, Sicard J, Sasaki K, Astruc T. In situ characterization of acidic and thermal protein denaturation by infrared microspectroscopy. Food Chem 2018; 248:322-329. [DOI: 10.1016/j.foodchem.2017.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/13/2023]
|
47
|
Ochoa-Yepes O, Medina-Jaramillo C, Guz L, Famá L. Biodegradable and Edible Starch Composites with Fiber-Rich Lentil Flour to Use as Food Packaging. STARCH-STARKE 2018. [DOI: 10.1002/star.201700222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oswaldo Ochoa-Yepes
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LP&MC) Instituto de Física de Buenos Aires (IFIBA-CONICET), Pab. 1, Intendente Güiraldes 2160, CP 1428; Buenos Aires Argentina
| | - Carolina Medina-Jaramillo
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LP&MC) Instituto de Física de Buenos Aires (IFIBA-CONICET), Pab. 1, Intendente Güiraldes 2160, CP 1428; Buenos Aires Argentina
- Jaramillo Instituto de Tecnología en Polímeros y Nanotecnología ITPN, UBA-CONICET, Facultad de Ingeniería, Universidad de Buenos Aires; Av. Las Heras 2214 (1127) Buenos Aires Argentina
| | - Lucas Guz
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LP&MC) Instituto de Física de Buenos Aires (IFIBA-CONICET), Pab. 1, Intendente Güiraldes 2160, CP 1428; Buenos Aires Argentina
| | - Lucía Famá
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LP&MC) Instituto de Física de Buenos Aires (IFIBA-CONICET), Pab. 1, Intendente Güiraldes 2160, CP 1428; Buenos Aires Argentina
| |
Collapse
|
48
|
Vieira de Souza AD, Ítavo LCV, Fávaro SP, Ferreira Ítavo CCB, Petit HV, Dias AM, Morais MDG, Reis FA, Roscoe R. Thermal decomposition, chemical composition, in vitro digestibility and gas production and in situ degradability of oilseed residues from the biofuel industry. Anim Sci J 2018; 89:79-87. [PMID: 28960716 DOI: 10.1111/asj.12889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/06/2017] [Indexed: 12/16/2023]
Abstract
Thermal analysis could rapidly and easily predict nutritional value of ruminant feeds. The hypothesis is that crambe meal (CM) has a quality similar to that of soybean meal (SM), and the objective of this study was to determine the nutritional characteristics of CM and compare them to those of SM. CM had greater concentrations of phytic acid (26.3 vs. 16.0 g/kg) and phenol compounds (615 vs. 393 mg gallic acid (GAE)/kg) than SM. In vitro dry matter (DM) digestibility was lower for CM than SM (752 vs. 975 g/kg DM). Cumulative in vitro gas production at 48 h of incubation (14.1 vs. 19.4 mL/100 mg substrate DM), and energy release (4.5 vs. 5.7 kJ/g substrate DM) were lower for CM than SM. CM had a higher concentration of low digestible fiber, hence degradability of DM was lower and the proportion of indigestible fraction was greater for CM than SM. High concentrations of indigestible compounds were likely responsible for lower gas production of CM compared to SM. These results suggest CM quality is lower than that of SM and that thermal analysis is a useful tool to precisely determine the nutritive value of oilseed residues.
Collapse
Affiliation(s)
| | | | - Simone Palma Fávaro
- Brazilian Corporation of Agricultural Research - Embrapa Agroenergy, Brasília, DF, Brazil
| | | | - Hélène Veronique Petit
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | | | | | - Fernando Alvarenga Reis
- Brazilian Corporation of Agricultural Research - Embrapa Beef Cattle, Campo Grande, MS, Brazil
| | - Renato Roscoe
- Mato Grosso do Sul Foundation - Department of Research and Dissemination of Agricultural Technologies, Maracajú, MS, Brazil
| |
Collapse
|
49
|
Beck SM, Knoerzer K, Arcot J. Effect of low moisture extrusion on a pea protein isolate’s expansion, solubility, molecular weight distribution and secondary structure as determined by Fourier Transform Infrared Spectroscopy (FTIR). J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.06.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Chávez-Murillo CE, Veyna-Torres JI, Cavazos-Tamez LM, de la Rosa-Millán J, Serna-Saldívar SO. Physicochemical characteristics, ATR-FTIR molecular interactions and in vitro starch and protein digestion of thermally-treated whole pulse flours. Food Res Int 2017; 105:371-383. [PMID: 29433226 DOI: 10.1016/j.foodres.2017.11.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 11/09/2017] [Accepted: 11/19/2017] [Indexed: 11/30/2022]
Abstract
Hydrothermal treatments, annealing (ANN) and heat moisture treatment (HMT) were applied to four whole pulse flours (black bean, broad bean, chickpea and lentil) with the aim to increase their slow digestible (SDS) and resistant starch (RS) fractions. In order to assess differences in their molecular interactions, they were analyzed and compared by ATR-FTIR before and after in vitro digestion. Both hydrothermal treatments promoted changes on starch granular architecture, being reflected on their thermal and pasting properties, that where positively correlated with their amylose and protein contents (R=0.96, P<0.01). Overall, the proposed hydrothermal treatments increased their SDS and RS fractions, but they had different effect on their in vitro protein digestion. The ATR-FTIR analysis of cooked flours before and after digestion showed that thermal treatments promoted new physical interactions at molecular scale between starch and proteins, that were correlated with the amount of RS fraction. The outcomes of this study could help to understand the slow digestion properties and possible interactions of the flour components in these four pulses.
Collapse
Affiliation(s)
- Carolina Estefanía Chávez-Murillo
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería campus Zacatecas (UPIIZ-IPN), Blvd. del Bote S/N Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, C.P. 98160, Zacatecas, Zac, Mexico
| | - Jorge Ivan Veyna-Torres
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería campus Zacatecas (UPIIZ-IPN), Blvd. del Bote S/N Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, C.P. 98160, Zacatecas, Zac, Mexico
| | - Luisa María Cavazos-Tamez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, CP 64849 Monterrey, NL, Mexico
| | - Julián de la Rosa-Millán
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, CP 64849 Monterrey, NL, Mexico.
| | - Sergio Othon Serna-Saldívar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, CP 64849 Monterrey, NL, Mexico
| |
Collapse
|