• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4619893)   Today's Articles (1673)   Subscriber (49405)
For: Qiu H, Luo C, Sun M, Lu F, Fan L, Li X. A novel chemiluminescence sensor for determination of quercetin based on molecularly imprinted polymeric microspheres. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.102] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Number Cited by Other Article(s)
1
Rajamanikandan R, Sasikumar K, Ju H. Ti3C2 MXene quantum dots as an efficient fluorescent probe for bioflavonoid quercetin quantification in food samples. Anal Chim Acta 2024;1322:343069. [PMID: 39182987 DOI: 10.1016/j.aca.2024.343069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
2
Sarikaya İ, Kaleoğlu E, Çakar S, Soykan C, Özacar M. An Enhanced Photosensitive Sensor Based on ITO/MWCNTs@Polymer Composite@BiVO4 for Quercetin Detection. BIOSENSORS 2023;13:729. [PMID: 37504126 PMCID: PMC10377499 DOI: 10.3390/bios13070729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
3
Ye K, Xu S, Zhou Q, Wang S, Xu Z, Liu Z. Advances in Molecular Imprinting Technology for the Extraction and Detection of Quercetin in Plants. Polymers (Basel) 2023;15:polym15092107. [PMID: 37177253 PMCID: PMC10180927 DOI: 10.3390/polym15092107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]  Open
4
Shu H, Song C, Yang L, Wang C, Chen D, Zhang X, Ma Y, Yang W. Self-Stabilized Precipitation Polymerization of Vinyl Chloride and Maleic Anhydride. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
5
Mariyappan V, Karuppusamy N, Chen SM, Raja P, Ramachandran R. Electrochemical determination of quercetin using glassy carbon electrode modified with WS2/GdCoO3 nanocomposite. Mikrochim Acta 2022;189:118. [PMID: 35195788 DOI: 10.1007/s00604-022-05219-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
6
Ma Y, Yang X, Leng X, Liu X, Schipper D. A high-nuclearity Cd(ii)–Nd(iii) nanocage for the rapid ratiometric fluorescent detection of quercetin. CrystEngComm 2022. [DOI: 10.1039/d2ce00556e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
7
Yang S, Deng K, Zhang J, Bai C, Peng J, Fang Z, Xu W. Synergy effect of Ag plasmonic resonance and heterostructure construction enhanced visible-light photoelectrochemical sensing for quercetin. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
8
Fluorescence determination of quercetin in food samples using polyhedron-shaped MOF@MOF(NUZ-8) based on NH2-UiO-66 and ZIF-8. Mikrochim Acta 2021;188:29. [PMID: 33409815 DOI: 10.1007/s00604-020-04664-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
9
Niu M, Yang X, Ma Y, Wang C, Schipper D. NIR luminescent detection of quercetin based on an octanuclear Zn(ii)–Nd(iii) salen nanocluster. RSC Adv 2021;11:35893-35897. [PMID: 35492787 PMCID: PMC9043252 DOI: 10.1039/d1ra06494k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022]  Open
10
Apak R, Çekiç SD, Üzer A, Çapanoğlu E, Çelik SE, Bener M, Can Z, Durmazel S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020;12:5266-5321. [PMID: 33170182 DOI: 10.1039/d0ay01521k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
11
Sadeghi S, Hosseinpour-Zaryabi M. A sensitive fluorescent probe based on dithizone-capped ZnS quantum dots for quercetin determination in biological samples. LUMINESCENCE 2020;35:1391-1401. [PMID: 32592271 DOI: 10.1002/bio.3903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/09/2022]
12
Nitrogen-doped graphene-ionic liquid-glassy carbon microsphere paste electrode for ultra-sensitive determination of quercetin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
13
Nghia NN, Huy BT, Lee YI. Highly sensitive and selective optosensing of quercetin based on novel complexation with yttrium ions. Analyst 2020;145:3376-3384. [PMID: 32239000 DOI: 10.1039/d0an00117a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
14
Gao YF, Jin X, Kong FY, Wang ZX, Wang W. One-pot green and simple synthesis of actinian nickel-doped carbon nanoflowers for ultrasensitive sensing of quercetin. Analyst 2019;144:7283-7289. [PMID: 31697283 DOI: 10.1039/c9an01907c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
15
Altunay N, Bingöl D, Elik A, Gürkan R. Vortex assisted-ionic liquid dispersive liquid-liquid microextraction and spectrophotometric determination of quercetin in tea, honey, fruit juice and wine samples after optimization based on response surface methodology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019;221:117166. [PMID: 31163328 DOI: 10.1016/j.saa.2019.117166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
16
Apak R, Demirci Çekiç S, Üzer A, Çelik SE, Bener M, Bekdeşer B, Can Z, Sağlam Ş, Önem AN, Erçağ E. Novel Spectroscopic and Electrochemical Sensors and Nanoprobes for the Characterization of Food and Biological Antioxidants. SENSORS (BASEL, SWITZERLAND) 2018;18:E186. [PMID: 29324685 PMCID: PMC5796370 DOI: 10.3390/s18010186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 02/01/2023]
17
Electrochemical quercetin sensor based on a nanocomposite consisting of magnetized reduced graphene oxide, silver nanoparticles and a molecularly imprinted polymer on a screen-printed electrode. Mikrochim Acta 2017;185:70. [DOI: 10.1007/s00604-017-2613-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/06/2017] [Indexed: 01/08/2023]
18
Timofeeva II, Vakh CS, Bulatov AV, Worsfold PJ. Flow analysis with chemiluminescence detection: Recent advances and applications. Talanta 2017;179:246-270. [PMID: 29310229 DOI: 10.1016/j.talanta.2017.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 10/18/2022]
19
De Middeleer G, Dubruel P, De Saeger S. Molecularly imprinted polymers immobilized on 3D printed scaffolds as novel solid phase extraction sorbent for metergoline. Anal Chim Acta 2017;986:57-70. [DOI: 10.1016/j.aca.2017.07.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
20
Wang X, Huang P, Ma X, Wang H, Lu X, Du X. Preparation and evaluation of magnetic core-shell mesoporous molecularly imprinted polymers for selective adsorption of tetrabromobisphenol S. Talanta 2017;166:300-305. [DOI: 10.1016/j.talanta.2017.01.067] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 12/01/2022]
21
Vilian AE, Puthiaraj P, Kwak CH, Choe SR, Huh YS, Ahn WS, Han YK. Electrochemical determination of quercetin based on porous aromatic frameworks supported Au nanoparticles. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
22
Lin ZZ, Zhang HY, Peng AH, Lin YD, Li L, Huang ZY. Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers. Food Chem 2016;200:32-7. [DOI: 10.1016/j.foodchem.2016.01.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 12/14/2015] [Accepted: 01/01/2016] [Indexed: 10/22/2022]
23
De Middeleer G, Dubruel P, De Saeger S. Characterization of MIP and MIP functionalized surfaces: Current state-of-the-art. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
24
Zhang Z, Miao Y, Lian L, Yan G. Detection of quercetin based on Al3+-amplified phosphorescence signals of manganese-doped ZnS quantum dots. Anal Biochem 2015;489:17-24. [DOI: 10.1016/j.ab.2015.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/26/2015] [Accepted: 08/05/2015] [Indexed: 02/08/2023]
25
Zhang J, Ni YL, Wang LL, Ma JQ, Zhang ZQ. Selective solid-phase extraction of artificial chemicals from milk samples using multiple-template surface molecularly imprinted polymers. Biomed Chromatogr 2015;29:1267-73. [DOI: 10.1002/bmc.3416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/17/2014] [Accepted: 11/28/2014] [Indexed: 11/07/2022]
26
Arvand M, Chaibakhsh N, Daneshvar S. Amperometric Determination of Quercetin in Some Foods by Magnetic Core/Shell Fe3O4@ZnO Nanoparticles Modified Glassy Carbon Electrode. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-014-0080-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
27
Cheng X, Yan H, Wang X, Sun N, Qiao X. Vortex-assisted magnetic dispersive solid-phase microextraction for rapid screening and recognition of dicofol residues in tea products. Food Chem 2014;162:104-9. [DOI: 10.1016/j.foodchem.2014.04.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/15/2014] [Accepted: 04/05/2014] [Indexed: 11/29/2022]
28
Determination of quercetin using a photo-electrochemical sensor modified with titanium dioxide and a platinum(II)-porphyrin complex. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1374-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
29
Zuo P, Xiao D, Gao M, Peng J, Pan R, Xia Y, He H. Single-step preparation of fluorescent carbon nanoparticles, and their application as a fluorometric probe for quercetin. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1236-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
30
Song X, Xu S, Chen L, Wei Y, Xiong H. Recent advances in molecularly imprinted polymers in food analysis. J Appl Polym Sci 2014. [DOI: 10.1002/app.40766] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
31
Liu X, Lv P, Yao G, Ma C, Tang Y, Wu Y, Huo P, Pan J, Shi W, Yan Y. Selective degradation of ciprofloxacin with modified NaCl/TiO2 photocatalyst by surface molecular imprinted technology. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.10.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
32
Pardeshi S, Dhodapkar R, Kumar A. Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis. Food Chem 2013;146:385-93. [PMID: 24176358 DOI: 10.1016/j.foodchem.2013.09.084] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/30/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
33
Li GL, Möhwald H, Shchukin DG. Precipitation polymerization for fabrication of complex core–shell hybrid particles and hollow structures. Chem Soc Rev 2013;42:3628-46. [DOI: 10.1039/c3cs35517a] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
34
Iranifam M. Revisiting flow-chemiluminescence techniques: pharmaceutical analysis. LUMINESCENCE 2012;28:798-820. [DOI: 10.1002/bio.2441] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 11/10/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA