1
|
Kham NNN, Phovisay S, Unban K, Kanpiengjai A, Saenjum C, Lumyong S, Shetty K, Khanongnuch C. Valorization of Cashew Apple Waste into a Low-Alcohol, Healthy Drink Using a Co-Culture of Cyberlindnera rhodanensis DK and Lactobacillus pentosus A14-6. Foods 2024; 13:1469. [PMID: 38790769 PMCID: PMC11120566 DOI: 10.3390/foods13101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the potential of microbial fermentative transforming processes in valorizing the cashew apple by-product into a low-alcohol, health-benefiting beverage. We particularly investigated the use of a non-Saccharomyces yeast, Cyberlindnera rhodanensis DK, as the main targeted microbe. At 30 °C without agitation, C. rhodanensis DK caused changes in key parameters during the fermentation of cashew apple juice (CAJ) in terms of varied pH values and initial sugar concentrations. This result indicated that pure CAJ, with pH adjusted to 6 and with the original 6.85% (w/v) total sugar content, was the most feasible condition, as glucose and fructose were mostly consumed at 12 days of fermentation. A co-culture approach with either Saccharomyces cerevisiae TISTR 5088 or Lactobacillus pentosus A14-6 was investigated to improve both physicochemical and fermentation characteristics. Co-fermentation with S. cerevisiae TISTR 5088 resulted in significantly increased ethanol accumulation to 33.61 ± 0.11 g/L, but diminished bioactive compounds, antioxidant activity, and antidiabetic potential. In contrast, co-fermentation with L. pentosus A14-6 demonstrated excellent outcomes, as it significantly increased sugar consumption and finally remained at only 4.95 g/L compared to C. rhodanensis DK alone, produced lower levels of ethanol at only 19.47 ± 0.06 g/L, and higher total titratable acid (TTA), resulting in a final pH of 3.6. In addition, co-fermentation with this lactic acid bacterium significantly enhanced bioactive compounds and antioxidant activity and also retained potential antidiabetic properties. These findings highlight the feasibility of using tailored microbial fermentation strategies to produce low-alcohol beverages with enhanced health-promoting properties from CAJ; however, product-development processes following health food regulations and sensory evaluation are necessary.
Collapse
Affiliation(s)
- Nang Nwet Noon Kham
- Multidisciplinary School, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (N.N.N.K.); (S.P.)
| | - Somsay Phovisay
- Multidisciplinary School, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (N.N.N.K.); (S.P.)
| | - Kridsada Unban
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Mae-Hia, Chiang Mai 50100, Thailand
| | - Apinun Kanpiengjai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Huay Kaew Rd., Muang, Chiang Mai 50200, Thailand;
| | - Chalermpong Saenjum
- Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Huay Kaew Rd., Muang, Chiang Mai 50200, Thailand;
| | - Kalidas Shetty
- Global Institute of Food Security and International Agriculture (GIFSIA), Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Chartchai Khanongnuch
- Department of Biology, Faculty of Science, Chiang Mai University, Huay Kaew Rd., Muang, Chiang Mai 50200, Thailand;
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Muang, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Huay Kaew Rd., Muang, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Judžentienė A, Garjonytė R, Būdienė J. Phytochemical Composition and Antioxidant Activity of Various Extracts of Fibre Hemp ( Cannabis sativa L.) Cultivated in Lithuania. Molecules 2023; 28:4928. [PMID: 37446590 DOI: 10.3390/molecules28134928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The phytochemistry of fibre hemp (Cannabis sativa L., cv. Futura 75 and Felina 32) cultivated in Lithuania was investigated. The soil characteristics (conductivity, pH and major elements) of the cultivation field were determined. The chemical composition of hemp extracts and essential oils (EOs) from different plant parts was determined by the HPLC/DAD/TOF and GC/MS techniques. Among the major constituents, β-caryophyllene (≤46.64%) and its oxide (≤14.53%), α-pinene (≤20.25%) or α-humulene (≤11.48) were determined in EOs. Cannabidiol (CBD) was a predominant compound (≤64.56%) among the volatile constituents of the methanolic extracts of hemp leaves and inflorescences. Appreciable quantities of 2-monolinolein (11.31%), methyl eicosatetraenoate (9.70%) and γ-sitosterol (8.99%) were detected in hemp seed extracts. The octadecenyl ester of hexadecenoic acid (≤31.27%), friedelan-3-one (≤21.49%), dihydrobenzofuran (≤17.07%) and γ-sitosterol (14.03%) were major constituents of the methanolic extracts of hemp roots, collected during various growth stages. The CBD quantity was the highest in hemp flower extracts in pentane (32.73%). The amounts of cannabidiolic acid (CBDA) were up to 24.21% in hemp leaf extracts. The total content of tetrahydrocannabinol (THC) isomers was the highest in hemp flower pentane extracts (≤22.43%). The total phenolic content (TPC) varied from 187.9 to 924.7 (average means, mg/L of gallic acid equivalent (GAE)) in aqueous unshelled hemp seed and flower extracts, respectively. The TPC was determined to be up to 321.0 (mg/L GAE) in root extracts. The antioxidant activity (AA) of hemp extracts and Eos was tested by the spectrophotometric DPPH● scavenging activity method. The highest AA was recorded for hemp leaf EOs (from 15.034 to 35.036 mmol/L, TROLOX equivalent). In the case of roots, the highest AA (1.556 mmol/L, TROLOX) was found in the extracts of roots collected at the seed maturation stage. The electrochemical (cyclic and square wave voltammetry) assays correlated with the TPC. The hydrogen-peroxide-scavenging activity of extracts was independent of the TPC.
Collapse
Affiliation(s)
- Asta Judžentienė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Rasa Garjonytė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Jurga Būdienė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Garcia L, Deshaies S, Constantin T, Garcia F, Saucier C. Impact of phenolic composition and antioxidant parameters on the ageing potential of Syrah red wines measured by accelerated ageing tests. Food Chem 2023; 426:136613. [PMID: 37331141 DOI: 10.1016/j.foodchem.2023.136613] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Fourteen Syrah red wines with different initial composition and antioxidant properties (polyphenols, antioxidant capacity, voltammetric behaviour, colour parameters and SO2) were selected. Three different accelerated ageing tests (AATs) were then performed on these wines: thermal test at 60 °C (60 °C-ATT), enzymatic test with laccase (Laccase-ATT) and chemical test with H2O2 (H2O2-ATT). The results showed high correlations between the initial phenolic composition and antioxidant properties of the samples. Partial least squares (PLS) regressions were used in order to establish some models that can predict the AATs test results based on their different initial composition and antioxidant properties. The PLS regression models had overall very good accuracy and involved different explaining variables for each test. The models taking into account all the measured parameters and the phenolic composition alone showed good predictive capacities with correlation coefficients (r2) > 0.89.
Collapse
Affiliation(s)
- Luca Garcia
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Stacy Deshaies
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | - François Garcia
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Cédric Saucier
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
4
|
Beleggia R, Menga V, Fulvio F, Fares C, Trono D. Effect of Genotype, Year, and Their Interaction on the Accumulation of Bioactive Compounds and the Antioxidant Activity in Industrial Hemp ( Cannabis sativa L.) Inflorescences. Int J Mol Sci 2023; 24:ijms24108969. [PMID: 37240314 DOI: 10.3390/ijms24108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The phytochemical content and the antioxidant activity in the inflorescences of six industrial hemp (Cannabis sativa L.) genotypes, four monoecious (Codimono, Carmaleonte, Futura 75, and Santhica 27), and two dioecious (Fibrante and Carmagnola Selezionata), were assessed for three consecutive years from 2018 to 2020. The total phenolic content, total flavonoid content, and antioxidant activity were determined by spectrophotometric measurements, whereas HPLC and GC/MS were used to identify and quantify the phenolic compounds, terpenes, cannabinoids, tocopherols, and phytosterols. All the measured traits were significantly affected by genotype (G), cropping year (Y), and their interaction (G × Y), although the Y effect prevailed as a source of variation, ranging from 50.1% to 88.5% for all the metabolites except cannabinoids, which were equally affected by G, Y, and G × Y interaction (33.9%, 36.5%, and 21.4%, respectively). The dioecious genotypes presented a more constant performance over the three years compared to the monoecious genotypes, with the highest and most stable phytochemical content observed in the inflorescences of Fibrante, which was characterized by the highest levels of cannabidiol, α-humulene and β-caryophyllene, which may confer on the inflorescences of this genotype a great economic value due to the important pharmacological properties of these metabolites. Conversely, the inflorescences of Santhica 27 were characterized by the lowest accumulation of phytochemicals over the cropping years, with the notable exception of cannabigerol, a cannabinoid that exhibits a wide range of biological activities, which was found at its highest level in this genotype. Overall, these findings can be used by breeders in future programs aimed at the selection of new hemp genotypes with improved levels of phytochemicals in their inflorescences, which can provide better health and industrial benefits.
Collapse
Affiliation(s)
- Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Valeria Menga
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Flavia Fulvio
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, Via di Corticella, 133, 40128 Bologna, Italy
| | - Clara Fares
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Daniela Trono
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| |
Collapse
|
5
|
Tang J, Zhu X, Jambrak AR, Sun DW, Tiwari BK. Mechanistic and synergistic aspects of ultrasonics and hydrodynamic cavitation for food processing. Crit Rev Food Sci Nutr 2023; 64:8587-8608. [PMID: 37194650 DOI: 10.1080/10408398.2023.2201834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Compared with traditional methods, cavitation-based processing technology has received extensive attention for its low energy consumption and high processing efficiency. The cavitation phenomenon releases high energy due to the generation and collapse of bubbles, which improves the efficiency of various food processing. This review details the cavitation mechanism of ultrasonic cavitation (UC) and hydrodynamic cavitation (HC), factors affecting cavitation, the application of cavitation technology in food processing, and the application of cavitation technology in the extraction of various natural ingredients. The safety and nutrition of food processed by cavitation technology and future research directions are also discussed. The mechanism of UC refers to longitudinal displacement of the particles of the medium induced by ultrasonic waves causing a series of alternating compression and rarefaction of particles, whereas HC occurs when liquid enters a narrow section and undergoes large pressure differentials, both of which can trigger the generation, growth, and collapse of microbubbles. Cavitation could be applied in microbial inactivation, and drying and freezing processing. In addition, cavitation bubbles can have mechanical and thermal effects on plant cells. In general, cavitation technology is a new sustainable, green, and innovative technology with broad application prospects and capabilities.
Collapse
Affiliation(s)
- Jiafei Tang
- Teagasc Food Research Centre, Dublin, Ireland
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | - Xianglu Zhu
- Teagasc Food Research Centre, Dublin, Ireland
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | - Anet Rezek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | | |
Collapse
|
6
|
A novel electrochemical micro-titration method for quantitative evaluation of the DPPH free radical scavenging capacity of caffeic acid. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Abstract
In this report, the stoichiometric ratio (R) for the interaction of diphenylpicrylhydrazyl (DPPH) radicals with the antioxidant was employed as an evaluation index for the DPPH radical scavenging activity of antioxidants. This evaluation index was related only to the stoichiometric relationship of DPPH radicals with the antioxidant and had no relationship with the initial DPPH amount and the sample volume, which could offer a solution to the problem of poor comparability of EC50 values under different conditions. A novel electrochemical micro-titration method was proposed for the determination of the stoichiometric ratio (R) for the interaction of DPPH radicals with the antioxidant. This electrochemical micro-titration model was verified using caffeic acid as the DPPH radical scavenger, with the stoichiometric ratio (R) of DPPH radicals to caffeic acid determined to be in the range of 2.003–2.046. The calculated EC50 values were 0.513, 1.011, and 1.981 × 10–5 mol/L for 2.10, 4.05, and 8.02 × 10–7 moL of added DPPH radicals, respectively. The proposed method showed no differences from the conventional method, but had better precision and reliability, and used a smaller amount of sample.
Collapse
|
7
|
Antioxidant content and volatile composition of seedless table grape (Vitis vinifera L.) varieties. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractGrapes are important sources of phenolics, which are recognized to possess high biological value. In this work, we evaluated the total phenol content (TPC), total anthocyanin content (TAC), antioxidant activity (AA) and volatile composition of unstudied seedless table grape varieties (i.e., Autumn Crisp and Pristine as white cultivars, Scarlotta and Crimson as red cultivars and Adora and Melody as black cultivars). As a result, Adora and Melody exhibited higher TPCs, TACs and AA, measured by the 2,2-diphenyl-2-picrylhydrazil (DPPH) and photochemiluminescence (PCL) assays, than the rest of the varieties. A comparison between the two black cultivars proved that Adora possessed higher TPC (62.70 mg GAE 100 g−1), DPPH radical scavenging activity (IC50 of 3.69 mg ml−1) and PCL antiradical activity (72.14 µg Trolox ml−1) than Melody (47.30 mg GAE 100 g−1, IC50 of 5.0 mg ml−1 and 42.36 µg Trolox ml−1, respectively). The volatile composition, determined by solid phase microextraction (SPME)–gas chromatography/mass spectrometry (GC/MS), indicated a similar qualitative aroma profile for all varieties. However, quantitative differences were measured among them, which were reflected in distinct sensory perception by sensorial testing. From these results, Adora was selected for its antioxidant properties and flavor characteristics.
Collapse
|
8
|
Bilenler Koc T, Kuyumcu Savan E, Karabulut I. Electrochemical Determination of the Antioxidant Capacity, Total Phenolics, and Ascorbic Acid in Fruit and Vegetables by Differential Pulse Voltammetry (DPV) with a p-Toluene Sulfonic Acid Modified Glassy Carbon Electrode (TSA/GCE). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2144344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Tugca Bilenler Koc
- Department of Food Engineering, Faculty of Engineering, Inonu University, Malatya, Turkey
| | - Ebru Kuyumcu Savan
- Division of Analytical Chemistry, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Ihsan Karabulut
- Department of Food Engineering, Faculty of Engineering, Inonu University, Malatya, Turkey
| |
Collapse
|
9
|
Zhang J, Fang L, Huang X, Ding Z, Wang C. Evolution of polyphenolic, anthocyanin, and organic acid components during coinoculation fermentation (simultaneous inoculation of LAB and yeast) and sequential fermentation of blueberry wine. J Food Sci 2022; 87:4878-4891. [PMID: 36258662 DOI: 10.1111/1750-3841.16328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
Abstract
This research aims to investigate the effects of both sequential fermentation and coinoculation fermentation with yeast and lactic acid bacterial (LAB) on the dynamics of changes in basic quality parameters and organic acid, anthocyanin, and phenolic components as well as antioxidant activity during the fermentation of blueberry. The coculture-fermented blueberry wine showed significant decreases in total phenolics, flavonoids, and anthocyanins,by 23.9%, 15.9%, and 13.7%, respectively, as compared with those before fermentation Fermentation changed the contents of organic acids in each group, with a more than 7-fold increase in lactic acid contents as well as a more than 4-fold reduction in quinic acid and malic acid contents. The content of all investigated anthocyanins first increased and then decreased. Moreover, different fermentation strategies exerted a profound influence on the dynamic change in phenolic components during fermentation; specifically, most of the phenolic acids showed a trend of increasing first, then decreasing, and finally increasing. Gallic acid, p-coumaric acid, quercetin, and myricetin were increased by 116.9%, 130.1%, 127.2% and 177.6%, respectively, while syringic acid, ferulic acid, cinnamic acid, and vanillic acid were decreased by 49.5%, 68.5%, and 37.1% in sequentially fermented blueberry wine. Coinoculation fermentation with yeast and LAB produces faster dynamic variations and higher organic acid, anthocyanin, and phenolic profiles than sequential inoculation fermentation. PRACTICAL APPLICATION: In this work, brewing technology of sequential fermentation and coinoculation fermentation with yeast and LAB (Lactobacillus plantarum SGJ-24 and Oenococcus oeni SD-2a) was adopted to ferment blueberry wine. This is an innovative technology of fruit wine brewing technology to produce wine products. Compared with traditional sequential brewing, simultaneous inoculation brewing can significantly accelerate the brewing process of fruit wine and slightly improve the quality of fruit wine in terms of active ingredients.
Collapse
Affiliation(s)
- Jigang Zhang
- School of Biological Food and Environment, Hefei University, Hefei, People's Republic of China
| | - Ling Fang
- Tongling Testing Center for Food and Drug Control, Tongling City, People's Republic of China
| | - Xudong Huang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, People's Republic of China
| | - Zhien Ding
- Department of Biological and Food Engineering, Bozhou University, Bozhou City, People's Republic of China
| | - Chuyan Wang
- School of Biological Food and Environment, Hefei University, Hefei, People's Republic of China
| |
Collapse
|
10
|
Krittanawong C, Isath A, Rosenson RS, Khawaja M, Wang Z, Fogg SE, Virani SS, Qi L, Cao Y, Long MT, Tangney CC, Lavie CJ. Alcohol Consumption and Cardiovascular Health. Am J Med 2022; 135:1213-1230.e3. [PMID: 35580715 PMCID: PMC9529807 DOI: 10.1016/j.amjmed.2022.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Studies evaluating alcohol consumption and cardiovascular diseases have shown inconsistent results. METHODS We performed a systematic review of peer-reviewed publications from an extensive query of Ovid MEDLINE, Ovid Embase, Ovid Cochrane Database of Systematic Reviews, Scopus, and Web of Science from database inception to March 2022 for all studies that reported the association between alcohol consumption in terms of quantity (daily or weekly amounts) and type of beverage (wine, beer or spirit) and cardiovascular disease events. RESULTS The study population included a total of 1,579,435 individuals based on 56 cohorts from several countries. We found that moderate wine consumption defined as 1-4 drinks per week was associated with a reduction in risk for cardiovascular mortality when compared with beer or spirits. However, higher risk for cardiovascular disease mortality was typically seen with heavier daily or weekly alcohol consumption across all types of beverages. CONCLUSIONS It is possible that the observational studies may overestimate the benefits of alcohol for cardiovascular disease outcomes. Although moderate wine consumption is probably associated with low cardiovascular disease events, there are many confounding factors, in particular, lifestyle, genetic, and socioeconomic associations with wine drinking, which likely explain much of the association with wine and reduced cardiovascular disease events. Further prospective study of alcohol and all-cause mortality, including cancer, is needed.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- The Michael E. DeBakey VA Medical Center, Houston, Texas; Section of Cardiology, Baylor College of Medicine, Houston, Texas.
| | - Ameesh Isath
- Department of Cardiology, Westchester Medical Center, New York Medical College, Valhalla
| | - Robert S Rosenson
- Cardiometabolic Unit, Mount Sinai Hospital, Mount Sinai Heart, New York, NY; Mayo Clinic Evidence-based Practice Center, Rochester, Minn
| | - Muzamil Khawaja
- Section of Cardiology, Baylor College of Medicine, Houston, Texas
| | - Zhen Wang
- Cardiometabolic Unit, Mount Sinai Hospital, Mount Sinai Heart, New York, NY; Mayo Clinic Evidence-based Practice Center, Rochester, Minn; Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery; Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, Minn
| | - Sonya E Fogg
- Library and Learning Resource Center, Texas Heart Institute, Houston
| | - Salim S Virani
- The Michael E. DeBakey VA Medical Center, Houston, Texas; Section of Cardiology, Baylor College of Medicine, Houston, Texas
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, La
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Mo
| | - Michelle T Long
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Mass
| | - Christy C Tangney
- Department of Clinical Nutrition, Rush University Medical Center, Chicago, Ill
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, La
| |
Collapse
|
11
|
Bitew Z, Kassa A, Misgan B. Poly(diphenylamine-4-sulfonic acid) modified glassy carbon electrode for voltammetric determination of gallic acid in honey and peanut samples. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
12
|
Garjonyte R, Budiene J, Labanauskas L, Judzentiene A. In Vitro Antioxidant and Prooxidant Activities of Red Raspberry ( Rubus idaeus L.) Stem Extracts. Molecules 2022; 27:4073. [PMID: 35807315 PMCID: PMC9268408 DOI: 10.3390/molecules27134073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Leaves and stems of red raspberry (Rubus idaeus) are used in Lithuanian folk medicine. Healing properties of raspberry are related to the content of bioactive compounds, mainly polyphenols. Extracts of raspberry leaves contained higher total phenolic content (TPC) (1290 mg/L, expressed in gallic acid equivalent) compared to that in extracts of stems or peeled bark (up to 420 mg/L and 598 mg/L, respectively). To find out whether the collection time of herbal material was critical for the properties of the extracts, the stems were collected at different times of the year. TPC in the extracts depended more on extraction conditions rather than on the sampling time. Antioxidant activity of raspberry stem and bark extracts tested by spectrophotometric (DPPH● scavenging) and electrochemical (cyclic and differential pulse voltammetry) assays correlated with TPC. DPPH radical scavenging activity values for stem, leaf, and bark extracts were as follows: ≤1.18 ± 0.07, 1.63 ± 0.10, and ≤1.90 ± 0.04 (mmol/L, TROLOX equivalent), respectively. Assessed electrochemically, hydrogen peroxide-scavenging activity of extracts was independent on TPC. The latter activity was related to the presence of some protein in the extract as revealed by gel electrophoresis. Prooxidant activity of raspberry stem extracts was dependent on solution pH and temperature.
Collapse
Affiliation(s)
| | | | | | - Asta Judzentiene
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania; (R.G.); (J.B.); (L.L.)
| |
Collapse
|
13
|
Troilo M, Difonzo G, Paradiso VM, Pasqualone A, Caponio F. Grape Pomace as Innovative Flour for the Formulation of Functional Muffins: How Particle Size Affects the Nutritional, Textural and Sensory Properties. Foods 2022; 11:1799. [PMID: 35741997 PMCID: PMC9223218 DOI: 10.3390/foods11121799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Every year, the winemaking process generates large quantities of waste and by-products, the management of which is critical due to the large production in a limited period. Grape pomace is a source of bioactive compounds with antioxidant, anti-inflammatory, cardioprotective and antimicrobial properties. Its chemical composition makes it potentially suitable for preparing high-value food products. The aim of this research was to study the effect of adding grape pomace powder with different particle size fractions (600−425, 425−300, 300−212 and 212−150 µm) to the chemical, technological and sensorial characteristics of muffins. The addition of 15% of grape pomace powder, regardless of particle size, led to muffins rich in antioxidant compounds and total dietary fiber (>3/100 g), which could be labelled with the “source of fiber” nutritional claim according to the EC Regulation 1924/2006. As particle size decreased, total anthocyanins, total phenol content and antioxidant activity (evaluated by ABTS and DPPH assays) increased, while muffin hardness and lightness were negatively influenced. The latter observation was confirmed by the sensory evaluation, which also showed that a smaller particle size led to the presence of irregular crumb pores.
Collapse
Affiliation(s)
- Marica Troilo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (M.T.); (A.P.); (F.C.)
| | - Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (M.T.); (A.P.); (F.C.)
| | - Vito Michele Paradiso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6, Lecce-Monteroni, I-73100 Lecce, Italy;
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (M.T.); (A.P.); (F.C.)
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (M.T.); (A.P.); (F.C.)
| |
Collapse
|
14
|
Aksoy AS, Arici M, Yaman M. The effect of hardaliye on reducing the formation of malondialdehyde during in vitro gastrointestinal digestion of meat products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Oluba OM, Obokare O, Bayo-Olorunmeke OA, Ojeaburu SI, Ogunlowo OM, Irokanulo EO, Akpor OB. Fabrication, characterization and antifungal evaluation of polyphenolic extract activated keratin starch coating on infected tomato fruits. Sci Rep 2022; 12:4340. [PMID: 35288581 PMCID: PMC8921230 DOI: 10.1038/s41598-022-07972-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
In recent times, the application of protein-based bio-composite edible films in postharvest preservation of food and agricultural products is attracting increased attention due to their biodegradability, eco-friendliness and sustainability. In this study, an avocado pear peel polyphenolic extract enriched keratin-starch composite film was fabricated, characterized and evaluated for antimicrobial activity against fungal infected tomato fruits after 6 days of storage at room (25 ± 2 °C) temperature. The SEM/EDX and FTIR results revealed the successful film formation with high degree of compatibility and homogeneity. Following a 6-day post-coating loss in weight of the coated tomato fruits decreased significantly (p < 0.05) with increasing extract concentration while titratable acidity showed a significant (p < 0.05) increase with increasing extract load. Ascorbic acid and lycopene contents were significantly (p < 0.05) higher in the avocado pear peel polyphenolic extract-loaded films. No significant effect was observed in catechol oxidase activity of the tomato extract across the different treatment groups. In addition, fungal growth inhibition showed a dose dependent increase consistent with avocado pear peel polyphenolic load in coated tomato fruits compared to control. Results obtained in this study showed that polyphenolic activated keratin-starch coating was able to reduce spoilage-induce weight loss as well as conserve the overall quality (including titratable acid levels, lycopene and ascorbic acid contents) of fungal-infected tomato fruit and reduce microbial growth. Therefore polyphenolic activated keratin-starch coating could serve as a sustainable and ecofriendly postharvest preservation method to prolong the shelf life of tomato fruits.
Collapse
|
16
|
Vidal-Casanella O, Moreno-Merchan J, Granados M, Nuñez O, Saurina J, Sentellas S. Total Polyphenol Content in Food Samples and Nutraceuticals: Antioxidant Indices versus High Performance Liquid Chromatography. Antioxidants (Basel) 2022; 11:324. [PMID: 35204207 PMCID: PMC8868288 DOI: 10.3390/antiox11020324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/25/2023] Open
Abstract
Total polyphenol content and antioxidant capacity were estimated in various food and nutraceutical samples, including cranberries, raspberries, artichokes, grapevines, green tea, coffee, turmeric, and other medicinal plant extracts. Samples were analyzed by using two antioxidant assays-ferric reducing antioxidant power (FRAP) and Folin-Ciocalteu (FC)-and a reversed-phase high-performance liquid chromatography (HPLC), with a focus on providing compositional fingerprints dealing with polyphenolic compounds. A preliminary data exploration via principal component analysis (PCA) revealed that HPLC fingerprints were suitable chemical descriptors to classify the analyzed samples according to their nature. Moreover, chromatographic data were correlated with antioxidant data using partial least squares (PLS) regression. Regression models have shown good prediction capacities in estimating the antioxidant activity from chromatographic data, with determination coefficients (R2) of 0.971 and 0.983 for FRAP and FC assays, respectively.
Collapse
Affiliation(s)
- Oscar Vidal-Casanella
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (O.V.-C.); (J.M.-M.); (M.G.); (O.N.); (S.S.)
| | - Javier Moreno-Merchan
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (O.V.-C.); (J.M.-M.); (M.G.); (O.N.); (S.S.)
| | - Merce Granados
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (O.V.-C.); (J.M.-M.); (M.G.); (O.N.); (S.S.)
| | - Oscar Nuñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (O.V.-C.); (J.M.-M.); (M.G.); (O.N.); (S.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Avenue Prat de la Riba 171, Edifici de Recerca (Gaudí), E-08921 Santa Coloma de Gramenet, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (O.V.-C.); (J.M.-M.); (M.G.); (O.N.); (S.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Avenue Prat de la Riba 171, Edifici de Recerca (Gaudí), E-08921 Santa Coloma de Gramenet, Spain
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (O.V.-C.); (J.M.-M.); (M.G.); (O.N.); (S.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Avenue Prat de la Riba 171, Edifici de Recerca (Gaudí), E-08921 Santa Coloma de Gramenet, Spain
- Serra Húnter Fellow, Generalitat de Catalunya, Rambla de Catalunya 19-21, E-08007 Barcelona, Spain
| |
Collapse
|
17
|
An insight into the thin-layer diffusion phenomena within a porous electrode: Gallic acid at a single-walled carbon nanotubes-modified electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.116008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Koc TB, Kuyumcu Savan E, Karabulut I. Determination of Antioxidant Properties and β-Carotene in Orange Fruits and Vegetables by an Oxidation Voltammetric Assay. ANAL LETT 2022. [DOI: 10.1080/00032719.2021.1971686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tugca Bilenler Koc
- Department of Food Engineering, Faculty of Engineering, Inonu University, Malatya, Turkey
| | - Ebru Kuyumcu Savan
- Division of Analytical Chemistry, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Ihsan Karabulut
- Department of Food Engineering, Faculty of Engineering, Inonu University, Malatya, Turkey
| |
Collapse
|
19
|
Shao J, Wang C, Shen Y, Shi J, Ding D. Electrochemical Sensors and Biosensors for the Analysis of Tea Components: A Bibliometric Review. Front Chem 2022; 9:818461. [PMID: 35096777 PMCID: PMC8795770 DOI: 10.3389/fchem.2021.818461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
Tea is a popular beverage all around the world. Tea composition, quality monitoring, and tea identification have all been the subject of extensive research due to concerns about the nutritional value and safety of tea intake. In the last 2 decades, research into tea employing electrochemical biosensing technologies has received a lot of interest. Despite the fact that electrochemical biosensing is not yet the most widely utilized approach for tea analysis, it has emerged as a promising technology due to its high sensitivity, speed, and low cost. Through bibliometric analysis, we give a systematic survey of the literature on electrochemical analysis of tea from 1994 to 2021 in this study. Electrochemical analysis in the study of tea can be split into three distinct stages, according to the bibliometric analysis. After chromatographic separation of materials, electrochemical techniques were initially used only as a detection tool. Many key components of tea, including as tea polyphenols, gallic acid, caffeic acid, and others, have electrochemical activity, and their electrochemical behavior is being investigated. High-performance electrochemical sensors have steadily become a hot research issue as materials science, particularly nanomaterials, and has progressed. This review not only highlights these processes, but also analyzes and contrasts the relevant literature. This evaluation also provides future views in this area based on the bibliometric findings.
Collapse
Affiliation(s)
- Jinhua Shao
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Chao Wang
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Yiling Shen
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jinlei Shi
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Dongqing Ding
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
20
|
Ivić I, Kopjar M, Buljeta I, Pichler D, Mesić J, Pichler A. Influence of Reverse Osmosis Process in Different Operating Conditions on Phenolic Profile and Antioxidant Activity of Conventional and Ecological Cabernet Sauvignon Red Wine. MEMBRANES 2022; 12:76. [PMID: 35054602 PMCID: PMC8777971 DOI: 10.3390/membranes12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
Red wine polyphenols are responsible for its colour, astringency, and bitterness. They are known as strong antioxidants that protect the human body from the harmful effects of free radicals and prevent various diseases. Wine phenolics are influenced by viticulture methods and vinification techniques, and therefore, conventionally and ecologically produced wines of the same variety do not have the same phenolic profile. Ecological viticulture avoids the use of chemical adjuvants in vineyards in order to minimise their negative influence on the environment, wine, and human health. The phenolic profile and antioxidant activity of wine can also be influenced by additional treatments, such as concentration by reverse osmosis. The aim of this study was to investigate the influence of four different pressures (2.5, 3.5, 4.5, and 5.5 MPa) and two temperature regimes (with and without cooling) on the phenolic profile and antioxidant activity of conventional and ecological Cabernet Sauvignon red wine during concentration by reverse osmosis. The results showed that retention of individual phenolic compounds depended on the applied processing parameters, chemical composition of the initial wine, and chemical properties of a compound. Higher pressure and retentate cooling favoured the retention of total polyphenols, flavonoids, and monomeric anthocyanins, compared to the opposite conditions. The same trend was observed for antioxidant activity.
Collapse
Affiliation(s)
- Ivana Ivić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.); (I.B.)
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.); (I.B.)
| | - Ivana Buljeta
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.); (I.B.)
| | | | - Josip Mesić
- Polytechnic in Požega, Vukovarska 17, 34000 Požega, Croatia;
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.); (I.B.)
| |
Collapse
|
21
|
Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. BEVERAGES 2021. [DOI: 10.3390/beverages8010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Red wine, an alcoholic beverage is composed of a spectrum of complex compounds such as water, alcohol, glycerol, organic acid, carbohydrates, polyphenols, and minerals as well as volatile compounds. Major factors that affect the levels of phenolic compounds in red wines are the variety of grapes and the storage of the wines. Among the constituents of red wine, phenolic compounds play a crucial role in attributes including color and mouthfeel and confer beneficial properties on health. Most importantly, phenolic compounds such as flavanols, flavonols, flavanones, flavones, tannins, anthocyanins, hydroxycinnamic acids, hydroxybenzoic acids, and resveratrol can prevent the development of cardiovascular diseases, cancers, diabetes, inflammation, and some other chronic diseases.
Collapse
|
22
|
Sánchez-Velázquez OA, Cuevas-Rodríguez EO, Reyes-Moreno C, Ríos-Iribe ÉY, Hernández-Álvarez AJ, León-López L, Milán-Carrillo J. Profiling modifications in physicochemical, chemical and antioxidant properties of wild blackberry ( Rubus sp.) during fermentation with EC 1118 yeast. Journal of Food Science and Technology 2021; 58:4654-4665. [PMID: 34629530 DOI: 10.1007/s13197-020-04953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 11/27/2022]
Abstract
Mexico is an extensively diverse country with a wide variety of wild species of blackberries (Rubus spp.), which are rich in bioactive compounds, however, these fruits are underutilized. Fermentation is a process that transforms the chemical compounds of fruits and increases nutraceutical properties. This study aimed to determine the physicochemical changes and the bioactive compounds profile that take place during the fermentation of wild blackberries using yeast EC 1118 and to evaluate its relationship with antioxidant activity (AOx). The results indicated that after 96 h of fermentation the content of carbohydrates (56%), total phenolic compounds (37%), and anthocyanins (22%), decreased, respectively. The physicochemical parameters showed statistic differences (p ≤ 0.05) at the endpoint of fermentation. The diversity of fatty acids was increased (55%), compared with unfermented blackberries. The modification of carbohydrates, anthocyanins, catechin, gallic and ellagic acid profiles were also monitored performing chromatographic techniques. The AOx, determined by ORAC and DPPH assays, showed the highest results for ORAC at 96 h increased a 140.2%, while DPPH values enhanced a 36.6% at 48 h of bioprocessing. Strong positive correlations were found between fermentation time and DPPH values (r = 0.8131), between ORAC and gallic acid content (r = 0.8688), and between anthocyanin content and pH (r = 0.9126). The fermentation of wild blackberries with EC 1118 yeast represents an alternative for development and formulation of potential ingredients for functional foods. Supplementary information The online version contains supplementary material available at (10.1007/s13197-020-04953-x).
Collapse
Affiliation(s)
- Oscar Abel Sánchez-Velázquez
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Universitarios s/n, Ciudad Universitaria, Col. Universitarios, P. C. 80030, Culiacán Rosales, Sinaloa Mexico
| | - Edith-Oliva Cuevas-Rodríguez
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Universitarios s/n, Ciudad Universitaria, Col. Universitarios, P. C. 80030, Culiacán Rosales, Sinaloa Mexico
- Posgrado en Ciencia Y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Universitarios s/n, Ciudad Universitaria, Col. Universitarios, P. C. 80030, Culiacán Rosales, , Sinaloa Mexico
| | - Cuauhtémoc Reyes-Moreno
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Universitarios s/n, Ciudad Universitaria, Col. Universitarios, P. C. 80030, Culiacán Rosales, Sinaloa Mexico
- Posgrado en Ciencia Y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Universitarios s/n, Ciudad Universitaria, Col. Universitarios, P. C. 80030, Culiacán Rosales, , Sinaloa Mexico
| | - Érika Yudit Ríos-Iribe
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Universitarios s/n, Ciudad Universitaria, Col. Universitarios, P. C. 80030, Culiacán Rosales, Sinaloa Mexico
| | | | - Liliana León-López
- Posgrado en Ciencia Y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Universitarios s/n, Ciudad Universitaria, Col. Universitarios, P. C. 80030, Culiacán Rosales, , Sinaloa Mexico
| | - Jorge Milán-Carrillo
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Universitarios s/n, Ciudad Universitaria, Col. Universitarios, P. C. 80030, Culiacán Rosales, Sinaloa Mexico
- Posgrado en Ciencia Y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Universitarios s/n, Ciudad Universitaria, Col. Universitarios, P. C. 80030, Culiacán Rosales, , Sinaloa Mexico
| |
Collapse
|
23
|
Wang L, Malpass-Evans R, Carta M, McKeown NB, Reeksting SB, Marken F. Catechin or quercetin guests in an intrinsically microporous polyamine (PIM-EA-TB) host: accumulation, reactivity, and release. RSC Adv 2021; 11:27432-27442. [PMID: 35480644 PMCID: PMC9037788 DOI: 10.1039/d1ra04543a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 11/21/2022] Open
Abstract
Microporous polymer materials based on molecularly "stiff" structures provide intrinsic microporosity, typical micropore sizes of 0.5 nm to 1.5 nm, and the ability to bind guest species. The polyamine PIM-EA-TB contains abundant tertiary amine sites to interact via hydrogen bonding to guest species in micropores. Here, quercetin and catechin are demonstrated to bind and accumulate into PIM-EA-TB. Voltammetric data suggest apparent Langmuirian binding constants for catechin of 550 (±50) × 103 M-1 in acidic solution at pH 2 (PIM-EA-TB is protonated) and 130 (±13) × 103 M-1 in neutral solution at pH 6 (PIM-EA-TB is not protonated). The binding capacity is typically 1 : 1 (guest : host polymer repeat unit), but higher loadings are readily achieved by host/guest co-deposition from tetrahydrofuran solution. In the rigid polymer environment, bound ortho-quinol guest species exhibit 2-electron 2-proton redox transformation to the corresponding quinones, but only in a thin mono-layer film close to the electrode surface. Release of guest molecules occurs depending on the level of loading and on the type of guest either spontaneously or with electrochemical stimuli.
Collapse
Affiliation(s)
- Lina Wang
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Richard Malpass-Evans
- EaStCHEM, School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3JF UK
| | - Mariolino Carta
- Department of Chemistry, Swansea University, College of Science Grove Building, Singleton Park Swansea SA2 8PP UK
| | - Neil B McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3JF UK
| | - Shaun B Reeksting
- University of Bath, Materials & Chemical Characterisation Facility, MC2 Bath BA2 7AY UK
| | - Frank Marken
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
24
|
Wu J, Yang R, Liu J, Huang X. Easy fabrication of aminated graphene oxide functionalized magnetic nanocomposite for efficient preconcentration of phenolic acids prior to HPLC determination: Application in tea-derived wines. Talanta 2021; 228:122246. [PMID: 33773746 DOI: 10.1016/j.talanta.2021.122246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022]
Abstract
In this study, aminated graphene oxide functionalized magnetic nanocomposite (AGMN) was facilely synthesized by one-pot hydrothermal approach and acted as the extraction phase of magnetic solid phase extraction (MSPE) of phenolic acids (PAs). Characterization results revealed that the AGMN possessed satisfying saturation magnetism and abundant functional groups. Under the optimal extraction parameters, the proposed AGMN/MSPE presented high enrichment capability to PAs. Sensitive and dependable method for measurement of PAs in wine was proposed by the combination of AGMN/MSPE and HPLC/DAD. Limits of detection and limits of quantification were in the ranges of 0.031-0.23 μg/L and 0.10-0.78 μg/L, respectively, and the RSDs for approach precision varied from 1.8% to 8.9%. Recoveries at low, medium and high fortified levels varied from 84.6% to 116%. The suggested method was used to quantify investigated PAs in ten kinds of Tieguanyin tea-derived wines, and found the contents of PAs in wines were related to the quality of tea-leaves and alcohol content.
Collapse
Affiliation(s)
- Jiangyi Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Ruichen Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Jun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Xiaojia Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
25
|
Concentration with Nanofiltration of Red Wine Cabernet Sauvignon Produced from Conventionally and Ecologically Grown Grapes: Effect on Phenolic Compounds and Antioxidant Activity. MEMBRANES 2021; 11:membranes11050322. [PMID: 33925172 PMCID: PMC8146389 DOI: 10.3390/membranes11050322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
The aim of this study was to investigate the influence of different operating conditions (four pressures: 2.5, 3.5, 4.5 and 5.5 MPa; two temperature regimes: with and without cooling) and wine type on phenolic compounds retention during the nanofiltration process of two Cabernet Sauvignon red wines (conventionally and ecologically produced). The nanofiltration process was conducted on Alfa Laval LabUnit M20 with plate module and six NF M20 membranes. In initial wines and obtained retentates, total polyphenol and flavonoid contents, monomeric anthocyanins content, antioxidant activity, individual phenolic compounds and CIELab colour parameters were determined. A loss of total phenolic compounds and decrease in antioxidant activity was observed in all retentates comparing to initial wine. However, retentate cooling and higher pressure increased their retention. Besides processing parameters, individual phenolic compound retention depended on several factors, such as the wine type, chemical properties of compounds and membrane type, and their combinations. Different chemical composition of initial conventional and ecological wine influenced the retention of individual compounds.
Collapse
|
26
|
Haque MA, Morozova K, Ferrentino G, Scampicchio M. Electrochemical Methods to Evaluate the Antioxidant Activity and Capacity of Foods: A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202060600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Md Azizul Haque
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
- Department of Food Technology and Nutritional Science (FTNS) Mawlana Bhashani Science and Technology University (MBSTU) Tangail 1902 Bangladesh
| | - Ksenia Morozova
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| | - Giovanna Ferrentino
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| | - Matteo Scampicchio
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| |
Collapse
|
27
|
Çelebier M, Dogan A, Süslü İ, Altınöz S. Electrochemical Behavior and Square-Wave Stripping Voltammetric Determination of Roflumilast in Pharmaceutical Dosage Forms. Comb Chem High Throughput Screen 2021; 24:400-408. [PMID: 32875977 DOI: 10.2174/1386207323666200901102526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bronchial asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic diseases. Roflumilast is a novel, potent, selective, and long-acting phosphodiesterase 4 (PDE-4) inhibitor for the treatment of bronchial asthma and COPD. It has anti-inflammatory effects, and it has been shown to reduce exacerbations and improve pulmonary function in patients with COPD. Although there have been some other analytical methodologies reported for the determination of roflumilast in pharmaceutical dosage forms, there has not yet been any electrochemical methodology proposed for determination of this unique active pharmaceutical ingredient in its dosage forms. OBJECTIVE The aim of this study was to develop an easily applied, selective, sensitive, accurate, and precise square-wave stripping voltammetric (SWSV) method for the determination of roflumilast in its pharmaceutical dosage forms. In addition, the electrochemical behavior of roflumilast was investigated. METHODS The proposed method was based on electrochemical reduction of roflumilast at a hanging mercury drop electrode (HMDE) in 0.1 M K2HPO4 and 0.1 M Na2B4O7 (1:1, v/v) buffer at pH 5.0. Two reduction peaks were observed at -1150 mV and -1260 mV with 30 s of accumulation time and -850 mV of accumulation potential time versus Ag/AgCl reference electrode. RESULTS The highest peak current values with the best peak definition were observed at a frequency of 50 Hz, scan increment of 5 mV, and pulse amplitude 25 mV. The proposed method was validated by evaluating validation parameters such as linearity, sensitivity, repeatability, accuracy, precision, selectivity, recovery, robustness, and ruggedness. A good linear correlation (r=0.9948) was obtained between the electrochemical response of roflumilast and its concentration in the range of 0.74-3.05 μg mL-1 under the optimum conditions. The obtained accuracy results were between 2.04% and -2.04% while the relative standard deviation of the results was at least 2.78% for intraday and inter-day studies. The mean recovery for the real applications was 100.63% ± 0.52. The electrochemical behavior of roflumilast was investigated by cyclic voltammetry. The cyclic voltammogram of roflumilast exhibited two peaks and the reduction reaction was reversible. CONCLUSION This developed and validated SWSV method was applied successfully for the determination of roflumilast in tablet dosage form (Daxas®) to assess active roflumilast content. Since high- -performance liquid chromatography is a dominant technique in industry for quality control of active pharmaceutical ingredients, the finding in the present study demonstrated that square-wave stripping voltammetry could be easily utilized in routine applications to determine roflumilast content in its dosage forms.
Collapse
Affiliation(s)
- Mustafa Çelebier
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sihhiye 06100, Ankara, Turkey
| | - Aysegul Dogan
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sihhiye 06100, Ankara, Turkey
| | - İncilay Süslü
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sihhiye 06100, Ankara, Turkey
| | - Sacide Altınöz
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sihhiye 06100, Ankara, Turkey
| |
Collapse
|
28
|
High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants (Basel) 2021; 10:antiox10020234. [PMID: 33557299 PMCID: PMC7914583 DOI: 10.3390/antiox10020234] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum (Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market. However, a huge amount of stone fruits waste is produced throughout the food supply chain during picking, handling, processing, packaging, storage, transportation, retailing and final consumption. These stone fruits waste contain high phenolic content which are the main contributors to the antioxidant potential and associated health benefits. The antioxidant results showed that plum waste contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equivalents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g), while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g). However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power (FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) assays, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste. Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were conducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant potential. The results could support the applications of these stone fruit wastes in other food, feed, nutraceutical and pharmaceutical industries.
Collapse
|
29
|
Influence of Processing Parameters on Phenolic Compounds and Color of Cabernet Sauvignon Red Wine Concentrates Obtained by Reverse Osmosis and Nanofiltration. Processes (Basel) 2021. [DOI: 10.3390/pr9010089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In this study, Cabernet Sauvignon red wine was subjected to reverse osmosis and nanofiltration processes at four different pressures (25, 35, 45, and 55 bar) and two temperature regimes (with and without cooling). The aim was to obtain concentrates with a higher content of phenolic compounds and antioxidant activity and to determine the influence of two membrane types (Alfa Laval RO98pHt M20 for reverse osmosis and NF M20 for nanofiltration) and different operating conditions on phenolics retention. Total polyphenol, flavonoid, monomeric anthocyanin contents, and antioxidant activity were determined spectrophotometrically. Flavan-3-ols and phenolic acids were analyzed on a high-performance liquid chromatography system and sample colour was measured by chromometer. The results showed that the increase in applied pressure and decrease in retentate temperature were favorable for higher phenolics retention. Retention of individual compounds depended on their chemical structure, membrane properties, membrane fouling, and operating conditions. Both types of membranes proved to be suitable for Cabernet Sauvignon red wine concentration. In all retentates, phenolic compounds content was higher than in the initial wine, but no visible color change (ΔE* < 1) was observed. The highest concentrations of phenolic compounds were detected in retentates obtained at 45 and 55 bar, especially with cooling.
Collapse
|
30
|
Kinyua Muthuri L, Nagy L, Nagy G. Chronopotentiometric method for assessing antioxidant activity: A reagentless measuring technique. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
31
|
Hydrophobic eutectic solvents for extraction of natural phenolic antioxidants from winery wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Elboughdiri N, Ghernaout D, Kriaa K, Jamoussi B. Enhancing the Extraction of Phenolic Compounds from Juniper Berries Using the Box-Behnken Design. ACS OMEGA 2020; 5:27990-28000. [PMID: 33163782 PMCID: PMC7643166 DOI: 10.1021/acsomega.0c03396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/06/2020] [Indexed: 05/25/2023]
Abstract
Juniper berry is an important medicinal plant used in pharmaceutical and petrochemical industries thanks to its strong antioxidant potential, which is attributed to the presence of phenolic compounds. In this study, four different solvents, namely, aqueous acetone, aqueous ethanol, aqueous NaOH, and water, were used in the extraction process with a view to optimize and determine the polyphenolic contents in the juniper berry using ultraviolet (UV) spectrophotometry. Many experiments were performed at different solvent concentrations, time, temperature, and liquid-solid ratio. The models to evaluate the effects and the optimum of these variables on the polyphenols extraction using the response surface methodology (RSM) were developed. The predicted values of the polyphenol content of juniper berry were thus highly correlated with costly measured values (SECV = 0.14 and R 2 = 0.97), and the optimal conditions of extraction were determined for the different solvents. Following the numerical optimization, the maximum predicted polyphenol contents obtained under the optimum extraction conditions are as follows: 17.57% for 58 °C extraction temperature, 78.5 min extraction time, 60% acetone concentration, and 29.8 liquid-solid ratio for the aqueous ethanol extraction; 20.68% for 71.46 °C extraction temperature, 79.2 min extraction time, 21.9% ethanol concentration, and 26.4:1 liquid-solid ratio for the aqueous acetone extraction; 34.51% for 96.4 °C extraction temperature, 37.7 min extraction time, 1.48% NaOH concentration, and 15.2:1 liquid-solid ratio for the aqueous NaOH extraction; and 9.8% was obtained under the optimum extraction conditions of 69 °C extraction temperature, 126 min extraction time, and 23:1 liquid-solid ratio for the water extraction. The GC-MS analysis of the chemical composition of juniper Berry revealed 60 identified components that represent 97.43% of the sample. The predominant fraction was monoterpene representing 80.87% especially for α-pinene (39.12%), β-pinene (12. 68%), and myrcene (12.92%). In the other fraction of sesquiterpene representing 16.54%, the predominant components were β-caryophyllene (4.41%) and germacrene D (4.23%).
Collapse
Affiliation(s)
- Noureddine Elboughdiri
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Háil 81441, Saudi Arabia
- Chemical
Engineering Process Department, National School of Engineering Gabes, University of Gabes, Gabes 6011, Tunisia
| | - Djamel Ghernaout
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Háil 81441, Saudi Arabia
- Chemical
Engineering Department, Faculty of Engineering, University of Blida, P.O. Box 270, Blida 09000, Algeria
| | - Karim Kriaa
- Chemical
Engineering Process Department, National School of Engineering Gabes, University of Gabes, Gabes 6011, Tunisia
- College of Engineering, Al Imam Mohammad Ibn Saud Islamic University, P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Bassem Jamoussi
- Department
of Environmental Sciences, Faculty of Meteorology, Environment and
Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
33
|
Radonjić S, Maraš V, Raičević J, Košmerl T. Wine or Beer? Comparison, Changes and Improvement of Polyphenolic Compounds during Technological Phases. Molecules 2020; 25:E4960. [PMID: 33120907 PMCID: PMC7663142 DOI: 10.3390/molecules25214960] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Wine and beer are nowadays the most popular alcoholic beverages, and the benefits of their moderate consumption have been extensively supported by the scientific community. The main source of wine and beer's antioxidant behavior are the phenolic substances. Phenolic compounds in wine and beer also influence final product quality, in terms of color, flavor, fragrance, stability, and clarity. Change in the quantity and quality of phenolic compounds in wine and beer depends on many parameters, beginning with the used raw material, its place of origin, environmental growing conditions, and on all the applied technological processes and the storage of the final product. This review represents current knowledge of phenolic compounds, comparing qualitative and quantitative profiles in wine and beer, changes of these compounds through all phases of wine and beer production are discussed, as well as the possibilities for increasing their content. Analytical methods and their importance for phenolic compound determination have also been pointed out. The observed data showed wine as the beverage with a more potent biological activity, due to a higher content of phenolic compounds. However, both of them contain, partly similar and different, phenolic compounds, and recommendations have to consider the drinking pattern, consumed quantity, and individual preferences. Furthermore, novel technologies have been developing rapidly in order to improve the polyphenolic content and antioxidant activity of these two beverages, particularly in the brewing industry.
Collapse
Affiliation(s)
- Sanja Radonjić
- “13. Jul Plantaže” a.d., Research and Development Sector, Put Radomira Ivanovića 2, 81000 Podgorica, Montenegro; (V.M.); (J.R.)
| | - Vesna Maraš
- “13. Jul Plantaže” a.d., Research and Development Sector, Put Radomira Ivanovića 2, 81000 Podgorica, Montenegro; (V.M.); (J.R.)
| | - Jovana Raičević
- “13. Jul Plantaže” a.d., Research and Development Sector, Put Radomira Ivanovića 2, 81000 Podgorica, Montenegro; (V.M.); (J.R.)
| | - Tatjana Košmerl
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| |
Collapse
|
34
|
Wine's Phenolic Compounds and Health: A Pythagorean View. Molecules 2020; 25:molecules25184105. [PMID: 32911765 PMCID: PMC7570485 DOI: 10.3390/molecules25184105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/22/2022] Open
Abstract
In support of the J curve that describes the association between wine consumption and all-cause mortality, researchers and the lay press often advocate the health benefits of (poly)phenol consumption via red wine intake and cite the vast amount of in vitro literature that would corroborate the hypothesis. Other researchers dismiss such evidence and call for total abstention. In this review, we take a skeptical, Pythagorean stance and we critically try to move the debate forward by pointing the readers to the many pitfalls of red wine (poly)phenol research, which we arbitrarily treat as if they were pharmacological agents. We conclude that, after 30 years of dedicated research and despite the considerable expenditure, we still lack solid, "pharmacological", human evidence to confirm wine (poly)phenols' biological actions. Future research will eventually clarify their activities and will back the current recommendations of responsibly drinking moderate amounts of wine with meals.
Collapse
|
35
|
Chiorcea-Paquim AM, Enache TA, De Souza Gil E, Oliveira-Brett AM. Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr Rev Food Sci Food Saf 2020; 19:1680-1726. [PMID: 33337087 DOI: 10.1111/1541-4337.12566] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/27/2022]
Abstract
Natural phenolic compounds are abundant in the vegetable kingdom, occurring mainly as secondary metabolites in a wide variety of chemical structures. Around 10,000 different plant phenolic derivatives have been isolated and identified. This review provides an exhaustive overview concerning the electron transfer reactions in natural polyphenols, from the point of view of their in vitro antioxidant and/or pro-oxidant mode of action, as well as their identification in highly complex matrixes, for example, fruits, vegetables, wine, food supplements, relevant for food quality control, nutrition, and health research. The accurate assessment of polyphenols' redox behavior is essential, and the application of the electrochemical methods in routine quality control of natural products and foods, where the polyphenols antioxidant activity needs to be quantified in vitro, is of the utmost importance. The phenol moiety oxidation pathways and the effect of substituents and experimental conditions on their electrochemical behavior will be reviewed. The fundamental principles concerning the redox behavior of natural polyphenols, specifically flavonoids and other benzopyran derivatives, phenolic acids and ester derivatives, quinones, lignins, tannins, lignans, essential oils, stilbenes, curcuminoids, and chalcones, will be described. The final sections will focus on the electroanalysis of phenolic antioxidants in natural products and the electroanalytical evaluation of in vitro total antioxidant capacity.
Collapse
Affiliation(s)
| | - Teodor Adrian Enache
- CEMMPRE, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal
| | - Eric De Souza Gil
- CEMMPRE, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal.,Faculdade de Farmácia, Universidade Federal de Goiás, Setor Universitário, Goiânia, Goiás, Brasil
| | | |
Collapse
|
36
|
Samaniego-Sánchez C, Marín-García G, Quesada-Granados J. A new fermented beverage from sugarcane (Saccharum officinarum L.) molasses: Analysis of physicochemical properties and antioxidant capacity, and comparison with other industrial alcohol products. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Çelik HH, Özcan S, Mülazımoğlu AD, Yılmaz E, Mercimek B, Çukurovalı A, Yılmaz İ, Solak AO, Mülazımoğlu İE. The synthesis of a novel DDPHC diazonium salt: Investigation of its usability in the determination of phenol and chlorophenols using CV, SWV and DPV techniques. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Olivas-Aguirre FJ, Mendoza S, Alvarez-Parrilla E, Gonzalez-Aguilar GA, Villegas-Ochoa MA, Quintero-Vargas JT, Wall-Medrano A. First-Pass Metabolism of Polyphenols from Selected Berries: A High-Throughput Bioanalytical Approach. Antioxidants (Basel) 2020; 9:E311. [PMID: 32295070 PMCID: PMC7222205 DOI: 10.3390/antiox9040311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
Small berries are rich in polyphenols whose first-pass metabolism may alter their ultimate physiological effects. The antioxidant capacity and polyphenol profile of three freeze-dried berries (blackberry, raspberry, Red Globe grape) were measured and their apparent permeability (Papp) and first-pass biotransformation were tracked with an ex vivo bioanalytical system [everted gut sac (rat) + three detection methods: spectrophotometry, HPLC-ESI-QTOF-MS, differential pulse voltammetry (DPV)]. Total polyphenol (ratio 0.07-0.14-1.0) and molecular diversity (anthocyanins>flavan-3-ols), antioxidant capacity (DPPH, FRAP), anodic current maxima and Papp (efflux> uptake) were in the following order: blackberry > raspberry > Red Globe grape. Epicatechin, pelargonidin & cyanin (all), callistephin (raspberry/blackberry), catechin (grape), cyanidin glycosides (blackberry) and their derived metabolites [quinic acid, epicatechin, cyanidin/malvidin glucosides, and chlorogenic/caffeic acids] were fruit-specific and concentration-dependent. Time-trend DPV kinetic data revealed concurrent epithelial permeability & biotransformation processes. Regular permeability and high-biotransformation of berry polyphenols suggest fruit-specific health effects apparently at the intestinal level.
Collapse
Affiliation(s)
- Francisco J. Olivas-Aguirre
- Departamento de Ciencias de la Salud, Universidad de Sonora (Campus Cajeme), Blvd Bordo Nuevo s/n, Ejido Providencia, Cd, Obregón 85199, Mexico;
| | - Sandra Mendoza
- Departamento de Investigación y Posgrado en Alimentos (PROPAC), Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Mexico;
| | - Emilio Alvarez-Parrilla
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Mexico;
| | - Gustavo A. Gonzalez-Aguilar
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria, Km. 0.6, Hermosillo 83304, Mexico; (G.A.G.-A.); (M.A.V.-O.)
| | - Monica A. Villegas-Ochoa
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria, Km. 0.6, Hermosillo 83304, Mexico; (G.A.G.-A.); (M.A.V.-O.)
| | - Jael T.J. Quintero-Vargas
- Departamento de Ciencias de la Salud, Universidad de Sonora (Campus Cajeme), Blvd Bordo Nuevo s/n, Ejido Providencia, Cd, Obregón 85199, Mexico;
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Mexico;
| |
Collapse
|
39
|
Tang J, Dunshea FR, Suleria HAR. LC-ESI-QTOF/MS Characterization of Phenolic Compounds from Medicinal Plants (Hops and Juniper Berries) and Their Antioxidant Activity. Foods 2019; 9:foods9010007. [PMID: 31861820 PMCID: PMC7023254 DOI: 10.3390/foods9010007] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023] Open
Abstract
Hops (Humulus lupulus L.) and juniper berries (Juniperus communis L.) are two important medicinal plants widely used in the food, beverage, and pharmaceutical industries due to their strong antioxidant capacity, which is attributed to the presence of polyphenols. The present study is conducted to comprehensively characterize polyphenols from hops and juniper berries using liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS) to assess their antioxidant capacity. For polyphenol estimation, total phenolic content, flavonoids and tannins were measured, while for antioxidant capacity, three different antioxidant assays including the 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant assay, the 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical cation decolorization assay and the ferric reducing-antioxidant power (FRAP) assay were used. Hops presented the higher phenolic content (23.11 ± 0.03 mg/g dw) which corresponded to its strong antioxidant activity as compared to the juniper berries. Using LC-ESI-QTOF/MS, a total of 148 phenolic compounds were tentatively identified in juniper and hops, among which phenolic acids (including hydroxybenzoic acids, hydroxycinnamic acids and hydroxyphenylpropanoic acids) and flavonoids (mainly anthocyanins, flavones, flavonols, and isoflavonoids) were the main polyphenols, which may contribute to their antioxidant capacity. Furthermore, the HPLC quantitative analysis showed that both samples had a high concentration of phenolic acids and flavonoids. In the HPLC quantification, the predominant phenolic acids in hops and juniper berries were chlorogenic acid (16.48 ± 0.03 mg/g dw) and protocatechuic acid (11.46 ± 0.03 mg/g dw), respectively. The obtained results highlight the importance of hops and juniper berries as a rich source of functional ingredients in different food, beverage, and pharmaceutical industries.
Collapse
|
40
|
Abstract
Electrochemical sensors and biosensors have been proposed as fast and cost effective analytical tools, meeting the robustness and performance requirements for industrial process monitoring. In wine production, electrochemical biosensors have proven useful for monitoring critical parameters related to alcoholic fermentation (AF), malolactic fermentation (MLF), determining the impact of the various technological steps and treatments on wine quality, or assessing the differences due to wine age, grape variety, vineyard or geographical region. This review summarizes the current information on the voltamperometric biosensors developed for monitoring wine production with a focus on sensing concepts tested in industry-like settings and on the main quality parameters such as glucose, alcohol, malic and lactic acids, phenolic compounds and allergens. Recent progress featuring nanomaterial-enabled enhancement of sensor performance and applications based on screen-printed electrodes is emphasized. A case study presents the monitoring of alcoholic fermentation based on commercial biosensors adapted with minimal method development for the detection of glucose and phenolic compounds in wine and included in an automated monitoring system. The current challenges and perspectives for the wider application of electrochemical sensors in monitoring industrial processes such as wine production are discussed.
Collapse
|
41
|
Electrochemical Sensing of Caffeic Acid Using Gold Nanoparticles Embedded in Poly(3,4-ethylenedioxythiophene) Layer by Sinusoidal Voltage Procedure. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The increasing demand for sensitive electrochemical sensors in various medical and industrial applications promotes the fabrication of novel sensing materials with improved electrocatalytic and analytical performances. This work deals with the development of a composite material based on gold nanoparticles (AuNPs) embedded in poly(3,4-ethylenedioxythiophene) (PEDOT) layer for electrochemical determination of caffeic acid (CA). CA is a phenolic compound with excellent antioxidant properties that is present in vegetables, fruits, and alcoholic and non-alcoholic beverages. Its analytical quantification is of great interest in food production monitoring and healthcare applications. Therefore, the development of sensitive analytical devices for CA monitoring is required. The AuNPs have been prepared in situ onto PEDOT coated glassy carbon electrode (GC) by means of an innovative procedure consisting on the use of a sinusoidal voltage (SV) superimposed on a constant potential. The physico-chemical properties of the PEDOT-AuNPs composite material were investigated by a range of techniques including cyclic voltammetry, electrochemical quartz crystal microbalance, and scanning electron microscopy. The glassy carbon electrode/poly(3,4-ethylenedioxythiophene)-gold nanoparticles-sinusoidal voltage (GC/PEDOT-AuNPs-SV) sensor exhibited good analytical performance toward the CA quantification with a linear response over a wide concentration range from 10 µM to 1 mM. In addition, the proposed GC/PEDOT-AuNPs-SV sensor was successfully applied in the determination of total polyphenols content expressed as equivalents of CA in juice samples.
Collapse
|
42
|
Robles AD, Fabjanowicz M, Płotka-Wasylka J, Konieczka P. Organic Acids and Polyphenols Determination in Polish Wines by Ultrasound-Assisted Solvent Extraction of Porous Membrane-Packed Liquid Samples. Molecules 2019; 24:molecules24234376. [PMID: 31795471 PMCID: PMC6930624 DOI: 10.3390/molecules24234376] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
In the near future, Poland is going to have more and more favorable conditions for viticulture. Organic acids and polyphenols are among the most commonly analyzed compounds due to their beneficial properties for human health and their importance in the winemaking process. In this work, a new technique involving ultrasound-assisted solvent extraction of porous membrane-packed liquid samples (UASE-PMLS) was for the first time described and applied for real samples. The methodology based on UASE-PMLS for organic acids and polyphenols in wine samples was optimized and validated. Using the new technique coupled to GC–MS, organic acids and polyphenols were evaluated in Polish wine samples. Extraction solvent, extraction temperature, derivatization time and sample pH were optimized. Chemometric tools were used for data treatment. Good linearity was obtained for the concentration ranges evaluated with r values between 0.9852 and 0.9993. All parameters of method validation (intra- and inter-day precision and matrix effect) were over 80% with coefficient of variation (CV) up to 17%. Recovery was between (92.0 ± 8.5)% and (113 ± 16)%. Finally, green assessment was evaluated using Analytical Eco-Scale and Green Analytical Procedure Index (GAPI). The UASE-PMLS is characterized by many advantages, e.g., the extraction process is fast and easy coupled to GC–MS. Regarding other extraction techniques, the amount of used solvent is minimum, and no waste is generated. Therefore, it is an environmentally friendly technique.
Collapse
Affiliation(s)
- Alicia D. Robles
- Department of Chemistry, Bromatology, Faculty of Exact and Natural Sciences, National University of Mar del Plata, 3350 Funes Street, Mar del Plata, Buenos Aires 7600, Argentina;
| | - Magdalena Fabjanowicz
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland;
- Correspondence: (M.F.); (J.P.-W.)
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland;
- Correspondence: (M.F.); (J.P.-W.)
| | - Piotr Konieczka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland;
| |
Collapse
|
43
|
Castro-López L, Castillo-Sánchez G, Díaz-Rubio L, Córdova-Guerrero I. Total content of phenols and antioxidant activity of grape skins and seeds cabernet sauvignon cultivated in Valle de Guadalupe, Baja California, México. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191504001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evaluation of the antioxidant capacity of grape cultivars Cabernet sauvignon is important because it varies according to the production area. In this work, it was evaluated the content of phenolic compounds and the total antioxidant capacity (CAT) of grape skins and grape seed Cabernet sauvignon (Vitis vinifera L.) in three vineyards located in the Valley of Guadalupe, B.C, México. The content of total phenols was determined by the Folin-Ciocalteau method and the CAT of grape skin and seed extracts by the stabilization methods of the (ABTS•+) and DPPH• radicals. The CAT in the seed extracts was increased (P < 0.05) in the following order: vineyard 2 < vineyard 1 < vineyard 3. The highest contents of gallic acid, resveratrol and rutin were found in the extracts that presented the highest CAT, which corresponded to the cultivars of vineyard 3. The same happened in extract of skins, having vineyard 3 the contents of CAT (ABTS•+) higher. The total phenolic seed compound was presented in vineyard 2 with 1,545, followed by vineyard 1 with 1,523, vineyard 3 with 1,146 expressed as g GAE.100 g of sample. In skin, the behavior was as follows; vineyard 3 <vineyard 2 <vineyard 1. 1,062, 1,086, 1,115 expressed as g GAE.100 g sample respectively.Keywords: antioxidant, phenolics, ABTS, gallic acid.
Collapse
|
44
|
Castaldo L, Narváez A, Izzo L, Graziani G, Gaspari A, Di Minno G, Ritieni A. Red Wine Consumption and Cardiovascular Health. Molecules 2019; 24:E3626. [PMID: 31597344 PMCID: PMC6804046 DOI: 10.3390/molecules24193626] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
Wine is a popular alcoholic beverage that has been consumed for hundreds of years. Benefits from moderate alcohol consumption have been widely supported by the scientific literature and, in this line, red wine intake has been related to a lesser risk for coronary heart disease (CHD). Experimental studies and meta-analyses have mainly attributed this outcome to the presence in red wine of a great variety of polyphenolic compounds such as resveratrol, catechin, epicatechin, quercetin, and anthocyanin. Resveratrol is considered the most effective wine compound with respect to the prevention of CHD because of its antioxidant properties. The mechanisms responsible for its putative cardioprotective effects would include changes in lipid profiles, reduction of insulin resistance, and decrease in oxidative stress of low-density lipoprotein cholesterol (LDL-C). The aim of this review is to summarize the accumulated evidence correlating moderate red wine consumption with prevention of CHD by focusing on the different mechanisms underlying this relationship. Furthermore, the chemistry of wine as well as chemical factors that influence the composition of the bioactive components of red wine are also discussed.
Collapse
Affiliation(s)
- Luigi Castaldo
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (L.I.); (G.G.); (A.G.)
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Alfonso Narváez
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (L.I.); (G.G.); (A.G.)
| | - Luana Izzo
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (L.I.); (G.G.); (A.G.)
| | - Giulia Graziani
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (L.I.); (G.G.); (A.G.)
| | - Anna Gaspari
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (L.I.); (G.G.); (A.G.)
| | - Giovanni Di Minno
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Alberto Ritieni
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (L.I.); (G.G.); (A.G.)
| |
Collapse
|
45
|
Ricciutelli M, Moretti S, Galarini R, Sagratini G, Mari M, Lucarini S, Vittori S, Caprioli G. Identification and quantification of new isomers of isopropyl-malic acid in wine by LC-IT and LC-Q-Orbitrap. Food Chem 2019; 294:390-396. [PMID: 31126479 DOI: 10.1016/j.foodchem.2019.05.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022]
Abstract
Organic acids of wine comprise one of the main taste groups, that of sourness. Two isomeric compounds with molecular weight of 176 u have been identified in wine using two LC-MS systems, LC-IT (ion trap) and LC-Q-Orbitrap. The two isomers are organic acids, 3-isopropylmalic acid (3-IPMA) never identified in wines, and 2-isopropylmalic acid (2-IPMA), never quantified in wines. After the definitive identification against the authentic standards, an analytical method for their determination in wines was optimised and validated using the LC-IT platform. Linearity was verified in the range 5-320 mg L-1 (correlation coefficients higher than 0.9914) and the recoveries obtained spiking the samples at two fortification levels were higher than 86.7%, with RSDs (n = 9) lower than 15.1%. Finally, the two compounds were quantified in ten red and white Italian wines, and average concentrations were determined at 1.78 mg L-1 (0.56-4.13) and 23.0 mg L-1 (6.7-41.6) of 3-IPMA and 2-IPMA, respectively.
Collapse
Affiliation(s)
- Massimo Ricciutelli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, Italy
| | - Simone Moretti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini, 1, Perugia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini, 1, Perugia, Italy
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, Italy
| | - Michele Mari
- Department of Biomolecular Science, Division of Chemistry, Piazza del Rinascimento 6, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Simone Lucarini
- Department of Biomolecular Science, Division of Chemistry, Piazza del Rinascimento 6, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, Italy.
| |
Collapse
|
46
|
Rocha P, Vilas‐Boas Â, Fontes N, Geraldo D, Bento F. Evaluation of Polyphenols in Wine by Voltammetric Techniques with Screen Printed Carbon Electrodes. ELECTROANAL 2019. [DOI: 10.1002/elan.201900392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Pedro Rocha
- Centre of ChemistryUniversidade do Minho Braga Portugal
| | | | | | - Dulce Geraldo
- Centre of ChemistryUniversidade do Minho Braga Portugal
| | - Fátima Bento
- Centre of ChemistryUniversidade do Minho Braga Portugal
- Departamento de QuímicaUniversidade do Minho Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
47
|
Zhang C, Miao P, Sun M, Yan M, Liu H. Progress in miRNA Detection Using Graphene Material-Based Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901867. [PMID: 31379135 DOI: 10.1002/smll.201901867] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/20/2019] [Indexed: 05/16/2023]
Abstract
MicroRNAs (miRNAs) are short, endogenous, noncoding RNAs that play critical roles in physiologic and pathologic processes and are vital biomarkers for several disease diagnostics and therapeutics. Therefore, rapid, low-cost, sensitive, and selective detection of miRNAs is of paramount importance and has aroused increasing attention in the field of medical research. Among the various reported miRNA sensors, devices based on graphene and its derivatives, which form functional supramolecular nanoassemblies of π-conjugated molecules, have been revealed to have great potential due to their extraordinary electrical, chemical, optical, mechanical, and structural properties. This Review critically and comprehensively summarizes the recent progress in miRNA detection based on graphene and its derivative materials, with an emphasis on i) the underlying working principles of these types of sensors, and the unique roles and advantages of graphene materials; ii) state-of-the-art protocols recently developed for high-performance miRNA sensing, including representative examples; and iii) perspectives and current challenges for graphene sensors. This Review intends to provide readers with a deep understanding of the design and future of miRNA detection devices.
Collapse
Affiliation(s)
- Congcong Zhang
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
| | - Pei Miao
- Department of Chemistry, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250011, China
| | - Mingyuan Sun
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
| | - Mei Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250011, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
48
|
Plant Fibers and Phenolics: A Review on Their Synthesis, Analysis and Combined Use for Biomaterials with New Properties. FIBERS 2019. [DOI: 10.3390/fib7090080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Devising environmental-friendly processes in biotechnology is a priority in the current economic scenario. We are witnessing a constant and steady push towards finding sustainable solutions to societal challenges by promoting innovation-driven activities minimizing the environmental impact and valorizing natural resources. In bioeconomy, plants are among the most important renewable sources of both fibers (woody and cellulosic) and phytochemicals, which find applications in many industrial sectors, spanning from the textile, to the biocomposite, medical, nutraceutical, and pharma sectors. Given the key role of plants as natural sources of (macro)molecules, we here provide a compendium on the use of plant fibers functionalized/impregnated with phytochemicals (in particular phenolic extracts). The goal is to review the various applications of natural fibers functionalized with plant phenolics and to valorize those plants that are source of both fibers and phytochemicals.
Collapse
|
49
|
Pinheiro C, Wienkoop S, de Almeida JF, Brunetti C, Zarrouk O, Planchon S, Gori A, Tattini M, Ricardo CP, Renaut J, Teixeira RT. Phellem Cell-Wall Components Are Discriminants of Cork Quality in Quercus suber. FRONTIERS IN PLANT SCIENCE 2019; 10:944. [PMID: 31417580 PMCID: PMC6682605 DOI: 10.3389/fpls.2019.00944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/08/2019] [Indexed: 05/30/2023]
Abstract
Cork is a renewable, non-wood high valued forest product, with relevant ecological and economic impact in the Mediterranean-type ecosystems. Currently, cork is ranked according to its commercial quality. The most valuable planks are chosen for cork stoppers production. Cork planks with adequate thickness and porosity are classified as stoppable quality cork (SQC). The chemical composition of cork is known, but the regulation of metabolic pathways responsible of cork production and composition, hence of cork quality, is largely unknown. Here, we tested the hypothesis that post-genomic events may be responsible for the development of SQC and N-SQC (non-stoppable quality cork). Here, we show that combined proteomics and targeted metabolomics (namely soluble and cell wall bound phenolics) analyzed on recently formed phellem allows discriminate cork planks of different quality. Phellem cells of SQC and N-SQC displayed different reducing capacity, with consequential impact on both enzymatic pathways (e.g., glycolysis) and other cellular functions, including cell wall assembly and suberization. Glycolysis and respiration related proteins were abundant in both cork quality groups, whereas the level of several proteins associated to mitochondrial metabolism was higher in N-SQC. The soluble and cell wall-bound phenolics in recently formed phellem clearly discriminated SQC from N-SCQ. In our study, SQC was characterized by a high incorporation of aromatic components of the phenylpropanoid pathway in the cell wall, together with a lower content of hydrolysable tannins. Here, we propose that the level of hydrolysable tannins may represent a valuable diagnostic tool for screening recently formed phellem, and used as a proxy for the quality grade of cork plank produced by each tree.
Collapse
Affiliation(s)
- Carla Pinheiro
- Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - João Feio de Almeida
- UCIBIO – REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Cecilia Brunetti
- National Research Council of Italy, Trees and Timber Institute, Florence, Italy
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Florence, Italy
| | - Olfa Zarrouk
- Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Florence, Italy
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, National Research Council of Italy, Florence, Italy
| | - Cândido Pinto Ricardo
- Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | | |
Collapse
|
50
|
Žurga P, Vahčić N, Pasković I, Banović M, Staver MM. Croatian Wines from Native Grape Varieties Have Higher Distinct Phenolic (Nutraceutic) Profiles than Wines from Non-Native Varieties with the Same Geographic Origin. Chem Biodivers 2019; 16:e1900218. [PMID: 31282123 DOI: 10.1002/cbdv.201900218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/05/2019] [Indexed: 02/01/2023]
Abstract
Croatian wines made from native (Plavac mali and Teran) and non-native grape varieties (Cabernet Sauvignon and Merlot), all grown in Croatian coastal regions, were investigated. Analyses included measurements of antioxidant activities, total phenolic contents and concentrations of non-colored phenolic compounds, chosen based on their known nutraceutical properties. Plavac mali wines were distinguished by higher antioxidant activity, total phenolic content and catechin concentrations but lower flavonol concentrations. Teran wines had higher hydroxytyrosol, myricetin and resveratrol concentrations. Merlot and Cabernet Sauvignon wines had higher flavonol concentrations (except myricetin). Canonical analysis was successful in discriminating Plavac mali from Teran wines, and both varieties were separated from non-native varieties. The results indicate distinct genetic potentials of studied varieties and enable wine authentication based on the investigated bioactive compounds.
Collapse
Affiliation(s)
- Paula Žurga
- Teaching Institute of Public Health of Primorsko-goranska County, Krešimirova 52a, HR-51000, Rijeka, Croatia
| | - Nada Vahčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000, Zagreb, Croatia
| | - Igor Pasković
- Institute of Agriculture and Tourism, Karla Huguesa 8, HR-52440, Poreč, Croatia
| | - Mara Banović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000, Zagreb, Croatia
| | - Mladenka Malenica Staver
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000, Rijeka, Croatia
| |
Collapse
|