1
|
Kirtipal N, Seo Y, Son J, Lee S. Systems Biology of Human Microbiome for the Prediction of Personal Glycaemic Response. Diabetes Metab J 2024; 48:821-836. [PMID: 39313228 PMCID: PMC11449821 DOI: 10.4093/dmj.2024.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
The human gut microbiota is increasingly recognized as a pivotal factor in diabetes management, playing a significant role in the body's response to treatment. However, it is important to understand that long-term usage of medicines like metformin and other diabetic treatments can result in problems, gastrointestinal discomfort, and dysbiosis of the gut flora. Advanced sequencing technologies have improved our understanding of the gut microbiome's role in diabetes, uncovering complex interactions between microbial composition and metabolic health. We explore how the gut microbiota affects glucose metabolism and insulin sensitivity by examining a variety of -omics data, including genomics, transcriptomics, epigenomics, proteomics, metabolomics, and metagenomics. Machine learning algorithms and genome-scale modeling are now being applied to find microbiological biomarkers associated with diabetes risk, predicted disease progression, and guide customized therapy. This study holds promise for specialized diabetic therapy. Despite significant advances, some concerns remain unanswered, including understanding the complex relationship between diabetes etiology and gut microbiota, as well as developing user-friendly technological innovations. This mini-review explores the relationship between multiomics, precision medicine, and machine learning to improve our understanding of the gut microbiome's function in diabetes. In the era of precision medicine, the ultimate goal is to improve patient outcomes through personalized treatments.
Collapse
Affiliation(s)
- Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Youngchang Seo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jangwon Son
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
2
|
Badawy S, Liu Y, Guo M, Liu Z, Xie C, Marawan MA, Ares I, Lopez-Torres B, Martínez M, Maximiliano JE, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res Int 2023; 172:113158. [PMID: 37689911 DOI: 10.1016/j.foodres.2023.113158] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Conjugated linoleic acid (CLA) has attracted great attention in recent years as a popular class of functional food that is broadly used. It refers to a group of geometric and positional isomers of linoleic acid (LA) with a conjugated double bond. The main natural sources of CLA are dairy products, beef and lamb, whereas only trace amounts occur naturally in plant lipids. CLA has been shown to improve various health issues, having effects on obesity, inflammatory, anti-carcinogenicity, atherogenicity, immunomodulation, and osteosynthesis. Also, compared to studies on humans, many animal researches reveal more positive benefits on health. CLA represents a nutritional avenue to improve lifestyle diseases and metabolic syndrome. Most of these effects are attributed to the two major CLA isomers [conjugated linoleic acid cis-9,trans-11 isomer (c9,t11), and conjugated linoleic acid trans-10,cis-12 isomer (t10,c12)], and their mixture (CLA mix). In contrast, adverse effects of CLA have been also reported, such as glucose homeostasis, insulin resistance, hepatic steatosis and induction of colon carcinogenesis in humans, as well as milk fat inhibition in ruminants, lowering chicken productivity, influencing egg quality and altering growth performance in fish. This review article aims to discuss the health benefits of CLA as a nutraceutical supplement and highlight the possible mechanisms of action that may contribute to its outcome. It also outlines the feasible adverse effects of CLA besides summarizing the recent peer-reviewed publications on CLA to ensure its efficacy and safety for proper application in humans.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changqing Xie
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
3
|
Jang HR, Lee HY. Mechanisms linking gut microbial metabolites to insulin resistance. World J Diabetes 2021; 12:730-744. [PMID: 34168724 PMCID: PMC8192250 DOI: 10.4239/wjd.v12.i6.730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance is the rate-limiting step in the development of metabolic diseases, including type 2 diabetes. The gut microbiota has been implicated in host energy metabolism and metabolic diseases and is recognized as a quantitatively important organelle in host metabolism, as the human gut harbors 10 trillion bacterial cells. Gut microbiota break down various nutrients and produce metabolites that play fundamental roles in host metabolism and aid in the identification of possible therapeutic targets for metabolic diseases. Therefore, understanding the various effects of bacterial metabolites in the development of insulin resistance is critical. Here, we review the mechanisms linking gut microbial metabolites to insulin resistance in various insulin-responsive tissues.
Collapse
Affiliation(s)
- Hye Rim Jang
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
| | - Hui-Young Lee
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon 21936, South Korea
| |
Collapse
|
4
|
Chang H, Gan W, Liao X, Wei J, Lu M, Chen H, Wang S, Ma Y, Wu Q, Yu Y, Liu X. Conjugated linoleic acid supplements preserve muscle in high-body-fat adults: A double-blind, randomized, placebo trial. Nutr Metab Cardiovasc Dis 2020; 30:1777-1784. [PMID: 32684362 DOI: 10.1016/j.numecd.2020.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Conjugated linoleic acid (CLA) has been used to improve body composition in weight management. However, clinical trial results are inconsistent and limited among Asians. We aimed to investigate the effect of CLA on body composition of Chinese adults with elevated body fat percentage. METHODS AND RESULTS In this double-blind, randomized, placebo-controlled trial, 66 Chinese adults (aged 18-45 years old, 37.9% male) with elevated body fat percentage were provided with 3.2 g/day CLA (n = 33) or 3.2 g/day placebo (sunflower oil; n = 33) for 12 weeks. Both groups received lifestyle counseling, featured with low fat and low sugar diet, and moderate physical activity. Body composition was measured using dual-energy X-ray absorptiometry at the baseline and end of the trial. Sixty-four participants finished this study. Compared with the placebo group, the CLA group showed increased trunk muscle mass (MM) (0.6 ± 1.7 vs. -0.3 ± 1.2 kg, P = 0.019). Among those with an adherence score higher than 0.80 (n = 56, 87.5%), a greater increase in both total and trunk MM was observed in the CLA group (both P < 0.05). Moreover, the effect on MM appeared to be more evident in men, those with a body mass index <25 kg/m2, or those with higher self-rated physical activity. CONCLUSIONS In Chinese adults with elevated body fat percentage, 3.2 g/day CLA supplementation may be effective in preserving MM, especially in the trunk region. REGISTRATION This study was registered at ClinicalTrials.gov as NCT03915808 on April 9, 2019.
Collapse
Affiliation(s)
- Huan Chang
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Wei Gan
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, OX3 7LF, UK; Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Xia Liao
- Department of Nutrition, The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, 277 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Junxiang Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Mengnan Lu
- Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Huangtao Chen
- Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Shenglong Wang
- Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Yan Ma
- School of Sports and Health Sciences, Xi'an Physical Education University, 65 North Hanguang Road, 710068, Xi'an, Shaanxi, China
| | - Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Yan Yu
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China.
| | - Xin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Mohammadi I, Mahdavi AH, Rabiee F, Nasr Esfahani MH, Ghaedi K. Positive effects of conjugated linoleic acid (CLA) on the PGC1-α expression under the inflammatory conditions induced by TNF-α in the C2C12 cell line. Gene 2020; 735:144394. [DOI: 10.1016/j.gene.2020.144394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
|
6
|
Chain length of dietary fatty acids determines gastrointestinal motility and visceromotor function in mice in a fatty acid binding protein 4-dependent manner. Eur J Nutr 2019; 59:2481-2496. [PMID: 31562532 PMCID: PMC7413912 DOI: 10.1007/s00394-019-02094-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
Purpose We hypothesize that different types of dietary fatty acids (FAs) affect gastrointestinal (GI) motility and visceromotor function and that this effect can be regulated by the fatty acid binding protein 4 (FABP4). Methods Mice were fed for 60 days with standard diet (STD), STD with 7% (by weight) coconut oil, rich in medium-chain FAs (MCFAs) (COCO), or with 7% evening primrose oil, rich in long-chain FAs (LCFAs) (EPO). In each group, half of the mice received FABP4 inhibitor, BMS309403 (1 mg/kg; i.p.) twice a week. Body weight (BW) and food intake were measured; well-established tests were performed to characterize the changes in GI motility and visceral pain. White adipose tissue and colonic samples were collected for cell culturing and molecular studies. Results COCO significantly increased GI transit, but not colonic motility. COCO and EPO delayed the onset of diarrhea, but none affected the effect of loperamide. EPO reduced BW and increased the visceromotor response (VMR) to colorectal distension (CRD). COCO and EPO reduced differentiation of preadipocytes. Treatment with BMS309403: (1) reversed the effects induced by COCO in physiological conditions and in mouse models of diarrhea; (2) prevented the effects of EPO on BW, VMR to CRD and castor oil-induced diarrhea; (3) affected proliferation of preadipocytes; (4) changed the expression of Fabp4 in colonic and adipocyte samples from COCO and EPO. Conclusion Modifying dietary intake of MCFAs and LCFAs may be used to control GI motility or visceral pain and thus modulate the symptoms of functional GI disorders. The effect is dependent on the expression of FABP4. Electronic supplementary material The online version of this article (10.1007/s00394-019-02094-2) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Chen PB, Kim JH, Kim D, Clark JM, Park Y. Conjugated Linoleic Acid Regulates Body Composition and Locomotor Activity in a Sex-Dependent Manner in Drosophila melanogaster. Lipids 2018; 53:825-834. [PMID: 30334268 DOI: 10.1002/lipd.12091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022]
Abstract
Conjugated linoleic acid (CLA) has been reported to be a bioactive food component. However, there is limited knowledge on the sex-dependent effects of CLA on energy metabolism. In the present study, Drosophila melanogaster was used to investigate the sex-dependent effects of CLA with respect to body fat, muscle, locomotion, and a key metabolic regulator, AMP-activated protein kinase α (AMPKα). Adult flies were fed a cornmeal-based fly food with 0.5% of CLA oil (50:50 of cis-9,trans-11 and trans-10,cis-12 CLA isomers in triacylglycerol (TAG) form), 0.5% safflower oil (high in linoleic acid [LNA] as control), or 0.5% water (as blank) for 5 days. Accumulation of CLA in tissue was verified using gas chromatography-mass spectrometry. CLA-fed flies had reduced TAG and increased locomotor activity when compared to LNA-fed control flies. In addition, CLA increased the muscle content when compared to the blank. Moreover, following CLA supplementation, increased AMPKα activity was observed in females, but not in males. These sex-dependent metabolic effects of CLA may be due to physiological differences in lipid metabolism and nutrient requirements. In conclusion, CLA promoted the body composition and locomotion behavior in D. melanogaster and regulated the sex-specific metabolism in part via AMPKα. As key physiological processes are conserved between fly and human, information obtained from this research could provide valuable insights into sex-dependent responses to CLA in humans.
Collapse
Affiliation(s)
- Phoebe B Chen
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Ju Hyeon Kim
- Department of Veterinary and Animal Sciences, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Zhang T, Huang J, Tian H, Ma Y, Chen Z, Wang J, Shi H, Luo J. trans-10,cis-12 conjugated linoleic acid alters lipid metabolism of goat mammary epithelial cells by regulation of de novo synthesis and the AMPK signaling pathway. J Dairy Sci 2018. [DOI: 10.3168/jds.2017-12822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Chen PB, Yang JS, Park Y. Adaptations of Skeletal Muscle Mitochondria to Obesity, Exercise, and Polyunsaturated Fatty Acids. Lipids 2018; 53:271-278. [PMID: 29663395 DOI: 10.1002/lipd.12037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022]
Abstract
Mitochondria intricately modulate their energy production through the control of mitochondrial adaptation (mitochondrial biogenesis, fusion, and/or fission) to meet energy demands. Nutrient overload may result in dysregulated mitochondrial biogenesis, morphology toward mitochondrial fragmentation, and oxidative stress in the skeletal muscle. In addition, physical activity and diet components influence mitochondrial function. Exercise may stimulate mitochondrial biogenesis and promote mitochondrial fusion/fission in the skeletal muscle. Moreover, some dietary fatty acids, such as n-3 polyunsaturated fatty acids and conjugated linoleic acid, have been identified to positively regulate mitochondrial adaptation in the skeletal muscle. This review discusses the association of mitochondrial impairments and obesity, and presents an overview of various mechanisms of which exercise training and mitochondrial nutrients promote mitochondrial function in the skeletal muscle.
Collapse
Affiliation(s)
- Phoebe B Chen
- Department of Food Science, University of Massachusetts, Amherst, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Jason S Yang
- Department of Food Science, University of Massachusetts, Amherst, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, 102 Holdsworth Way, Amherst, MA, 01003, USA
| |
Collapse
|
10
|
Shen P, Kershaw JC, Yue Y, Wang O, Kim KH, McClements DJ, Park Y. Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans. Food Chem 2018; 249:193-201. [PMID: 29407924 DOI: 10.1016/j.foodchem.2018.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
Abstract
Conjugated linoleic acid (CLA) has been reported to reduce fat storage in cell culture and animal models. In the current study, the effects of CLA on the fat accumulation, activities, and proteomics were investigated using Caenorhabditis elegans. 100 µM CLA-TG nanoemulsion significantly reduced fat accumulation by 29% compared to linoleic acid (LA)-TG treatment via sir-2.1 (the ortholog of Sirtuin 1), without altering the worm size, growth rate, and pumping rate of C. elegans. CLA significantly increased moving speed and amplitude (the average centroid displacement over the entire track) of wild type worms compared to the LA group and these effects were dependent on aak-2 (AMPKα ortholog) and sir-2.1. Proteomics analysis showed CLA treatment influences various proteins associated in reproduction and development, translation, metabolic processes, and catabolism and proteolysis, in C. elegans. We have also confirmed the proteomics data that CLA reduced the fat accumulation via abs-1 (ATP Synthase B homolog). However, there were no significant effects of CLA on brood size, progeny numbers, and hatchability compared to LA treatment.
Collapse
Affiliation(s)
- Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, USA
| | - Jonathan C Kershaw
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, USA
| | - Ou Wang
- Department of Food Science, University of Massachusetts, Amherst, USA; National Institute for Nutrition and Health, Chinese Centre for Disease Control and Prevention, Beijing 10050, China
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | | | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, USA.
| |
Collapse
|
11
|
Kim Y, Kim D, Park Y. Conjugated linoleic acid (CLA) promotes endurance capacity via peroxisome proliferator-activated receptor δ-mediated mechanism in mice. J Nutr Biochem 2016; 38:125-133. [PMID: 27736732 DOI: 10.1016/j.jnutbio.2016.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/30/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
Previously, it was reported that conjugated linoleic acid (CLA) with exercise training potentially improved endurance capacity via the peroxisome proliferator-activated receptor δ (PPARδ)-mediated mechanism in mice. This study determined the role of exercise and/or CLA in endurance capacity and PPARδ-associated regulators. Male 129Sv/J mice were fed either control (soybean oil) or CLA (0.5%) containing diets for 4 weeks and were further divided into sedentary or training regimes. CLA supplementation significantly reduced body weight and fat mass independent of exercise during the experimental period. Endurance capacity was significantly improved by CLA supplementation, while no effect of exercise was observed. Similarly, CLA treatment significantly increased expressions of sirtuin 1 and PPARγ coactivator-1α, up-stream regulators of PPARδ, in both sedentary and trained animals. With respect to downstream markers of PPARδ, CLA up-regulated the key biomarker needed to stimulate mitochondrial biogenesis, nuclear respiratory factor 1. Moreover, CLA supplementation significantly induced overall genes associated with muscle fibers, such as type I (slow-twitch) and type II (fast twitch). Taken together, it suggests that CLA improves endurance capacity independent of mild-intensity exercise via PPARδ-mediated mechanism.
Collapse
Affiliation(s)
- Yoo Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
12
|
Sources and Bioactive Properties of Conjugated Dietary Fatty Acids. Lipids 2016; 51:377-97. [PMID: 26968402 DOI: 10.1007/s11745-016-4135-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.
Collapse
|
13
|
Kim Y, Kim J, Whang KY, Park Y. Impact of Conjugated Linoleic Acid (CLA) on Skeletal Muscle Metabolism. Lipids 2016; 51:159-78. [PMID: 26729488 DOI: 10.1007/s11745-015-4115-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Abstract
Conjugated linoleic acid (CLA) has garnered special attention as a food bioactive compound that prevents and attenuates obesity. Although most studies on the effects of CLA on obesity have focused on the reduction of body fat, a number of studies have demonstrated that CLA also increases lean body mass and enhances physical performances. It has been suggested that these effects may be due in part to physiological changes in the skeletal muscle, such as changes in the muscle fiber type transformation, alteration of the intracellular signaling pathways in muscle metabolism, or energy metabolism. However, the mode of action for CLA in muscle metabolism is not completely understood. The purpose of this review is to summarize the current knowledge of the effects of CLA on skeletal muscle metabolism. Given that CLA not only reduces body fat, but also improves lean mass, there is great potential for the use of CLA to improve muscle metabolism, which would have a significant health impact.
Collapse
Affiliation(s)
- Yoo Kim
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Jonggun Kim
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Kwang-Youn Whang
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA.
| |
Collapse
|
14
|
Kim Y, Kim D, Good DJ, Park Y. Conjugated linoleic acid (CLA) influences muscle metabolism via stimulating mitochondrial biogenesis signaling in adult‐onset inactivity induced obese mice. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoo Kim
- Department of Food ScienceUniversity of MassachusettsAmherstMAUSA
| | - Daeyoung Kim
- Department of Mathematics and StatisticsUniversity of MassachusettsAmherstMAUSA
| | - Deborah J. Good
- Department of Human Nutrition, Foods and ExerciseVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Yeonhwa Park
- Department of Food ScienceUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|
15
|
Kim Y, Kim D, Good DJ, Park Y. Effects of postweaning administration of conjugated linoleic acid on development of obesity in nescient basic helix-loop-helix 2 knockout mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5212-5223. [PMID: 25976059 DOI: 10.1021/acs.jafc.5b00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Conjugated linoleic acid (CLA) has been reported to prevent body weight gain and fat accumulation in part by improving physical activity in mice. However, the effects of postweaning administration of CLA on the development of obesity later in life have not yet been demonstrated. The current study investigated the role of postweaning CLA treatment on skeletal muscle energy metabolism in genetically induced inactive adult-onset obese model, nescient basic helix-loop-helix 2 knockout (N2KO) mice. Four-week-old male N2KO and wild type mice were fed either control or a CLA-containing diet (0.5%) for 4 weeks, and then CLA was withdrawn and control diet provided to all mice for the following 8 weeks. Postweaning CLA supplementation in wild type animals, but not N2KO mice, may activate AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-δ (PPARδ) as well as promote desensitization of phosphatase and tensin homologue (PTEN) and sensitization of protein kinase B (AKT) at threonine 308 in gastrocnemius skeletal muscle, improving voluntary activity and glucose homeostasis. We suggest that postweaning administration of CLA may in part stimulate the underlying molecular targets involved in muscle energy metabolism to reduce weight gain in normal animals, but not in the genetically induced inactive adult-onset animal model.
Collapse
Affiliation(s)
| | | | - Deborah J Good
- §Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | |
Collapse
|
16
|
Conjugated Linoleic Acid (CLA) Stimulates Mitochondrial Biogenesis Signaling by the Upregulation of PPARγ Coactivator 1α (PGC‐1α) in C2C12 Cells. Lipids 2015; 50:329-38. [DOI: 10.1007/s11745-015-4000-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/10/2015] [Indexed: 01/11/2023]
|
17
|
Kim J, Park Y, Park Y. trans-10, cis-12 CLA promotes osteoblastogenesis via SMAD mediated mechanism in bone marrow mesenchymal stem cells. J Funct Foods 2014; 8:367-376. [PMID: 25035711 PMCID: PMC4095819 DOI: 10.1016/j.jff.2014.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The inverse relationship between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells has been linked to overall bone mass. It has previously been reported that conjugated linoleic acid (CLA) inhibits adipogenesis via a peroxisome-proliferator activated receptor-γ (PPARγ) mediated mechanism, while it increases osteoblastogenesis via a PPARγ-independent mechanism in mesenchymal stem cells. This suggests potential implication of CLA on improving bone mass. Thus the purpose of this study was to determine involvement of CLA on regulation of osteoblastogenesis in murine mesenchymal stem cells by focusing on the Mothers against decapentaplegic (MAD)-related family of molecules 8 (SMAD8), one of key regulators of osteoblastogenesis. The trans-10,cis-12 CLA, but not the cis-9,trans-11, significantly increased osteoblastogenesis via SMAD8, and inhibited adipogenesis independent of SMAD8, while inhibiting factors regulating osteoclastogenesis in this model. These suggest that CLA may help improve osteoblastogenesis via a SMAD8 mediated mechanism.
Collapse
Affiliation(s)
- Jonggun Kim
- Department of Food Science, University of Massachusetts, Amherst, 102
Holdsworth Way, Amherst, MA 01003
| | - Yooheon Park
- Department of Food Science, University of Massachusetts, Amherst, 102
Holdsworth Way, Amherst, MA 01003
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, 102
Holdsworth Way, Amherst, MA 01003
| |
Collapse
|
18
|
trans-10,cis-12 conjugated linoleic acid enhances endurance capacity by increasing fatty acid oxidation and reducing glycogen utilization in mice. Lipids 2012; 47:855-63. [PMID: 22782371 DOI: 10.1007/s11745-012-3698-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/24/2012] [Indexed: 12/16/2022]
Abstract
The supplementation of conjugated linoleic acid (CLA) has been shown to improve endurance by enhancing fat oxidation during exercise in rodents and humans. This study was designed to investigate the isomer-specific effects of CLA on endurance capacity and energy metabolism in mice during exercise. Male 129Sv/J mice were divided into three dietary groups and fed treatment diet for 6 weeks; control, 0.5 % cis-9,trans-11 (c9,t11) CLA, or 0.5 % trans-10,cis-12 (t10,c12) CLA. Dietary t10,c12 CLA induced a significant increase in maximum running time and distance until exhaustion with a dramatic reduction of total adipose depots compared to a control group, but there were no significant changes in endurance with the c9,t11 CLA treatment. Serum triacylglycerol and non-esterified fatty acid concentrations were significantly lower in the t10,c12 fed mice after exercise compared to control and the c9,t11 CLA fed-animals. Glycogen contents in livers of the t10,c12 fed-mice were higher than those in control mice, concomitant with reduction of serum L-lactate level. There were no differences in non-exercise physical activity among all treatment groups. In addition, the mRNA expression levels of carnitine palmitoyl transferase 1β, uncoupling protein 2 and peroxisome proliferator-activated receptor δ (PPARδ) in skeletal muscle during exercise were significantly up-regulated by the t10,c12 CLA but not the c9,t11 CLA. These results suggest that the t10,c12 CLA is responsible for improving endurance exercise capacity by promoting fat oxidation with a reduction of the consumption of stored liver glycogen, potentially mediated via PPARδ dependent mechanisms.
Collapse
|
19
|
Kim JH, Gilliard D, Good DJ, Park Y. Preventive effects of conjugated linoleic acid on obesity by improved physical activity in nescient basic helix-loop-helix 2 knockout mice during growth period. Food Funct 2012; 3:1280-5. [DOI: 10.1039/c2fo30103b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|