1
|
Mittal A, Singh A, Buatong J, Saetang J, Benjakul S. Chitooligosaccharide and Its Derivatives: Potential Candidates as Food Additives and Bioactive Components. Foods 2023; 12:3854. [PMID: 37893747 PMCID: PMC10606384 DOI: 10.3390/foods12203854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Chitooligosaccharide (CHOS), a depolymerized chitosan, can be prepared via physical, chemical, and enzymatic hydrolysis, or a combination of these techniques. The superior properties of CHOS have attracted attention as alternative additives or bioactive compounds for various food and biomedical applications. To increase the bioactivities of a CHOS, its derivatives have been prepared via different methods and were characterized using various analytical methods including FTIR and NMR spectroscopy. CHOS derivatives such as carboxylated CHOS, quaternized CHOS, and others showed their potential as potent anti-inflammatory, anti-obesity, neuroprotective, and anti-cancer agents, which could further be used for human health benefits. Moreover, enhanced antibacterial and antioxidant bioactivities, especially for a CHOS-polyphenol conjugate, could play a profound role in shelf-life extension and the safety assurance of perishable foods via the inhibition of spoilage microorganisms and pathogens and lipid oxidation. Also, the effectiveness of CHOS derivatives for shelf-life extension can be augmented when used in combination with other preservative technologies. Therefore, this review provides an overview of the production of a CHOS and its derivatives, as well as their potential applications in food as either additives or nutraceuticals. Furthermore, it revisits recent advancements in translational research and in vivo studies on CHOS and its derivatives in the medical-related field.
Collapse
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Jirayu Buatong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Xie Q, Yang J, Cai J, Shen F, Gu J. Homogeneous preparation of water-soluble products from chitin under alkaline conditions and their cell proliferation in vitro. Int J Biol Macromol 2023; 231:123321. [PMID: 36657539 DOI: 10.1016/j.ijbiomac.2023.123321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/18/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to prepare water-soluble products by homogeneous depolymerization of chitin with H2O2 under alkaline conditions and investigate their potential application in wound healing. For the first time, water-soluble products were successfully prepared using a chitin-NaOH/urea solution; the products were chitosans with molecular weights (Mw) of 3.48-33.5 kDa and degrees of deacetylation (DD) > 0.5. Their Mw, DD and yield were affected by the reaction temperature, reaction time, concentration of H2O2 and chitin DD. The deacetylation and depolymerization of chitin were achieved simultaneously. The depolymerization of chitin was caused by hydrogen abstraction of HO, whereas the deacetylation resulted from the cleavage of amide bonds by HO- and HO2-, although the latter played a more important role. All water-soluble chitosans markedly promoted the proliferation of human skin fibroblast (HSF) cells, but they inhibited the proliferation of human keratinocyte cells. For the proliferation of HSF, a low concentration of chitosans was important. In addition, water-soluble chitosans with an Mw of 3.48-16.4 kDa markedly stimulated the expression of growth factors such as PDGF and TGF-β by macrophages. Water-soluble chitosans could be used as a potential active component in wound dressings.
Collapse
Affiliation(s)
- Qinyue Xie
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jianhong Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Jun Cai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Fengqin Shen
- Changzhou Liu Guojun Vocational Technology College, Changzhou 213025, Jiangsu, China
| | - Jianbin Gu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr Polym 2022; 287:119349. [DOI: 10.1016/j.carbpol.2022.119349] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
|
4
|
Guo M, Wei X, Chen S, Xiao J, Huang D. Enhancing nonspecific enzymatic hydrolysis of chitin to oligosaccharides pretreated by acid and green solvents under simultaneous microwave-radiation. Int J Biol Macromol 2022; 209:631-641. [PMID: 35413325 DOI: 10.1016/j.ijbiomac.2022.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/13/2022] [Accepted: 04/04/2022] [Indexed: 11/05/2022]
Abstract
It is hard to degrade untreated highly crystalline chitin. In this study, two solvents pretreatment chitin (acid swollen chitin (AC), super fine chitin (FC)) and microwave-heating method were used to enhance nonspecific enzymatic hydrolysis (lysozyme and pepsin), which obviously improved the enzymolysis rates by at least 1.31 times. Characterizations of chitin substrates (Mv, SEM, XRD) showed that calcium solvent pretreatment (obtained FC) was milder but effective than phosphoric acid pretreatment (obtained AC). The highest yield of chitin oligosaccharides (37.58 mg/g) were obtained after hydrolyzing AC under five-hour simultaneous microwave radiation by pepsin, among them, the content of N-acetylglucosamine was 13.76 mg/g. While, more chitin oligosaccharides with DP (degree of polymerization) 3-4 and lower DA (degree of acetylation) were obtained when using lysozyme than pepsin. Significantly, the conversion rate of chitin to oligosaccharides went best only when microwave and enzymes acting together (simultaneous strategy), which were at least 35.59% higher than separately pretreatment enzymes and substrates by microwave. The damages of microwave radiation on lysozyme and chitin substrates were revealed, and the operating principle of the whole enzyme reaction system heated by microwave was preliminatively explored.
Collapse
Affiliation(s)
- Mengyuan Guo
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xunfan Wei
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sicong Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinhua Xiao
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Wang J, Wang P, Zhu M, Chen W, Yu S, Zhong B. Overexpression and Biochemical Properties of a GH46 Chitosanase From Marine Streptomyces hygroscopicus R1 Suitable for Chitosan Oligosaccharides Preparation. Front Microbiol 2022; 12:816845. [PMID: 35173697 PMCID: PMC8841797 DOI: 10.3389/fmicb.2021.816845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the various biological activities of chitosan oligosaccharides (COSs), they have great potential value for use in many areas. Chitosanase plays an important role in enzymatic preparation of COSs. Herein, a gene encoding a chitosanase (ShCsn46) from marine Streptomyces hygroscopicus R1 was cloned and the sequences encoding ShCsn46 without signal peptide were optimized based on the codon usage of Pichia pastoris (P. pastoris). In addition, the optimized gene was ligated to pPICZαA and transformed to P. pastoris X33. After screening, a recombinant strain named X33-Sh33 with the highest activity was isolated from 96 recombinant colonies. The maximum activity and total protein concentration of the recombinant strain ShCsn46 were 2250 U/ml and 3.98 g/l, respectively. The optimal pH and temperature of purified ShCsn46 were 5.5 and 55°C, respectively. Meanwhile, ShCsn46 was stable from pH 5.0 to 10.0 and 40 to 55°C, respectively. The purified ShCsn46 was activated by Mn2+ and inhibited by Cu2+, Fe2+, and Al3+. In addition, substrate specificity of the purified ShCsn46 showed highest activity toward colloidal chitosan with 95% degree of deacetylation. Furthermore, the purified ShCsn46 exhibited high efficiency to hydrolyze 4% colloidal chitosan to prepare COSs. COSs with degree of polymerization of 2–6, 2–5, and 2–4 were controllably produced by adjusting the reaction time. This study provides an excellent chitosanase for the controllable preparation of COSs with a desirable degree of polymerization.
Collapse
Affiliation(s)
- Jianrong Wang
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Jianrong Wang,
| | - Ping Wang
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Mujin Zhu
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Wei Chen
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Si Yu
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Bin Zhong
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| |
Collapse
|
6
|
Chitosan: An Overview of Its Properties and Applications. Polymers (Basel) 2021; 13:polym13193256. [PMID: 34641071 PMCID: PMC8512059 DOI: 10.3390/polym13193256] [Citation(s) in RCA: 328] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Chitosan has garnered much interest due to its properties and possible applications. Every year the number of publications and patents based on this polymer increase. Chitosan exhibits poor solubility in neutral and basic media, limiting its use in such conditions. Another serious obstacle is directly related to its natural origin. Chitosan is not a single polymer with a defined structure but a family of molecules with differences in their composition, size, and monomer distribution. These properties have a fundamental effect on the biological and technological performance of the polymer. Moreover, some of the biological properties claimed are discrete. In this review, we discuss how chitosan chemistry can solve the problems related to its poor solubility and can boost the polymer properties. We focus on some of the main biological properties of chitosan and the relationship with the physicochemical properties of the polymer. Then, we review two polymer applications related to green processes: the use of chitosan in the green synthesis of metallic nanoparticles and its use as support for biocatalysts. Finally, we briefly describe how making use of the technological properties of chitosan makes it possible to develop a variety of systems for drug delivery.
Collapse
|
7
|
Singh A, Mittal A, Benjakul S. Chitosan, Chitooligosaccharides and Their Polyphenol Conjugates: Preparation, Bioactivities, Functionalities and Applications in Food Systems. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1950176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
8
|
Cui D, Yang J, Lu B, Shen H. Efficient Preparation of Chitooligosaccharide With a Potential Chitosanase Csn-SH and Its Application for Fungi Disease Protection. Front Microbiol 2021; 12:682829. [PMID: 34220769 PMCID: PMC8249199 DOI: 10.3389/fmicb.2021.682829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 12/04/2022] Open
Abstract
Chitosanase plays a vital role in bioactive chitooligosaccharide preparation. Here, we characterized and prepared a potential GH46 family chitosanase from Bacillus atrophaeus BSS. The purified recombinant enzyme Csn-SH showed a molecular weight of 27.0 kDa. Csn-SH displayed maximal activity toward chitosan at pH 5.0 and 45°C. Thin-layer chromatography and electrospray ionization–mass spectrometry indicated that Csn-SH mainly hydrolyzed chitosan into (GlcN)2, (GlcN)3, and (GlcN)4 with an endo-type cleavage pattern. Molecular docking analysis demonstrated that Csn-SH cleaved the glycoside bonds between subsites −2 and + 1 of (GlcN)6. Importantly, the chitosan hydrolysis rate of Csn-SH reached 80.57% within 40 min, which could reduce time and water consumption. The hydrolysates prepared with Csn-SH exhibited a good antifungal activity against Magnaporthe oryzae and Colletotrichum higginsianum. The above results suggested that Csn-SH could be used to produce active chitooligosaccharides efficiently that are biocontrol agents applicable for safe and sustainable agricultural production.
Collapse
Affiliation(s)
- Dandan Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jin Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Bosi Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, China
| |
Collapse
|
9
|
Pan M, Zhao C, Xu Z, Yang Y, Teng T, Lin J, Huang H. Radiopaque Chitosan Ducts Fabricated by Extrusion-Based 3D Printing to Promote Healing After Pancreaticoenterostomy. Front Bioeng Biotechnol 2021; 9:686207. [PMID: 34150738 PMCID: PMC8212045 DOI: 10.3389/fbioe.2021.686207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023] Open
Abstract
Long-term placement of non-degradable silicone rubber pancreatic duct stents in the body is likely to cause inflammation and injury. Therefore, it is necessary to develop degradable and biocompatible stents to replace silicone rubber tubes as pancreatic duct stents. The purpose of our research was to verify the feasibility and biological safety of extrusion-based 3D printed radiopaque chitosan (CS) ducts for pancreaticojejunostomy. Chitosan-barium sulfate (CS-Ba) ducts with different molecular weights (low-, medium-, and high-molecular weight CS-Ba: LCS-Ba, MCS-Ba, and HCS-Ba, respectively) were soaked in vitro in simulated pancreatic juice (SPJ) (pH 8.0) with or without pancreatin for 16 weeks. Changes in their weight, water absorption rate and mechanical properties were tested regularly. The biocompatibility, degradation and radiopaque performance were verified by in vivo and in vitro experiments. The results showed that CS-Ba ducts prepared by this method had regular compact structures and good molding effects. In addition, the lower the molecular weight of the CS-Ba ducts was, the faster the degradation rate was. Extrusion-based 3D-printed CS-Ba ducts have mechanical properties that match those of soft tissue, good biocompatibility and radioopacity. In vitro studies have also shown that CS-Ba ducts can promote the growth of fibroblasts. These stents have great potential for use in pancreatic duct stent applications in the future.
Collapse
Affiliation(s)
- Maoen Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaoqian Zhao
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Zeya Xu
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Yuanyuan Yang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
10
|
Zhou J, Wen B, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food Funct 2021; 12:926-951. [PMID: 33434251 DOI: 10.1039/d0fo02768e] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COSs) are widely used biopolymers that have been studied in relation to a variety of abnormal biological activities in the food and biomedical fields. Since different COS preparation technologies produce COS compounds with different structural characteristics, it has not yet been possible to determine whether one or more chito-oligomers are primarily responsible for the bioactivity of COSs. The inherent biocompatibility, mucosal adhesion and nontoxic nature of COSs are well documented, as is the fact that they are readily absorbed from the intestinal tract, but their structure-activity relationship requires further investigation. This review summarizes the methods used for COS preparation, and the research findings with regard to the antioxidant, anti-inflammatory, anti-obesity, bacteriostatic and antitumour activity of COSs with different structural characteristics. The correlation between the molecular structure and bioactivities of COSs is described, and new insights into their structure-activity relationship are provided.
Collapse
Affiliation(s)
- Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou (510310), China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan (528458), China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou (510663), China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| |
Collapse
|
11
|
Tabassum N, Ahmed S, Ali MA. Chitooligosaccharides and their structural-functional effect on hydrogels: A review. Carbohydr Polym 2021; 261:117882. [DOI: 10.1016/j.carbpol.2021.117882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
|
12
|
Sun Q, Sheng J, Yang R. Controllable biodegradation and drug release behavior of chitosan-graft-poly(D, L-lactic acid) synthesized by an efficient method. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Al-Hasan Hamdan IA, Alhnon FJ, Al-Hasan Hamdan AA. Extraction, characterization and bioactivity of chitosan from farms shrimps of Basra province by chemical method. JOURNAL OF PHYSICS: CONFERENCE SERIES 2020; 1660:012023. [DOI: 10.1088/1742-6596/1660/1/012023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
This paper include the extraction of chitin and transformation it to chitosan from the shrimps shells (waste) that grow up at sea farm in Al-Basra Province, the extraction done according to the literatures by two methods the difference between them was in the first step, but other steps were same methods, the results show sample A was higher than sample B in good yield and other physicochemical properties ( moisture, intrinsic viscosity, daacetylation degree, solubility, and fat binding capacity) which were measured to both samples, chitosan samples were characterization with FT-IR spectrum, in addition the biological activity for chitosan was tested against E.coli, P. asparagi, S. aureus, and B. cerus, the results show that sample A has inhibited these bacteria more than sample B.
Collapse
|
14
|
Bile acid-binding capacity of lobster shell-derived chitin, chitosan and chitooligosaccharides. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100476] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Arnold ND, Brück WM, Garbe D, Brück TB. Enzymatic Modification of Native Chitin and Conversion to Specialty Chemical Products. Mar Drugs 2020; 18:E93. [PMID: 32019265 PMCID: PMC7073968 DOI: 10.3390/md18020093] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
: Chitin is one of the most abundant biomolecules on earth, occurring in crustacean shells and cell walls of fungi. While the polysaccharide is threatening to pollute coastal ecosystems in the form of accumulating shell-waste, it has the potential to be converted into highly profitable derivatives with applications in medicine, biotechnology, and wastewater treatment, among others. Traditionally this is still mostly done by the employment of aggressive chemicals, yielding low quality while producing toxic by-products. In the last decades, the enzymatic conversion of chitin has been on the rise, albeit still not on the same level of cost-effectiveness compared to the traditional methods due to its multi-step character. Another severe drawback of the biotechnological approach is the highly ordered structure of chitin, which renders it nigh impossible for most glycosidic hydrolases to act upon. So far, only the Auxiliary Activity 10 family (AA10), including lytic polysaccharide monooxygenases (LPMOs), is known to hydrolyse native recalcitrant chitin, which spares the expensive first step of chemical or mechanical pre-treatment to enlarge the substrate surface. The main advantages of enzymatic conversion of chitin over conventional chemical methods are the biocompability and, more strikingly, the higher product specificity, product quality, and yield of the process. Products with a higher Mw due to no unspecific depolymerisation besides an exactly defined degree and pattern of acetylation can be yielded. This provides a new toolset of thousands of new chitin and chitosan derivatives, as the physio-chemical properties can be modified according to the desired application. This review aims to provide an overview of the biotechnological tools currently at hand, as well as challenges and crucial steps to achieve the long-term goal of enzymatic conversion of native chitin into specialty chemical products.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| | - Wolfram M. Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
| | - Daniel Garbe
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| | - Thomas B. Brück
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| |
Collapse
|
16
|
Singh A, Benjakul S, Prodpran T. Chitooligosaccharides from squid pen prepared using different enzymes: characteristics and the effect on quality of surimi gel during refrigerated storage. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0005-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Chitooligosaccharides (COS) from squid pen produced using amylase, lipase and pepsin were characterized. COS produced by 8% (w/w) lipase (COS-L) showed the maximum FRAP and ABTS radical scavenging activity than those prepared using other two enzymes. COS-L had the average molecular weight (MW) of 79 kDa, intrinsic viscosity of 0.41 dL/g and water solubility of 49%. DPPH, ABTS radical scavenging activities, FRAP and ORAC of COS-L were 5.68, 322.68, 5.66 and 42.20 μmol TE/g sample, respectively. Metal chelating activity was 2.58 μmol EE/g sample. For antibacterial activity, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of COS-L against the targeted bacteria were in the range of 0.31–4.91 mg/mL and 0.62–4.91 mg/mL, respectively. Sardine surimi gel added with 1% (w/w) COS-L showed the lower PV, TBARS and microbial growth during 10 days of storage at 4 °C. COS-L from squid pen could inhibit lipid oxidation and extend the shelf-life of refrigerated sardine surimi gel.
Graphical abstract
Collapse
|
17
|
Liu W, Ma Y, Ai L, Li W, Li W, Li H, Zhou C, Luo B. Enzymatic Degradation of Nanosized Chitin Whiskers with Different Degrees of Deacetylation. ACS Biomater Sci Eng 2019; 5:5316-5326. [PMID: 33455236 DOI: 10.1021/acsbiomaterials.9b00796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In order to study the relationship between the degree of deacetylation of chitin whiskers (CHWs) and their enzymatic degradation properties, in this paper, CHWs were first deacetylated to different degrees by alkali treatment, and the CHWs with the degrees of deacetylation of 17.84, 67.76, and 82.54% was obtained, respectively. Moreover, the partially deacetylated CHWs still maintained good crystallinity and nanoneedle-like morphology. Next, the in vitro degradation behavior of CHWs with different degrees of deacetylation was further studied under the single or synergistic action of lysozyme and lipase (37 °C, pH = 7.4). The results showed that the morphology change of CHWs was more obvious as the degree of deacetylation increased. The mass loss, the crystallinity index at the (110) crystal plane, and the concentration of reducing sugar of the CHWs also increased with the degree of deacetylation. Moreover, the synergistic effect of the two enzymes was more conducive to the degradation process of CHWs than single lysozyme or lipase. The difference in the rate of enzymatic degradation provides an idea for the regulation of the degradation rate of the CHWs.
Collapse
Affiliation(s)
- Wenjun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Yunfa Ma
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Lihao Ai
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Wenling Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Wenyan Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Hong Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| |
Collapse
|
18
|
Affes S, Aranaz I, Hamdi M, Acosta N, Ghorbel-Bellaaj O, Heras Á, Nasri M, Maalej H. Preparation of a crude chitosanase from blue crab viscera as well as its application in the production of biologically active chito-oligosaccharides from shrimp shells chitosan. Int J Biol Macromol 2019; 139:558-569. [DOI: 10.1016/j.ijbiomac.2019.07.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
|
19
|
Aktuganov GE, Melentiev AI, Varlamov VP. Biotechnological Aspects of the Enzymatic Preparation of Bioactive Chitooligosaccharides (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819040021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Li M, Han J, Xue Y, Dai Y, Liu J, Gan L, Xie R, Long M. Hydrogen peroxide pretreatment efficiently assisting enzymatic hydrolysis of chitosan at high concentration for chitooligosaccharides. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Singh A, Benjakul S, Prodpran T. Effect of chitooligosaccharide from squid pen on gel properties of sardine surimi gel and its stability during refrigerated storage. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14199] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Avtar Singh
- Department of Food Technology Faculty of Agro‐Industry Prince of Songkla University Hat YaiSongkhla90112Thailand
| | - Soottawat Benjakul
- Department of Food Technology Faculty of Agro‐Industry Prince of Songkla University Hat YaiSongkhla90112Thailand
| | - Thummanoon Prodpran
- Department of Material Product Technology Faculty of Agro‐Industry Prince of Songkla University Hat YaiSongkhla90112Thailand
| |
Collapse
|
22
|
Modification of Chitosan for the Generation of Functional Derivatives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071321] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Today, chitosan (CS) is probably considered as a biofunctional polysaccharide with the most notable growth and potential for applications in various fields. The progress in chitin chemistry and the need to replace additives and non-natural polymers with functional natural-based polymers have opened many new opportunities for CS and its derivatives. Thanks to the specific reactive groups of CS and easy chemical modifications, a wide range of physico-chemical and biological properties can be obtained from this ubiquitous polysaccharide that is composed of β-(1,4)-2-acetamido-2-deoxy-d-glucose repeating units. This review is presented to share insights into multiple native/modified CSs and chitooligosaccharides (COS) associated with their functional properties. An overview will be given on bioadhesive applications, antimicrobial activities, adsorption, and chelation in the wine industry, as well as developments in medical fields or biodegradability.
Collapse
|
23
|
Poshina DN, Raik SV, Poshin AN, Skorik YA. Accessibility of chitin and chitosan in enzymatic hydrolysis: A review. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Metabolic engineering for the production of chitooligosaccharides: advances and perspectives. Emerg Top Life Sci 2018; 2:377-388. [DOI: 10.1042/etls20180009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022]
Abstract
Chitin oligosaccharides (CTOs) and its related compounds chitosan oligosaccharides (CSOs), collectively known as chitooligosaccharides (COs), exhibit numerous biological activities in applications in the nutraceutical, cosmetics, agriculture, and pharmaceutical industries. COs are currently produced by acid hydrolysis of chitin or chitosan, or enzymatic techniques with uncontrollable polymerization. Microbial fermentation by recombinant Escherichia coli, as an alternative method for the production of COs, shows new potential because it can produce a well-defined COs mixture and is an environmentally friendly process. In addition, Bacillus subtilis, a nonpathogenic, endotoxin-free, GRAS status bacterium, presents a new opportunity as a platform to produce COs. Here, we review the applications of COs and differences between CTOs and CSOs, summarize the current preparation approaches of COs, and discuss the future research potentials and challenges in the production of well-defined COs in B. subtilis by metabolic engineering.
Collapse
|
25
|
Liang S, Sun Y, Dai X. A Review of the Preparation, Analysis and Biological Functions of Chitooligosaccharide. Int J Mol Sci 2018; 19:ijms19082197. [PMID: 30060500 PMCID: PMC6121578 DOI: 10.3390/ijms19082197] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Chitooligosaccharide (COS), which is acknowledged for possessing multiple functions, is a kind of low-molecular-weight polymer prepared by degrading chitosan via enzymatic, chemical methods, etc. COS has comprehensive applications in various fields including food, agriculture, pharmacy, clinical therapy, and environmental industries. Besides having excellent properties such as biodegradability, biocompatibility, adsorptive abilities and non-toxicity like chitin and chitosan, COS has better solubility. In addition, COS has strong biological functions including anti-inflammatory, antitumor, immunomodulatory, neuroprotective effects, etc. The present paper has summarized the preparation methods, analytical techniques and biological functions to provide an overall understanding of the application of COS.
Collapse
Affiliation(s)
- Shuang Liang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| | - Yaxuan Sun
- Department of Food Sciences, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| |
Collapse
|
26
|
Chitobiose alleviates oleic acid-induced lipid accumulation by decreasing fatty acid uptake and triglyceride synthesis in HepG2 cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
27
|
Development of a probiotic delivery system based on gelation of water-in-oil emulsions. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Olicón-Hernández DR, Vázquez-Landaverde PA, Cruz-Camarillo R, Rojas-Avelizapa LI. Comparison of chito-oligosaccharide production from three different colloidal chitosans using the endochitonsanolytic system of Bacillus thuringiensis. Prep Biochem Biotechnol 2016; 47:116-122. [DOI: 10.1080/10826068.2016.1181086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Ramón Cruz-Camarillo
- Department of Microbiology, ENCB-IPN, Col Santo Tomas, Delegación Miguel Hidalgo, México
| | - Luz Irene Rojas-Avelizapa
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Municipio de Amatlán de Los Reyes, México
| |
Collapse
|
29
|
Cao L, Wu J, Li X, Zheng L, Wu M, Liu P, Huang Q. Validated HPAEC-PAD Method for the Determination of Fully Deacetylated Chitooligosaccharides. Int J Mol Sci 2016; 17:ijms17101699. [PMID: 27735860 PMCID: PMC5085731 DOI: 10.3390/ijms17101699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022] Open
Abstract
An efficient and sensitive analytical method based on high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was established for the simultaneous separation and determination of glucosamine (GlcN)₁ and chitooligosaccharides (COS) ranging from (GlcN)₂ to (GlcN)₆ without prior derivatization. Detection limits were 0.003 to 0.016 mg/L (corresponding to 0.4-0.6 pmol), and the linear range was 0.2 to 10 mg/L. The optimized analysis was carried out on a CarboPac-PA100 analytical column (4 × 250 mm) using isocratic elution with 0.2 M aqueous sodium hydroxide-water mixture (10:90, v/v) as the mobile phase at a 0.4 mL/min flow rate. Regression equations revealed a good linear relationship (R² = 0.9979-0.9995, n = 7) within the test ranges. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated HPAEC-PAD method was readily applied for the quantification of (GlcN)1-6 in a commercial COS technical concentrate. The established method was also used to monitor the acid hydrolysis of a COS technical concentrate to ensure optimization of reaction conditions and minimization of (GlcN)₁ degradation.
Collapse
Affiliation(s)
- Lidong Cao
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Jinlong Wu
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China.
| | - Xiuhuan Li
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Li Zheng
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Miaomiao Wu
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Pingping Liu
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China.
| | - Qiliang Huang
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
30
|
Recent Progress in Chitosanase Production of Monomer-Free Chitooligosaccharides: Bioprocess Strategies and Future Applications. Appl Biochem Biotechnol 2016; 180:883-899. [PMID: 27206559 DOI: 10.1007/s12010-016-2140-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
Biological activities of chitosan oligosaccharides (COS) are well documented, and numerous reports of COS production using specific and non-specific enzymes are available. However, strategies for improving the overall yield by making it monomer free need to be developed. Continuous enzymatic production from chitosan derived from marine wastes is desirable and is cost-effective. Isolation of potential microbes showing chitosanase activity from various ecological niches, gene cloning, enzyme immobilization, and fractionation/purification of COS are some areas, where lot of work is in progress. This review covers recent measures to improve monomer-free COS production using chitosanase/non-specific enzymes and purification/fractionation of these molecules using ultrafiltration and column chromatographic techniques. Various bioprocess strategies, gene cloning for enhanced chitosanase enzyme production, and other measures for COS yield improvements have also been covered in this review. COS derivative preparation as well as COS-coated nanoparticles for efficient drug delivery are being focused in recent studies.
Collapse
|
31
|
Li K, Xing R, Liu S, Li P. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydr Polym 2016; 139:178-90. [DOI: 10.1016/j.carbpol.2015.12.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
|
32
|
Belanche A, Pinloche E, Preskett D, Newbold CJ. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol Ecol 2015; 92:fiv160. [PMID: 26676056 PMCID: PMC5831848 DOI: 10.1093/femsec/fiv160] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2015] [Indexed: 01/09/2023] Open
Abstract
This study investigates the effects of supplementing a control diet (CON) with chitosan (CHI) or ivy fruit saponins (IVY) as natural feed additives. Both additives had similar abilities to decrease rumen methanogenesis (–42% and –40%, respectively) using different mechanisms: due to its antimicrobial and nutritional properties CHI promoted a shift in the fermentation pattern towards propionate production which explained about two thirds of the decrease in methanogenesis. This shift was achieved by a simplification of the structure in the bacterial community and a substitution of fibrolytic (Firmicutes and Fibrobacteres) by amylolytic bacteria (Bacteroidetes and Proteobacteria) which led to greater amylase activity, lactate and microbial protein yield with no detrimental effect on feed digestibility. Contrarily, IVY had negligible nutritional properties promoting minor changes in the fermentation pattern and on the bacterial community. Instead, IVY modified the structure of the methanogen community and decreased its diversity. This specific antimicrobial effect of IVY against methanogens was considered its main antimethanogenic mechanism. IVY had however a negative impact on microbial protein synthesis. Therefore, CHI and IVY should be further investigated in vivo to determine the optimum doses which maintain low methanogenesis but prevent negative effects on the rumen fermentation and animal metabolism. Rumen function is generally suboptimal leading to loses in the form of methane and nitrogen, analysis of the rumen microbiome is vital to understand the mode of action of new feed additives to improve rumen function.
Collapse
Affiliation(s)
- Alejandro Belanche
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, Aberystwyth, UK
| | - Eric Pinloche
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, Aberystwyth, UK
| | - David Preskett
- BioComposites Centre, Bangor University, LL57 2UW, Bangor, UK
| | - C Jamie Newbold
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, Aberystwyth, UK
| |
Collapse
|
33
|
Naqvi S, Moerschbacher BM. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit Rev Biotechnol 2015; 37:11-25. [DOI: 10.3109/07388551.2015.1104289] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Pan AD, Zeng HY, Foua GB, Alain C, Li YQ. Enzymolysis of chitosan by papain and its kinetics. Carbohydr Polym 2015; 135:199-206. [PMID: 26453869 DOI: 10.1016/j.carbpol.2015.08.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022]
Abstract
Low molecular weight chitosan (LMWC) was obtained by the enzymolysis of chitosan by papain. Enzymolysis conditions (initial chitosan concentration, temperature, pH and ratio of papain to chitosan) were optimized by conducting experiments at three different levels using the response surface methodology (RSM) to obtain high soluble reducing sugars (SRSs) concentrations. Meanwhile, the influence of chitosan substrate concentration on the activity of papain was assessed in the experiments. The enzymolysis process was analyzed using pseudo-first-order and pseudo-second-order kinetic models and the experiment data were found to be more consistent with the pseudo-second-order kinetic model. In addition, the kinetic behavior of the enzymolysis was also investigated by using Haldane model, and chitosan exhibited substrate inhibition. It was clear that the Haldane kinetic model adequately described the dynamic behavior of the chitosan enzymolysis by papain. When the initial chitosan concentration was above 8.0g/L, the papain was overloaded and exhibited significant inhibition.
Collapse
Affiliation(s)
- A-Dan Pan
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Er-huan Road, Xiangtan 411105, Hunan, PR China
| | - Hong-Yan Zeng
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Er-huan Road, Xiangtan 411105, Hunan, PR China.
| | - Gohi Bi Foua
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Er-huan Road, Xiangtan 411105, Hunan, PR China
| | - Claude Alain
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Er-huan Road, Xiangtan 411105, Hunan, PR China
| | - Yu-Qin Li
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Er-huan Road, Xiangtan 411105, Hunan, PR China
| |
Collapse
|
35
|
|
36
|
Chitooligomers preparation by chitosanase produced under solid state fermentation using shrimp by-products as substrate. Carbohydr Polym 2015; 121:1-9. [DOI: 10.1016/j.carbpol.2014.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 02/02/2023]
|
37
|
Modulation in the rheological behaviour of porcine pepsin treated guar galactomannan on admixture with κ-carrageenan. Carbohydr Polym 2015; 115:253-9. [DOI: 10.1016/j.carbpol.2014.08.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/13/2014] [Accepted: 08/13/2014] [Indexed: 11/22/2022]
|
38
|
Dong H, Wang Y, Zhao L, Zhou J, Xia Q, Qiu Y. Key Technologies of Enzymatic Preparation for DP 6-8 Chitooligosaccharides. J FOOD PROCESS ENG 2014. [DOI: 10.1111/jfpe.12159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huizhong Dong
- State Key Laboratory of Bioreactor Engineering; R&D Center of Separation and Extraction Technology in Fermentation Industry; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology; Shanghai China
| | - Yaosong Wang
- State Key Laboratory of Bioreactor Engineering; R&D Center of Separation and Extraction Technology in Fermentation Industry; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology; Shanghai China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering; R&D Center of Separation and Extraction Technology in Fermentation Industry; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology; Shanghai China
| | - Jiachun Zhou
- State Key Laboratory of Bioreactor Engineering; R&D Center of Separation and Extraction Technology in Fermentation Industry; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology; Shanghai China
| | - Quanming Xia
- State Key Laboratory of Bioreactor Engineering; R&D Center of Separation and Extraction Technology in Fermentation Industry; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology; Shanghai China
| | - Yongjun Qiu
- State Key Laboratory of Bioreactor Engineering; R&D Center of Separation and Extraction Technology in Fermentation Industry; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology; Shanghai China
| |
Collapse
|
39
|
Jung WJ, Park RD. Bioproduction of chitooligosaccharides: present and perspectives. Mar Drugs 2014; 12:5328-56. [PMID: 25353253 PMCID: PMC4245534 DOI: 10.3390/md12115328] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/28/2023] Open
Abstract
Chitin and chitosan oligosaccharides (COS) have been traditionally obtained by chemical digestion with strong acids. In light of the difficulties associated with these traditional production processes, environmentally compatible and reproducible production alternatives are desirable. Unlike chemical digestion, biodegradation of chitin and chitosan by enzymes or microorganisms does not require the use of toxic chemicals or excessive amounts of wastewater. Enzyme preparations with chitinase, chitosanase, and lysozymeare primarily used to hydrolyze chitin and chitosan. Commercial preparations of cellulase, protease, lipase, and pepsin provide another opportunity for oligosaccharide production. In addition to their hydrolytic activities, the transglycosylation activity of chitinolytic enzymes might be exploited for the synthesis of desired chitin oligomers and their derivatives. Chitin deacetylase is also potentially useful for the preparation of oligosaccharides. Recently, direct production of oligosaccharides from chitin and crab shells by a combination of mechanochemical grinding and enzymatic hydrolysis has been reported. Together with these, other emerging technologies such as direct degradation of chitin from crustacean shells and microbial cell walls, enzymatic synthesis of COS from small building blocks, and protein engineering technology for chitin-related enzymes have been discussed as the most significant challenge for industrial application.
Collapse
Affiliation(s)
- Woo-Jin Jung
- Division of Applied Bioscience & Biotechnology, Institute of Environment-Friendly Agriculture (IEFA), College of Agricultural and Life Sciences, Chonnam National University, Gwangju 500-757, Korea.
| | - Ro-Dong Park
- Division of Applied Bioscience & Biotechnology, Institute of Environment-Friendly Agriculture (IEFA), College of Agricultural and Life Sciences, Chonnam National University, Gwangju 500-757, Korea.
| |
Collapse
|
40
|
Abstract
Chitin and chitosan oligosaccharides (COS) have been traditionally obtained by chemical digestion with strong acids. In light of the difficulties associated with these traditional production processes, environmentally compatible and reproducible production alternatives are desirable. Unlike chemical digestion, biodegradation of chitin and chitosan by enzymes or microorganisms does not require the use of toxic chemicals or excessive amounts of wastewater. Enzyme preparations with chitinase, chitosanase, and lysozymeare primarily used to hydrolyze chitin and chitosan. Commercial preparations of cellulase, protease, lipase, and pepsin provide another opportunity for oligosaccharide production. In addition to their hydrolytic activities, the transglycosylation activity of chitinolytic enzymes might be exploited for the synthesis of desired chitin oligomers and their derivatives. Chitin deacetylase is also potentially useful for the preparation of oligosaccharides. Recently, direct production of oligosaccharides from chitin and crab shells by a combination of mechanochemical grinding and enzymatic hydrolysis has been reported. Together with these, other emerging technologies such as direct degradation of chitin from crustacean shells and microbial cell walls, enzymatic synthesis of COS from small building blocks, and protein engineering technology for chitin-related enzymes have been discussed as the most significant challenge for industrial application.
Collapse
Affiliation(s)
- Woo-Jin Jung
- Division of Applied Bioscience & Biotechnology, Institute of Environment-Friendly Agriculture (IEFA), College of Agricultural and Life Sciences, Chonnam National University, Gwangju 500-757, Korea.
| | - Ro-Dong Park
- Division of Applied Bioscience & Biotechnology, Institute of Environment-Friendly Agriculture (IEFA), College of Agricultural and Life Sciences, Chonnam National University, Gwangju 500-757, Korea.
| |
Collapse
|
41
|
|
42
|
Das SN, Madhuprakash J, Sarma PVSRN, Purushotham P, Suma K, Manjeet K, Rambabu S, Gueddari NEE, Moerschbacher BM, Podile AR. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit Rev Biotechnol 2013; 35:29-43. [PMID: 24020506 DOI: 10.3109/07388551.2013.798255] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.
Collapse
Affiliation(s)
- Subha Narayan Das
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad , Hyderabad , India and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide. Int J Biol Macromol 2013; 59:242-5. [DOI: 10.1016/j.ijbiomac.2013.04.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 11/21/2022]
|
44
|
Dhillon GS, Kaur S, Brar SK, Verma M. Green synthesis approach: extraction of chitosan from fungus mycelia. Crit Rev Biotechnol 2012; 33:379-403. [PMID: 23078670 DOI: 10.3109/07388551.2012.717217] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chitosan, copolymer of glucosamine and N-acetyl glucosamine is mainly derived from chitin, which is present in cell walls of crustaceans and some other microorganisms, such as fungi. Chitosan is emerging as an important biopolymer having a broad range of applications in different fields. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal sources. The methods used for extraction of chitosan are laden with many disadvantages. Alternative options of producing chitosan from fungal biomass exist, in fact with superior physico-chemical properties. Researchers around the globe are attempting to commercialize chitosan production and extraction from fungal sources. Chitosan extracted from fungal sources has the potential to completely replace crustacean-derived chitosan. In this context, the present review discusses the potential of fungal biomass resulting from various biotechnological industries or grown on negative/low cost agricultural and industrial wastes and their by-products as an inexpensive source of chitosan. Biologically derived fungal chitosan offers promising advantages over the chitosan obtained from crustacean shells with respect to different physico-chemical attributes. The different aspects of fungal chitosan extraction methods and various parameters having an effect on the yield of chitosan are discussed in detail. This review also deals with essential attributes of chitosan for high value-added applications in different fields.
Collapse
|
45
|
Wu S. Preparation of chitooligosaccharides from Clanis bilineata larvae skin and their antibacterial activity. Int J Biol Macromol 2012; 51:1147-50. [PMID: 22981818 DOI: 10.1016/j.ijbiomac.2012.08.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 08/29/2012] [Accepted: 08/29/2012] [Indexed: 11/27/2022]
Abstract
Clanis bilineata larvae are widely consumed in China. In this study, chitooligosaccharides were prepared from C. bilineata larvae skin by demineralisation, deproteination, washing, drying, deacetylation, hydrolysis using commercial α-amylase, filtration, setting the preparation at approximately 15% (w/v), precipitation with 6 volumes of ethanol, and drying at 60°C for 2 h. The optimal hydrolysis conditions were determined as follows: pH 5.5; temperature, 55°C; enzyme amount, 40 mg/(g chitosan); reaction time, 4 h. The Fourier transform infrared spectra revealed that chitooligosaccharides with a degree of polymerisation in the range of 2-8 were the main component of the resulting product, with the chitooligosaccharide content and yield being 95.8% and 96.2% (w/w), respectively. The resulting product showed high antibacterial activity compared with the original chitosan.
Collapse
Affiliation(s)
- Shengjun Wu
- School of Marine Science and Technology, Huaihai Institute of Technology, 59 Cangwu Road, Xinpu 222005, China.
| |
Collapse
|
46
|
Sinha S, Dhakate SR, Kumar P, Mathur RB, Tripathi P, Chand S. Electrospun polyacrylonitrile nanofibrous membranes for chitosanase immobilization and its application in selective production of chitooligosaccharides. BIORESOURCE TECHNOLOGY 2012; 115:152-157. [PMID: 22189076 DOI: 10.1016/j.biortech.2011.11.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/19/2011] [Accepted: 11/26/2011] [Indexed: 05/31/2023]
Abstract
Polyacrylonitrile nanofibrous membranes (PANNFM) were prepared by electrospinning from 10 wt.% of PAN solution and its surface was modified by amidination reaction. A new chitosan degrading enzyme from Aspergillus sp. was covalently immobilized on PANNFM. Immobilization efficiency of 80% was achieved by activating PANNFM surface for 30 min followed by 2 h treatment with enzyme solution. The optimum temperature and pH for immobilized enzyme were 50°C and 5.8, respectively. The immobilized chitosanase retained >70% activity after ten repeated batch reaction and could be stored up to 60 days at 4°C with minor loss in activity. Chitosan hydrolysis using different substrates were studied using immobilized chitosanase in batch conditions. Continuous selective production of chitooligosaccharides (dimer to hexamer) by changing the temperature was achieved by PANNFM-chitosanase.
Collapse
Affiliation(s)
- Sujata Sinha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, India.
| | | | | | | | | | | |
Collapse
|
47
|
Silva VD, Stambuk BU, Nascimento MDG. Asymmetric reduction of (4R)-(?)-carvone catalyzed by Baker's yeast in aqueous mono- and biphasic systems. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Liang Z, Gong T, Sun X, Tang JZ, Zhang Z. Chitosan oligomers as drug carriers for renal delivery of zidovudine. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.10.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
49
|
Chang YM, Chang CT, Huang TC, Chen SM, Lee JA, Chung YC. Effects of low molecular weight chitosans on aristolochic acid-induced renal lesions in mice. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.06.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Wu S. Preparation of water soluble chitosan by hydrolysis with commercial α-amylase containing chitosanase activity. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.03.111] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|