1
|
Cera S, Tuccillo F, Knaapila A, Sim F, Manngård J, Niklander K, Verni M, Rizzello CG, Katina K, Coda R. Role of tailored sourdough fermentation in the flavor of wholegrain-oat bread. Curr Res Food Sci 2024; 8:100697. [PMID: 38487179 PMCID: PMC10937307 DOI: 10.1016/j.crfs.2024.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Sourdough technology has been known for its role in the improvement of texture, flavor, and quality of mainly wheat and rye-based breads for decades. However, little is reported about its use in the improvement of whole-grain oat bread, especially concerning flavor formation, which is one major consumer drivers. This study investigated the effects of sourdough obtained by different lactic acid bacteria and yeast starters consortia on the texture and flavor of 100% oat bread. Four different consortia were selected to obtain four oat sourdoughs, which were analyzed to assess the main features due to the different starter fermentation metabolism. Sourdoughs were added to breads as 30% dough weight. Bread quality was technologically monitored via hardness and volume measurements. Sourdough breads were softer and had higher specific volume. The sensory profile of sourdoughs and breads was assessed by a trained panel in sensory laboratory conditions, and the volatile profile was analyzed by HS-SPME-GC-MS. Sourdoughs were rated with higher intensities than untreated control for most of attributes, especially concerning sour aroma and flavor attributes. Sourdough breads were rated with higher intensities than control bread for sour vinegar flavor and total odor intensity, in addition they had richer volatile profile. Our results confirmed that sourdough addition can lead to an enhanced flavor, moreover, it demonstrated that the use of different consortia of lactic acid bacteria and yeast strains leads to the improvement of texture and altered sensory profile of whole-oat bread.
Collapse
Affiliation(s)
- Silvia Cera
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Fabio Tuccillo
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Antti Knaapila
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Finlay Sim
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Jessica Manngård
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Katariina Niklander
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Michela Verni
- Department of Environmental Biology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Kati Katina
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Rossana Coda
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Sustainability Science, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Badjona A, Bradshaw R, Millman C, Howarth M, Dubey B. Faba Bean Flavor Effects from Processing to Consumer Acceptability. Foods 2023; 12:foods12112237. [PMID: 37297480 DOI: 10.3390/foods12112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Faba beans as an alternative source of protein have received significant attention from consumers and the food industry. Flavor represents a major driving force that hinders the utilization faba beans in various products due to off-flavor. Off-flavors are produced from degradation of amino acids and unsaturated fatty acids during seed development and post-harvest processing stages (storage, dehulling, thermal treatment, and protein extraction). In this review, we discuss the current state of knowledge on the aroma of faba bean ingredients and various aspects, such as cultivar, processing, and product formulation that influence flavour. Germination, fermentation, and pH modulation were identified as promising methods to improve overall flavor and bitter compounds. The probable pathway in controlling off-flavor evolution during processing has also been discussed to provide efficient strategies to limit their impact and to encourage the use of faba bean ingredients in healthy food design.
Collapse
Affiliation(s)
- Abraham Badjona
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Robert Bradshaw
- Bimolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Caroline Millman
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Martin Howarth
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Bipro Dubey
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
3
|
Tuccillo F, Wang Y, Edelmann M, Lampi AM, Coda R, Katina K. Fermentation Conditions Affect the Synthesis of Volatile Compounds, Dextran, and Organic Acids by Weissella confusa A16 in Faba Bean Protein Concentrate. Foods 2022; 11:3579. [PMID: 36429171 PMCID: PMC9689515 DOI: 10.3390/foods11223579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Fermentation with Weissella confusa A16 could improve the flavor of various plant-based sources. However, less is known about the influence of fermentation conditions on the profile of volatile compounds, dextran synthesis and acidity. The present work investigates the synthesis of potential flavor-active volatile compounds, dextran, acetic acid, and lactic acid, as well as the changes in viscosity, pH, and total titratable acidity, during fermentation of faba bean protein concentrate with W. confusa A16. A Response Surface Methodology was applied to study the effect of time, temperature, dough yield, and inoculum ratio on the aforementioned responses. Twenty-nine fermentations were carried out using a Central Composite Face design. A total of 39 volatile organic compounds were identified: 2 organic acids, 7 alcohols, 8 aldehydes, 2 alkanes, 12 esters, 3 ketones, 2 aromatic compounds, and 3 terpenes. Long fermentation time and high temperature caused the formation of ethanol and ethyl acetate and the reduction of hexanal, among other compounds linked to the beany flavor. Levels of dextran, acetic acid, and lactic acid increased with increasing temperature, time, and dough yield. Optimal points set for increased dextran and reduced acidity were found at low temperatures and high dough yield. Such conditions would result in hexanal, ethyl acetate and ethanol having a relative peak area of 35.9%, 7.4%, and 4.9%, respectively.
Collapse
Affiliation(s)
- Fabio Tuccillo
- Department of Food and Nutrition Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Yaqin Wang
- Department of Food and Nutrition Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Anna-Maija Lampi
- Department of Food and Nutrition Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Rossana Coda
- Department of Food and Nutrition Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Faculty of Agriculture and Forestry, University of Helsinki, FI-00100 Helsinki, Finland
| | - Kati Katina
- Department of Food and Nutrition Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
4
|
Leonard W, Zhang P, Ying D, Fang Z. Surmounting the off-flavor challenge in plant-based foods. Crit Rev Food Sci Nutr 2022; 63:10585-10606. [PMID: 35603719 DOI: 10.1080/10408398.2022.2078275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plant-based food products have been receiving an astronomical amount of attention recently, and their demand will most likely soar in the future. However, their unpleasant, intrinsic flavor and odor are the major obstacles limiting consumer's acceptance. These off-flavors are often described as "green," "grassy," "beany," "fatty" and "bitter." This review highlights the presence and formation of common off-flavor volatiles (aldehydes, alcohols, ketones, pyrazines, furans) and nonvolatiles (phenolics, saponins, peptides, alkaloids) from a variety of plant-based foods, including legumes (e.g. lentil, soy, pea), fruits (e.g. apple, grape, watermelon) and vegetables (e.g. carrot, potato, radish). These compounds are formed through various pathways, including lipid oxidation, ethanol fermentation and Maillard reaction (and Strecker degradation). The effect of off-flavor compounds as received by the human taste receptors, along with its possible link of bioactivity (e.g. anti-inflammatory effect), are briefly discussed on a molecular level. Generation of off-flavor compounds in plants is markedly affected by the species, cultivar, geographical location, climate conditions, farming and harvest practices. The effects of genome editing (i.e. CRISPR-Cas9), various processing technologies, such as antioxidant supplementation, enzyme treatment, extrusion, fermentation, pressure application, and different storage and packaging conditions, have been increasingly studied in recent years to mitigate the formation of off-flavors in plant foods. The information presented in this review could be useful for agricultural practitioners, fruits and vegetables industry, and meat and dairy analogue manufacturers to improve the flavor properties of plant-based foods.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Danyang Ying
- CSIRO Agriculture & Food, Werribee, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Abeyrathne EDNS, Nam K, Ahn DU. Analytical Methods for Lipid Oxidation and Antioxidant Capacity in Food Systems. Antioxidants (Basel) 2021; 10:antiox10101587. [PMID: 34679722 PMCID: PMC8533275 DOI: 10.3390/antiox10101587] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/06/2023] Open
Abstract
Lipid oxidation is the most crucial quality parameter in foods. Many methods were developed to determine the level of oxidation and antioxidant activity. This review compares the methods used to determine lipid oxidation and antioxidant capacity in foods. Lipid oxidation methods developed are based on the direct or indirect measurement of produced primary or secondary oxidation substances. Peroxide values and conjugated diene methods determine the primary oxidative products of lipid oxidation and are commonly used for plant oils and high-fat products. 2-Thiobarbituric acid-reactive substances and chromatographic methods are used to determine the secondary products of oxidation and are suitable for meat and meat-based products. The fluorometric and sensory analyses are indirect methods. The antioxidant capacity of additives is determined indirectly using the lipid oxidation methods mentioned above or directly based on the free-radical scavenging activity of the antioxidant compounds. Each lipid oxidation and antioxidant capacity methods use different approaches, and one method cannot be used for all foods. Therefore, selecting proper methods for specific foods is essential for accurately evaluating lipid oxidation or antioxidant capacity.
Collapse
Affiliation(s)
- Edirisingha Dewage Nalaka Sandun Abeyrathne
- Department of Animal Science, Uva Wellassa University, Badulla 90000, Sri Lanka;
- Department of Animal Science & Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Kichang Nam
- Department of Animal Science & Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|
6
|
Bento-Silva A, Duarte N, Belo M, Mecha E, Carbas B, Brites C, Vaz Patto MC, Bronze MR. Shedding Light on the Volatile Composition of Broa, a Traditional Portuguese Maize Bread. Biomolecules 2021; 11:biom11101396. [PMID: 34680029 PMCID: PMC8533067 DOI: 10.3390/biom11101396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
In Portugal, maize has been used for centuries to produce an ethnic bread called broa, employing traditional maize varieties, which are preferred by the consumers in detriment of commercial hybrids. In order to evaluate the maize volatiles that can influence consumers’ acceptance of broas, twelve broas were prepared from twelve maize varieties (eleven traditional and one commercial hybrid), following a traditional recipe. All maize flours and broas were analyzed by HS-SPME-GC-MS (headspace solid-phase microextraction) and broas were appraised by a consumer sensory panel. In addition, the major soluble phenolics and total carotenoids contents were quantitated in order to evaluate their influence as precursors or inhibitors of volatile compounds. Results showed that the major volatiles detected in maize flours and broas were aldehydes and alcohols, derived from lipid oxidation, and some ketones derived from carotenoids’ oxidation. Both lipid and carotenoids’ oxidation reactions appeared to be inhibited by soluble phenolics. In contrast, phenolic compounds appeared to increase browning reactions during bread making and, consequently, the production of pyranones. Traditional samples, especially those with higher contents in pyranones and lower contents in aldehydes, were preferred by the consumer sensory panel. These findings suggest that, without awareness, consumers prefer broas prepared from traditional maize flours with higher contents in health-promoting phenolic compounds, reinforcing the importance of preserving these valuable genetic resources.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- FCT NOVA, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
- DCFM, Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-003 Lisboa, Portugal
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Noélia Duarte
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Maria Belo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
| | - Elsa Mecha
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
| | - Bruna Carbas
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (C.B.)
| | - Carla Brites
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (C.B.)
| | - Maria Carlota Vaz Patto
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
| | - Maria Rosário Bronze
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
7
|
Bekele EK, Nosworthy MG, Tyler RT, Henry CJ. Antioxidant capacity and total phenolics content of direct‐expanded chickpea–sorghum snacks. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Esayas K. Bekele
- School of Nutrition, Food Science and Technology Hawassa University Hawassa Ethiopia
- College of Pharmacy and Nutrition University of Saskatchewan Saskatoon SK Canada
| | - Matthew G. Nosworthy
- College of Pharmacy and Nutrition University of Saskatchewan Saskatoon SK Canada
| | - Robert T. Tyler
- College of Agriculture and Bioresources University of Saskatchewan Saskatoon SK Canada
| | - Carol J. Henry
- College of Pharmacy and Nutrition University of Saskatchewan Saskatoon SK Canada
| |
Collapse
|
8
|
Lampi AM, Yang Z, Mustonen O, Piironen V. Potential of faba bean lipase and lipoxygenase to promote formation of volatile lipid oxidation products in food models. Food Chem 2019; 311:125982. [PMID: 31862568 DOI: 10.1016/j.foodchem.2019.125982] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/11/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022]
Abstract
Faba bean can respond to the need for plant-based proteins for human consumption. The aim of this work was to study the role of lipid-modifying enzymes in faba bean in causing off-flavour compounds during processing. The faba bean exhibited high lipase and lipoxygenase (LOX) activities, with pH optima being 8.0 and 6.0, respectively. Faba bean LOX preferred free fatty acids (FFAs) over triacylglycerols as substrates, and together with other LOX pathway enzymes, it formed specific volatile products, as measured using headspace solid-phase microextraction-gas chromatography. During the preparation of the food models (i.e. the extracts and emulsions), enzymatic lipid oxidation occurred. The inclusion in the emulsions of rapeseed oil, especially of rapeseed oil FFAs, remarkably increased the amounts of volatile products. The largest quantities of products were formed in food models at pH 6.4, which is close to the pH optimum of LOX. Further studies on lipase in food models are needed.
Collapse
Affiliation(s)
- Anna-Maija Lampi
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland
| | - Zhen Yang
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Otto Mustonen
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland
| |
Collapse
|
9
|
Ribeiro JC, Lima RC, Maia MR, Almeida AA, Fonseca AJ, Cabrita ARJ, Cunha LM. Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Determination of Antioxidant Capacity, Phenolics and Volatile Maillard Reaction Products in Rye-Buckwheat Biscuits Supplemented with 3β-d-Rutinoside. Molecules 2019; 24:molecules24050982. [PMID: 30862064 PMCID: PMC6429445 DOI: 10.3390/molecules24050982] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 11/16/2022] Open
Abstract
The Maillard reaction (MR) is responsible for the development of color, taste and aroma in bakery products though the formation of numerous aroma compounds such as pyrazines, pyrroles and aldehydes, nonvolatile taste active compounds and melanoidins. In this article, we investigate the effect of quercetin 3β-D-rutinoside (rutin) supplementation, at the level of 5⁻50 mg per 100 g, of rye-buckwheat biscuits on the formation of phenolics and volatile Maillard reaction products (MRPs) such as pyrazines, furfuryl alcohol and furfural, determined by headspace solid phase microextraction followed by gas chromatography⁻mass spectrometry (HS-SPME/GC⁻MS), in addition to the effect on the antioxidant capacity. The study confirmed that rutin was stable under baking conditions as showed by its content in rye-buckwheat biscuits. Supplementation of biscuits with increasing amounts of rutin resulted in the progressive increase of total phenolics and antioxidant capacity measured by DPPH and OxHLIA assays, but it had no effect on their sensory quality. From the eighteen compounds identified by HS-SPME/GC⁻MS in the volatile fraction of biscuits were quantitated as a compounds-of-interest: methylpyrazine, ethylpyrazine, 2,3-; 2,5- and 2,6-dimethylpyrazines, as well as furfural, furfuryl alcohol and hexanal. The rutin supplementation of biscuits might be one of the factors to influence the formation of both desirable volatile compounds and undesirable toxic compounds. In conclusion, this study indicates for the significant role of polyphenols on the formation of volatile compounds in biscuits with possible future application in the development of healthy bakery products with high antioxidant capacity.
Collapse
|
11
|
Paradiso VM, Pasqualone A, Summo C, Caponio F. Everything Should Be as Simple as It Can Be. But Not Simpler. Does Food Lipid Oxidation Require an Omics Approach? EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Vito M. Paradiso
- Department of Soil, Plant and Food SciencesUniversity of BariVia Amendola 165/aI‐70126BariItaly
| | - Antonella Pasqualone
- Department of Soil, Plant and Food SciencesUniversity of BariVia Amendola 165/aI‐70126BariItaly
| | - Carmine Summo
- Department of Soil, Plant and Food SciencesUniversity of BariVia Amendola 165/aI‐70126BariItaly
| | - Francesco Caponio
- Department of Soil, Plant and Food SciencesUniversity of BariVia Amendola 165/aI‐70126BariItaly
| |
Collapse
|
12
|
Difonzo G, Pasqualone A, Silletti R, Cosmai L, Summo C, Paradiso VM, Caponio F. Use of olive leaf extract to reduce lipid oxidation of baked snacks. Food Res Int 2018; 108:48-56. [PMID: 29735082 DOI: 10.1016/j.foodres.2018.03.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 12/18/2022]
Abstract
Olive leaves are a waste of the olive oil processing industry and represent a good source of phenolic compounds. The aim of this work was to assess the influence of olive leaf extract (OLE) on lipid oxidation of baked snacks, like breadsticks, made with wheat flour, extra virgin olive oil (EVO), white wine, and salt. Two EVOs having different peroxide value and antioxidant profile (total phenol content, tocopherols, carotenoids, and antioxidant activity) were considered. The snacks were subjected to oven test or stored in the usual conditions of retailer shelves. The obtained data highlighted that EVO plays a key role both for the quality and for the shelf-life of baked snacks and the use of OLE is recommended especially when baked snacks are produced with low quality EVO which therefore does not have a good content of natural antioxidants. The OLE addition significantly reduced the forced oxidative degradation during oven test, as evidenced by a decrease of 27% in oxidation-related volatile compounds and of 42% in triacylglycerol oligopolymers compared to control snacks (CTR) without OLE. Moreover, OLE effectively acted also in normal storage conditions, improving sensory data, induction times, antioxidant activity, and volatile compounds compared to CTR (i.e. hexanal 165.49 vs 38.31 μg g-1 in OLE-added). The amount of oxidation-related volatile compounds showed an opposite trend with the quality level of oil used.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola, 165/A, Bari I-70126, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola, 165/A, Bari I-70126, Italy
| | - Roccangelo Silletti
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola, 165/A, Bari I-70126, Italy
| | - Lucrezia Cosmai
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola, 165/A, Bari I-70126, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola, 165/A, Bari I-70126, Italy
| | - Vito M Paradiso
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola, 165/A, Bari I-70126, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola, 165/A, Bari I-70126, Italy.
| |
Collapse
|
13
|
Liu J, Li S, Zhang A, Zhao W, Liu Y, Zhang Y. Volatile Profiles of 13 Foxtail Millet Commercial Cultivars (Setaria italicaBeauv.) from China. Cereal Chem 2017. [DOI: 10.1094/cchem-01-16-0007-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jingke Liu
- Institute of Millet Crops of Hebei Academy of Agriculture and Forestry, Minor Cereal Crops Research Laboratory of Hebei Province, No.162 Hengshan St., Shijiazhuang, Hebei, 050035, China
| | - Shaohui Li
- Institute of Millet Crops of Hebei Academy of Agriculture and Forestry, Minor Cereal Crops Research Laboratory of Hebei Province, No.162 Hengshan St., Shijiazhuang, Hebei, 050035, China
| | - Aixia Zhang
- Institute of Millet Crops of Hebei Academy of Agriculture and Forestry, Minor Cereal Crops Research Laboratory of Hebei Province, No.162 Hengshan St., Shijiazhuang, Hebei, 050035, China
| | - Wei Zhao
- Institute of Millet Crops of Hebei Academy of Agriculture and Forestry, Minor Cereal Crops Research Laboratory of Hebei Province, No.162 Hengshan St., Shijiazhuang, Hebei, 050035, China
| | - Yingying Liu
- Institute of Millet Crops of Hebei Academy of Agriculture and Forestry, Minor Cereal Crops Research Laboratory of Hebei Province, No.162 Hengshan St., Shijiazhuang, Hebei, 050035, China
| | - Yuzong Zhang
- Institute of Millet Crops of Hebei Academy of Agriculture and Forestry, Minor Cereal Crops Research Laboratory of Hebei Province, No.162 Hengshan St., Shijiazhuang, Hebei, 050035, China
| |
Collapse
|
14
|
Cetin Babaoglu H, Bayrak A, Ozdemir N, Ozgun N. Encapsulation of clove essential oil in hydroxypropyl beta-cyclodextrin for characterization, controlled release, and antioxidant activity. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13202] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Ali Bayrak
- Department of Food Engineering; Ankara University; Ankara Turkey
| | - Necla Ozdemir
- Department of Food Engineering; Ankara University; Ankara Turkey
| | - Nuriye Ozgun
- Department of Laboratory Pesticide, İstanbul Food Control Laboratory Directorate; İstanbul Turkey
| |
Collapse
|
15
|
Paradiso VM, Di Mattia C, Giarnetti M, Chiarini M, Andrich L, Caponio F. Antioxidant Behavior of Olive Phenolics in Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5877-5886. [PMID: 27380032 DOI: 10.1021/acs.jafc.6b01963] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effect of the surrounding molecular environment (β-lactoglobulin as an emulsion stabilizer and maltodextrin as a viscosity modifier) on the antioxidant activity of three olive oil phenolic compounds (PCs) in olive oil-in-water emulsions was investigated. Oxidation potential, phenolic partitioning, and radical quenching capacity were assessed in solution and in emulsion for oleuropein, hydroxytyrosol, and tyrosol; the influence of β-lactoglobulin and maltodextrin concentration was also evaluated. Finally, the observed properties were related to the oxidative stability of the emulsions containing the PCs to explain their behavior. The order hydroxytyrosol > oleuropein > tyrosol was observed among the antioxidants for both oxidation potential and radical quenching activity. Radical quenching capacity in emulsion and anodic potential were complementary indices of antioxidant effectiveness. As the intrinsic susceptibility of an antioxidant to oxidation expressed by its anodic potential decreased, the environmental conditions (molecular interactions and changes in continuous phase viscosity) played a major role in the antioxidant effectiveness in preventing hydroperoxide decomposition.
Collapse
Affiliation(s)
- Vito Michele Paradiso
- Department of Soil, Plant and Food Sciences, University of Bari , Via Amendola 165/a, I-70126 Bari, Italy
| | - Carla Di Mattia
- Faculty of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo , Via Balzarini 1, Campus Coste S. Agostino, 64100 Teramo, Italy
| | - Mariagrazia Giarnetti
- Department of Soil, Plant and Food Sciences, University of Bari , Via Amendola 165/a, I-70126 Bari, Italy
| | - Marco Chiarini
- Faculty of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo , Via Balzarini 1, Campus Coste S. Agostino, 64100 Teramo, Italy
| | - Lucia Andrich
- Faculty of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo , Via Balzarini 1, Campus Coste S. Agostino, 64100 Teramo, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari , Via Amendola 165/a, I-70126 Bari, Italy
| |
Collapse
|
16
|
Effect of Olive Oil Phenolic Compounds and Maltodextrins on the Physical Properties and Oxidative Stability of Olive Oil O/W Emulsions. FOOD BIOPHYS 2014. [DOI: 10.1007/s11483-014-9373-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Damerau A, Kamlang-ek P, Moisio T, Lampi AM, Piironen V. Effect of SPME extraction conditions and humidity on the release of volatile lipid oxidation products from spray-dried emulsions. Food Chem 2014; 157:1-9. [DOI: 10.1016/j.foodchem.2014.02.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
|
18
|
Ponomarenko J, Trouillas P, Martin N, Dizhbite T, Krasilnikova J, Telysheva G. Elucidation of antioxidant properties of wood bark derived saturated diarylheptanoids: a comprehensive (DFT-supported) understanding. PHYTOCHEMISTRY 2014; 103:178-187. [PMID: 24703933 DOI: 10.1016/j.phytochem.2014.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
A series of diarylheptanoids, namely 1,7-bis-(3,4-dihydroxyphenyl)-heptan-3-one-5-O-D-xylopyranoside (oregonin), 1,7-bis-(3,4-dihydroxyphenyl)-3-hydroxyheptane-5-O-β-D-xylopyranoside and 1,7-bis-(4-hydroxyphenyl)-heptane-3-one-5-O-β-D-glucopyranoside (platyphylloside), were isolated from the bark of alder family trees, a species widely spread over in Europe. As antioxidants, these natural polyphenols have a promising potential in various fields of application, but their redox reactivity is insufficiently characterized. In this work, their antioxidant activity is described using assays based on DPPH and ABTS(+) radical scavenging, oxygen anion radicals (O2(-)) quenching. The standardized ORAC assay was also achieved, which measures the capacity to protect fluorescent molecules against oxidative degradation. The measured antioxidant activity was higher than that of the well-known antioxidant and biologically active diarylheptanoid curcumin. Molecular modeling was used to rationalize the differences in activity and the mechanisms of action. Thermodynamic descriptors mainly O-H bond dissociation enthalpies (BDEs) establish a clear structure-activity relationship.
Collapse
Affiliation(s)
- Jevgenija Ponomarenko
- University of Latvia, Faculty of Chemistry, K. Valdemara Str. 48, LV-1013, Riga, Latvia; Latvian State Institute of Wood Chemistry, Dzerbenes Str. 27, LV-1006, Riga, Latvia.
| | - Patrick Trouillas
- Inserm UMR-S850, Faculté de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland, Limoges, France; Service de Chimie des Matériaux Nouveaux, Université de Mons - UMONS, Place du Parc 20, 7000 Mons, Belgium; Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 77146 Olomouc, Czech Republic
| | - Nicolas Martin
- Inserm UMR-S850, Faculté de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland, Limoges, France
| | - Tatyana Dizhbite
- Latvian State Institute of Wood Chemistry, Dzerbenes Str. 27, LV-1006, Riga, Latvia
| | | | - Galina Telysheva
- Latvian State Institute of Wood Chemistry, Dzerbenes Str. 27, LV-1006, Riga, Latvia
| |
Collapse
|
19
|
Caponio F, Giarnetti M, Summo C, Paradiso VM, Cosmai L, Gomes T. A comparative study on oxidative and hydrolytic stability of monovarietal extra virgin olive oil in bakery products. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Paradiso VM, Caponio F, Summo C, Gomes T. Influence of some packaging materials and of natural tocopherols on the sensory properties of breakfast cereals. FOOD SCI TECHNOL INT 2013; 20:161-70. [PMID: 23744114 DOI: 10.1177/1082013213476074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The combined effect of natural antioxidants and packaging materials on the quality decay of breakfast cereals during storage was evaluated. Corn flakes were produced on industrial scale, using different packages and adding natural tocopherols to the ingredients, and stored for 1 year. The samples were then submitted to sensory analysis and HS-solid phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) analysis. The packaging had a significant influence on the sensory profile of the aged product: metallized polypropylene gave the highest levels of oxidation compounds and sensory defects. The sensory profile was improved using polypropylene and especially high-density polyethylene. Natural tocopherols reduced the sensory decay of the flakes and the oxidative evolution of the volatile profile. They gave the most remarkable improvement in polypropylene (either metallized or not) packs. Polypropylene showed a barrier effect on the scalping of volatiles outside of the pack. This led to higher levels of oxidation volatiles and faster rates of the further oxidative processes involving the volatiles.
Collapse
Affiliation(s)
- Vito M Paradiso
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari "Aldo Moro", Bari, Italy
| | | | | | | |
Collapse
|
21
|
Kim H, Cadwallader KR, Kido H, Watanabe Y. Effect of addition of commercial rosemary extracts on potent odorants in cooked beef. Meat Sci 2013; 94:170-6. [DOI: 10.1016/j.meatsci.2013.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
22
|
Pasqualone A, Paradiso VM, Summo C, Caponio F, Gomes T. Influence of Drying Conditions on Volatile Compounds of Pasta. FOOD BIOPROCESS TECH 2013. [DOI: 10.1007/s11947-013-1080-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Giarnetti M, Caponio F, Paradiso VM, Summo C, Gomes T. Effect of the Type of Oil on the Evolution of Volatile Compounds of Taralli During Storage. J Food Sci 2012; 77:C326-31. [DOI: 10.1111/j.1750-3841.2011.02613.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Jensen S, Oestdal H, Clausen MR, Andersen ML, Skibsted LH. Oxidative stability of whole wheat bread during storage. Lebensm Wiss Technol 2011. [DOI: 10.1016/j.lwt.2010.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Lou Z, Wang H, Li J, Chen S, Zhu S, Ma C, Wang Z. Antioxidant activity and chemical composition of the fractions from burdock leaves. J Food Sci 2010; 75:C413-9. [PMID: 20629861 DOI: 10.1111/j.1750-3841.2010.01616.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The antioxidant activities of each burdock leaves fraction were first investigated alone and in combination with tertiary butylhydroquinone (TBHQ). The burdock leaves extract was fractioned with petroleum ether, ethyl acetate, n-butanol, and water, named as PF, EF, BF, and WF, respectively. The EF exhibited the highest antioxidant activity. Although TBHQ exhibited higher lipid peroxidation inhibitory activity than EF, the reducing power, superoxide anion scavenging capability, DPPH radical and hydroxyl radicals scavenging ability of EF were higher than those of synthetic antioxidant (TBHQ). Moreover, a synergistic antioxidant effect between EF and TBHQ was first demonstrated by isobolographic analysis, indicating that EF dramatically enhances the antioxidant efficiency of TBHQ. For all the fractions, the antioxidant capacity had a significant correlation with total phenolic content. The phenolic compounds of the fractions were then identified, namely chlorogenic acid, o-hydrobenzoic acid, caffeic acid, p-coumaric acid, and rutin. The results indicate that the EF could be used as sources of nature antioxidant in food industry, and allows a decrease of about 4 folds in the amounts of the synthetic compounds used.
Collapse
Affiliation(s)
- Zaixiang Lou
- State Key Lab. of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., Wuxi 214122, P.R. China
| | | | | | | | | | | | | |
Collapse
|
26
|
Dong XP, Zhu BW, Zhao HX, Zhou DY, Wu HT, Yang JF, Li DM, Murata Y. Preparation andin vitroantioxidant activity of enzymatic hydrolysates from oyster (Crassostrea talienwhannensis) meat. Int J Food Sci Technol 2010. [DOI: 10.1111/j.1365-2621.2010.02223.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|