1
|
Zhao F, Wang J, Wu M, Fan J, Liu S, Deng F, Wang S, Cheng Y, Wang Y. Investigating the mechanism of Qifu Yin in ameliorating memory disorders through pseudo-targeted lipidomics. Mol Omics 2025; 21:69-86. [PMID: 39612167 DOI: 10.1039/d4mo00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Memory disorder (MD) is a neurodegenerative disease with an increasing incidence rate that adversely affects the quality of life of patients. Qifu Yin (QFY), a classic traditional Chinese medicine formula used for treating dementia, is known for its neuroprotective properties, although its mechanism of action requires further exploration. In this study, D-galactose combined with aluminum chloride was used to establish an MD rat model, and behavior, histopathology, and related indicators were used to evaluate the pharmacodynamics of the formula in the rats. Furthermore, brain tissues were examined using pseudo-targeted lipidomics analysis, and candidate ion pairs were screened through mass spectrometry using UPLC-Q/Orbitrap HRMS. An sMRM detection method for candidate ion pairs was developed using UHPLC-Q-TRAP-MS/MS and validated. This approach was applied to the lipidomics study of QFY in improving MD. Differential metabolites screened through pseudo-targeted lipidomics were analyzed by employing network pharmacology, and the pathway was verified to explore their mechanism of action. Results demonstrated that QFY could improve memory impairment. A total of 1052 ion pairs were constructed in the pseudo-targeted lipidomics analysis, identifying 33 differential metabolites and 5 metabolic pathways. Furthermore, 31 differential metabolites in MD rats treated with QFY were significantly reversed. Immunohistochemical analysis showed that QFY could inhibit the expression of inflammatory factors. Network pharmacological analysis showed that the calcium signaling pathway was the main signaling pathway, and QFY could significantly reverse the expression levels of mRNA and protein. Thus, QFY can improve memory impairment in rats, which may be related to the regulation of oxidative stress, lipid metabolism disorder and the calcium signaling pathway.
Collapse
Affiliation(s)
- Fuxia Zhao
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Jing Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Minjun Wu
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Jiaqi Fan
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Shiqi Liu
- Schools of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Fanying Deng
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Shihui Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Yangang Cheng
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Yan Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| |
Collapse
|
2
|
Origüela V, Gázquez A, López-Andreo MJ, Bueno-Vargas P, Vurma M, López-Pedrosa JM, Leyshon BJ, Kuchan M, Chan JP, Larqué E. Effects of new lipid ingredients during pregnancy and lactation on rat offspring brain gene expression. Food Funct 2024. [PMID: 39660590 DOI: 10.1039/d4fo04425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Maternal dietary fat intake during pregnancy and lactation may influence the bioavailability of essential lipophilic nutrients, such as docosahexaenoic acid (DHA), that are important for both the mother and her child's development. This study aimed to evaluate the effects of different maternal fat diets on fat absorption and pup brain development by analyzing gene expression. Rats were fed diets with different lipid matrices during pregnancy and lactation: diet A, mono and diglycerides (MDG) + soy lecithin phospholipids (PL); diet B, MDG + soy lecithin PL + milk-derived PL; and a control diet. All diets contained the same amount of DHA. We determined maternal dietary fat absorption, as well as the offspring fatty acid (FA) profile in both plasma and brain samples at birth and in pups at 14 days post-natal. In addition, microarray analysis was performed to characterize the pup brain gene expression. Maternal dietary fat and DHA apparent absorption was enhanced only with diet B. However, we observed higher plasma DHA and total FA concentrations in lactating pups from the experimental groups A and B compared to the control. Both brain DHA and total FA concentrations were also higher in fetuses and 14-day-old pups from group A with respect to the control, with diet B following the same trend. Offspring brain gene expression was affected by both diets A and B, with changes observed in synaptic and developmental processes in the fetuses, and the detoxification process in 14-day-old pups. Incorporating MDG and PL-rich lipid matrices into maternal diets during pregnancy and lactation may be highly beneficial for ensuring proper neurodevelopment of the fetus and newborn.
Collapse
Affiliation(s)
- Valentina Origüela
- Department of Physiology, Faculty of Biology, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain.
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Antonio Gázquez
- Department of Physiology, Faculty of Biology, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain.
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - María José López-Andreo
- Molecular Biology Section, Scientific and Technical Research Area (ACTI), University of Murcia, 30100 Murcia, Spain
| | - Pilar Bueno-Vargas
- Research and Development Department, Abbott Nutrition, 18004 Granada, Spain
| | - Mustafa Vurma
- Research and Development Department, Abbott Nutrition, Columbus, 43215 Ohio, USA
| | | | - Brian J Leyshon
- Research and Development Department, Abbott Nutrition, Columbus, 43215 Ohio, USA
| | - Matthew Kuchan
- Research and Development Department, Abbott Nutrition, Columbus, 43215 Ohio, USA
| | - Jia Pei Chan
- Research and Development Department, Abbott Nutrition, Columbus, 43215 Ohio, USA
| | - Elvira Larqué
- Department of Physiology, Faculty of Biology, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain.
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
3
|
Yang T, Zhang P, Hu J, Xu W, Jiang W, Feng R, Lou Y, Jin X, Qian Z, Gao F, Gao K, Liu R, Yang Y. Exploring the neural correlates of fat taste perception and discrimination: Insights from electroencephalogram analysis. Food Chem 2024; 450:139353. [PMID: 38636376 DOI: 10.1016/j.foodchem.2024.139353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Understanding neural pathways and cognitive processes involved in the transformation of dietary fats into sensory experiences has profound implications for nutritional well-being. This study presents an efficient approach to comprehending the neural perception of fat taste using electroencephalogram (EEG). Through the examination of neural responses to different types of fatty acids (FAs) in 45 participants, we discerned distinct neural activation patterns associated with saturated versus unsaturated fatty acids. The spectrum analysis of averaged EEG signals revealed notable variations in δ and α-frequency bands across FA types. The topographical distribution and source localization results suggested that the brain encodes fat taste with specific activation timings in primary and secondary gustatory cortices. Saturated FAs elicited higher activation in cortical associated with emotion and reward processing. This electrophysiological evidence enhances our understanding of fundamental mechanisms behind fat perception, which is helpful for guiding strategies to manage hedonic eating and promote balanced fat consumption.
Collapse
Affiliation(s)
- Tianyi Yang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Peng Zhang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, Shanghai 200040, China
| | - Wei Xu
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wei Jiang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Rui Feng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, Shanghai 200040, China
| | - Yajun Lou
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaofei Jin
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Fan Gao
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Keqiang Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Yamin Yang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
4
|
Jiang Y, Liu Z, Zhang L, Liu W, Li H, Li X. Phosphatidylserine Counteracts the High Stocking Density-Induced Stress Response, Redox Imbalance and Immunosuppression in Fish Megalobrama ambylsephala. Antioxidants (Basel) 2024; 13:644. [PMID: 38929083 PMCID: PMC11200497 DOI: 10.3390/antiox13060644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
This study was conducted to investigate the effects of dietary phosphatidylserine (PS) supplementation on the growth performance, stress response, non-specific immunity and antioxidant capacity of juvenile blunt snout bream (Megalobrama ambylcephala) cultured under a high stocking density. A 2 × 2 two-factorial design was adopted, including two stocking densities (10 and 20 fish/m3) and two dietary PS levels (0 and 50 mg/kg). After the 12-week feeding trial, the high stocking density significantly decreased the final weight; weight gain rate; specific growth rate; feed intake; nitrogen retention efficiency; plasma complement 3 (C3) level; albumin/globulin (ALB/GLB, A/G) ratio; activity of myeloperoxidase, lysozyme (LZM) and glutathione peroxidase (GPX); gpx transcription; and abundance of sirtuin3 (Sirt3) and nuclear factor erythroid-2-related factor 2 (Nrf2). However, it significantly increased the plasma levels of cortisol, glucose (GLU), lactic acid (LD), total protein and GLB; hepatic malondialdehyde (MDA) content; and sirt1 transcription. PS supplementation significantly increased the plasma ALB and C4 levels; the A/G ratio; the activity of LZM, CAT and GPX; the transcription of sirt1, nrf2, manganese-containing superoxide dismutase and catalase; and the Nrf2 abundance. However, it significantly decreased the plasma levels of cortisol, GLU and GLB, as well as the hepatic MDA content. In addition, there was a significant interaction between the stocking density and PS supplementation regarding the effects on the plasma LD, ALB, GLB and C3 levels; A/G ratio; hepatic CAT activity; and protein abundance of Sod2. In conclusion, PS supplementation can counteract the high stocking density-induced stress response, redox imbalance and immunosuppression in blunt snout bream.
Collapse
Affiliation(s)
- Yangyang Jiang
- Anhui Province Key Laboratory of Aquaculture and Stock Enhancement, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zishang Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Haiyang Li
- Anhui Province Key Laboratory of Aquaculture and Stock Enhancement, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| |
Collapse
|
5
|
Borgonovi SM, Iametti S, Di Nunzio M. Docosahexaenoic Acid as Master Regulator of Cellular Antioxidant Defenses: A Systematic Review. Antioxidants (Basel) 2023; 12:1283. [PMID: 37372014 DOI: 10.3390/antiox12061283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid that benefits the prevention of chronic diseases. Due to its high unsaturation, DHA is vulnerable to free radical oxidation, resulting in several unfavorable effects, including producing hazardous metabolites. However, in vitro and in vivo investigations suggest that the relationship between the chemical structure of DHA and its susceptibility to oxidation may not be as clear-cut as previously thought. Organisms have developed a balanced system of antioxidants to counteract the overproduction of oxidants, and the nuclear factor erythroid 2-related factor 2 (Nrf2) is the key transcription factor identified for transmitting the inducer signal to the antioxidant response element. Thus, DHA might preserve the cellular redox status promoting the transcriptional regulation of cellular antioxidants through Nrf2 activation. Here, we systematically summarize the research on the possible role of DHA in controlling cellular antioxidant enzymes. After the screening process, 43 records were selected and included in this review. Specifically, 29 studies related to the effects of DHA in cell cultures and 15 studies concerned the effects of consumption or treatment with DHA in animal. Despite DHA's promising and encouraging effects at modulating the cellular antioxidant response in vitro/in vivo, some differences observed among the reviewed studies may be accounted for by the different experimental conditions adopted, including the time of supplementation/treatment, DHA concentration, and cell culture/tissue model. Moreover, this review offers potential molecular explanations for how DHA controls cellular antioxidant defenses, including involvement of transcription factors and the redox signaling pathway.
Collapse
Affiliation(s)
- Sara Margherita Borgonovi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
6
|
da Silva BPM, Fanalli SL, Gomes JD, de Almeida VV, Fukumasu H, Freitas FAO, Moreira GCM, Silva-Vignato B, Reecy JM, Koltes JE, Koltes D, de Carvalho Balieiro JC, de Alencar SM, da Silva JPM, Coutinho LL, Afonso J, Regitano LCDA, Mourão GB, Luchiari Filho A, Cesar ASM. Brain fatty acid and transcriptome profiles of pig fed diets with different levels of soybean oil. BMC Genomics 2023; 24:91. [PMID: 36855067 PMCID: PMC9976441 DOI: 10.1186/s12864-023-09188-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The high similarity in anatomical and neurophysiological processes between pigs and humans make pigs an excellent model for metabolic diseases and neurological disorders. Lipids are essential for brain structure and function, and the polyunsaturated fatty acids (PUFA) have anti-inflammatory and positive effects against cognitive dysfunction in neurodegenerative diseases. Nutrigenomics studies involving pigs and fatty acids (FA) may help us in better understanding important biological processes. In this study, the main goal was to evaluate the effect of different levels of dietary soybean oil on the lipid profile and transcriptome in pigs' brain tissue. RESULTS Thirty-six male Large White pigs were used in a 98-day study using two experimental diets corn-soybean meal diet containing 1.5% soybean oil (SOY1.5) and corn-soybean meal diet containing 3.0% soybean oil (SOY3.0). No differences were found for the brain total lipid content and FA profile between the different levels of soybean oil. For differential expression analysis, using the DESeq2 statistical package, a total of 34 differentially expressed genes (DEG, FDR-corrected p-value < 0.05) were identified. Of these 34 DEG, 25 are known-genes, of which 11 were up-regulated (log2 fold change ranging from + 0.25 to + 2.93) and 14 were down-regulated (log2 fold change ranging from - 3.43 to -0.36) for the SOY1.5 group compared to SOY3.0. For the functional enrichment analysis performed using MetaCore with the 34 DEG, four pathway maps were identified (p-value < 0.05), related to the ALOX15B (log2 fold change - 1.489), CALB1 (log2 fold change - 3.431) and CAST (log2 fold change + 0.421) genes. A "calcium transport" network (p-value = 2.303e-2), related to the CAST and CALB1 genes, was also identified. CONCLUSION The results found in this study contribute to understanding the pathways and networks associated with processes involved in intracellular calcium, lipid metabolism, and oxidative processes in the brain tissue. Moreover, these results may help a better comprehension of the modulating effects of soybean oil and its FA composition on processes and diseases affecting the brain tissue.
Collapse
Affiliation(s)
- Bruna Pereira Martins da Silva
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Simara Larissa Fanalli
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Julia Dezen Gomes
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Vivian Vezzoni de Almeida
- grid.411195.90000 0001 2192 5801College of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia, Goiás Brazil
| | - Heidge Fukumasu
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe André Oliveira Freitas
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Bárbara Silva-Vignato
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - James Mark Reecy
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - James Eugene Koltes
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - Dawn Koltes
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - Júlio Cesar de Carvalho Balieiro
- grid.11899.380000 0004 1937 0722School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Severino Matias de Alencar
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Julia Pereira Martins da Silva
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Juliana Afonso
- grid.460200.00000 0004 0541 873XEmbrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | | - Gerson Barreto Mourão
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Albino Luchiari Filho
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil. .,Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
7
|
Phosphatidylserine in the Nervous System: Cytoplasmic Regulator of the AKT and PKC Signaling Pathways and Extracellular "Eat-Me" Signal in Microglial Phagocytosis. Mol Neurobiol 2023; 60:1050-1066. [PMID: 36401705 DOI: 10.1007/s12035-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Phosphatidylserine (PtdSer) is an important anionic phospholipid found in eukaryotic cells and has been proven to serve as a beneficial factor in the treatment of neurodegenerative diseases. PtdSer resides in the inner leaflet of the plasma membrane, where it is involved in regulating the AKT and PKC signaling pathways; however, it becomes exposed to the extracellular leaflet during neurodevelopmental processes and neurodegenerative diseases, participating in microglia-mediated synaptic and neuronal phagocytosis. In this paper, we review several characteristics of PtdSer, including the synthesis and translocation of PtdSer, the functions of cytoplasmic and exposed PtdSer, and different PtdSer-detection materials used to further understand the role of PtdSer in the nervous system.
Collapse
|
8
|
Muacevic A, Adler JR, Pasya SKR, Copeland BJ. A Systematic Review of Dietary Supplements in Alzheimer's Disease. Cureus 2023; 15:e33982. [PMID: 36824566 PMCID: PMC9941033 DOI: 10.7759/cureus.33982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's is the most common neurodegenerative disease among the aging population, which has been a major global challenge. The pathogenesis of the disease is still undetermined but postulated to be involved in various mechanisms including oxidative stress, excitotoxicity, inflammation, cell death, genetic factors, protein accumulation, and degradation. There are few Food and Drug Administration (FDA)-approved drugs available for the treatment of Alzheimer's disease (AD) that have limited benefits along with associated adverse effects. A retrospective review of randomized double-blind controlled trials of various supplements used in AD patients was performed on a PubMed search from January 1983 to March 2022. We found 10 articles that have shown positive outcomes in various cognitive domains. We conclude that there should be a global standard to endorse the quality and safety of these supplements.
Collapse
|
9
|
The Role of Dietary Lipids in Cognitive Health: Implications for Neurodegenerative Disease. Biomedicines 2022; 10:biomedicines10123250. [PMID: 36552006 PMCID: PMC9775642 DOI: 10.3390/biomedicines10123250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are a group of disorders characterised by progressive loss of brain function. The most common of these is Alzheimer's disease, a form of dementia. Intake of macro- and micro-nutrients impacts brain function, including memory, learning, mood, and behaviour. Lipids, particularly phospholipids and sphingolipids, are crucial structural components of neural tissues and significantly affect cognitive function. The importance of functional foods in preventing cardiovascular disease is well-documented in the current literature. However, the significance of such foods for central nervous system health and neurodegenerative diseases is less recognized. Gut microbiome composition affects cognitive health and function, and dietary lipids are known to influence gut health. Thus, this review will discuss different sources of dietary lipids and their effect on cognitive functioning and their interaction with the gut microbiome in the context of neurodegenerative disease.
Collapse
|
10
|
Ren Q, Sun J, Xu D, Xie H, Ye M, Zhao Y. A Dietary Supplement Containing Micronutrients, Phosphatidylserine, and Docosahexaenoic Acid Counteracts Cognitive Impairment in D-Galactose-Induced Aged Rats. Front Nutr 2022; 9:931734. [PMID: 35866081 PMCID: PMC9294405 DOI: 10.3389/fnut.2022.931734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
At present, it is a trend to use dietary supplements to prevent age-related cognitive impairment. This study aimed to investigate the effects of a dietary supplement enriched with micronutrients, phosphatidylserine, and docosahexaenoic acid on cognitive performance using a D-galactose (D-gal) induced aging rat model. Seven-month-old male Sprague-Dawley rats were randomly divided into five groups, including the control group, D-gal model group, and low-dose (2 g/kg body weight), medium-dose (6 g/kg body weight), and high-dose (10 g/kg body weight) dietary supplement intervention groups, which were investigated for 13 weeks. The dietary supplement intervention was found to improve cognitive performance in Morris water maze test, increase superoxidase dismutase activity, reduce malondialdehyde activity, decrease tumor necrosis factor-α and interleukin-6 concentrations, inhibit the activation of astrocytes, and elevate brain-derived neurotrophic factor protein and mRNA expression in the brains of D-gal-induced aged rats. This dietary supplement customized for the aged can be applied to the restoration of cognitive performance by enhancing antioxidant and anti-neuroinflammatory abilities, up-regulating neurotrophic factors, and inhibiting the activation of astrocytes. These results will be useful for future studies focused on implementation in humans.
Collapse
Affiliation(s)
- Qian Ren
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Department of Clinical Nutrition, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jianqin Sun
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Jianqin Sun,
| | - Danfeng Xu
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Hua Xie
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Mengyao Ye
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou, China
| | - Yanfang Zhao
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
11
|
Zhi Y, Sun Y, Jiao Y, Pan C, Wu Z, Liu C, Su J, Zhou J, Shang D, Niu J, Hua R, Yin P. HR-MS Based Untargeted Lipidomics Reveals Characteristic Lipid Signatures of Wilson's Disease. Front Pharmacol 2021; 12:754185. [PMID: 34880754 PMCID: PMC8645799 DOI: 10.3389/fphar.2021.754185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: The diagnosis of Wilson's disease (WD) is challenging by clinical or genetic criteria. A typical early pathological change of WD is the increased liver lipid deposition and lowered serum triglyceride (TG). Therefore, the contents of serum lipids may provide evidence for screening of biomarkers for WD. Methods: 34 WD patients, 31 WD relatives, and 65 normal controls were enrolled in this study. Serum lipidomics data was acquired by an ultra-high-performance liquid chromatography high-resolution mass spectrometry system, and the data were analyzed by multivariate statistical methods. Results: Of all 510 identified lipids, there are 297 differential lipids between the WD and controls, 378 differential lipids between the relatives and controls, and 119 differential lipids between the patients and relatives. In WD, the abundances of most saturated TG were increased, whereas other unsaturated lipids decreased, including phosphatidylcholine (PC), sphingomyelin (SM), lysophosphatidylcholine (LPC), ceramide (Cer), and phosphatidylserine (PS). We also found many serum lipid species may be used as biomarkers for WD. The areas under the receiver operating characteristic curve (AUC) of PS (35:0), PS (38:5), and PS (34:0) were 0.919, 0.843, and 0.907. The AUCs of TG (38:0) and CerG1 (d42:2) were 0.948 and 0.915 and the AUCs of LPC (17:0) and LPC (15:0) were 0.980 and 0.960, respectively. The lipid biomarker panel exhibits good diagnostic performance for WD. The correlation networks were built among the different groups and the potential mechanisms of differential lipids were discussed. Interestingly, similar lipid profile of WD is also found in their relatives, which indicated the changes may also related to the mutation of the ATP7B gene. Conclusions: Lipid deregulation is another important hallmark of WD besides the deposition of copper. Our lipidomic results provide new insights into the diagnostic and therapeutic targets of WD.
Collapse
Affiliation(s)
- Yixiao Zhi
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Yujiao Sun
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yonggeng Jiao
- Department of Anesthesiology Jilin Province FAW General Hospital, Changchun, China
| | - Chen Pan
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeming Wu
- iPhenome biotechnology Inc. Dalian (Yun Pu Kang), Dalian, China
| | - Chang Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jie Su
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhou
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Hepatology, The First Hospital of Jilin University, Changchun, China.,Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Rui Hua
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Bie N, Feng X, Li C, Meng M, Wang C. The Protective Effect of Docosahexaenoic Acid on PC12 Cells in Oxidative Stress Induced by H 2O 2 through the TrkB-Erk1/2-CREB Pathway. ACS Chem Neurosci 2021; 12:3433-3444. [PMID: 34428890 DOI: 10.1021/acschemneuro.1c00421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Docosahexaenoic acid (DHA) has attracted plenty of interest in the prevention of neurodegenerative diseases. Although the beneficial effects of DHA on the central nervous system function are recognized, more information on the molecular mechanisms involved in its neuroprotective effects is required. The present study aimed to evaluate the effects of DHA on the function of mitochondria, neurite growth-related proteins signaling pathway, and neural signal transmission. In this study, PC12 cells were treated with H2O2 (400 μM) to establish an oxidative damage model. Results showed that DHA improved the viability and morphology of PC12 cells. DHA significantly increased the antioxidant capacity, mitochondrial membrane potential, and activity of ATPase in the cells. Furthermore, the phosphorylation levels of tyrosine kinase receptor (BTrkB), phospholipase C-γ1 (PLCγ1), calcium/calmodulin-dependent protein kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), and cAMP-response element-binding protein (CREB) were upregulated by DHA. The damage on F-actin induced by H2O2 was reversed by DHA, indicating that DHA could protect neurite outgrowth. In addition, DHA increased the content of acetylcholine and γ-aminobutyric acid while decreasing glutamic acid. These results revealed that DHA could protect PC12 cells from damage induced by H2O2 through the TrkB-ERK1/2-CREB pathway.
Collapse
Affiliation(s)
- Nana Bie
- “State Key Laboratory of Food Nutrition and Safety”, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People’s Republic of China
| | - Xiaojuan Feng
- “State Key Laboratory of Food Nutrition and Safety”, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People’s Republic of China
| | - Chenjing Li
- “State Key Laboratory of Food Nutrition and Safety”, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People’s Republic of China
| | - Meng Meng
- “State Key Laboratory of Food Nutrition and Safety”, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People’s Republic of China
| | - Chunling Wang
- “State Key Laboratory of Food Nutrition and Safety”, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People’s Republic of China
| |
Collapse
|
13
|
Jiang W, Wan L, Chen P, Lu W. Docosahexaenoic acid activates the Nrf2 signaling pathway to alleviate impairment of spleen cellular immunity in intrauterine growth restricted rat pups. Saudi J Biol Sci 2021; 28:4987-4993. [PMID: 34466073 PMCID: PMC8381073 DOI: 10.1016/j.sjbs.2021.05.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022] Open
Abstract
Intrauterine growth retardation (IUGR) impairs immune function in children. IUGR is associated with an imbalance of oxidative stress and abnormal apoptosis. Therefore, an IUGR rats model was established to determine the antioxidant capacity and apoptosis in newborn IUGR rats and explored whether these effects were regulated after Docosahexaenoic acid (DHA) supplementation to rat pups. First, eight normal-birth-weight (NBW) and eight IUGR neonatal rats (a 10% low-protein diet) were used to obtain the antioxidant capacity and apoptosis in IUGR rat pups. Then, 32 newborn rats were randomly assigned to the normal birth weight (NBW), DHA supplementation for NBW (ND), IUGR, and DHA supplementation for IUGR (ID) groups. Starting from the 7th day after birth, DHA was given to the experimental group and the same volume of distilled water was given to the control group for 21 days. (1) DHA improved the serum and spleen CD4/CD8 ratios and IL-4 and IFN-γ mRNA expression. (2) DHA decreased the level of MDA, but increased T-AOC in serum and spleen. (3) DHA increased the protein expression of Bcl-2 while decreased Bax. (4) DHA increased protein expression of the Nrf2 signaling pathway and the downstream antioxidant genes GSH-PX and CAT. DHA may alleviate the impairment of spleen cellular immunity in IUGR rat pups by inhibiting oxidative stress and apoptosis related to the activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Weiming Jiang
- Children's Institute of Three Gorges University, Yichang Central People's Hospital, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443003, PR China
| | - Lijia Wan
- Department of Neonatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Pingyang Chen
- Department of Neonatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Wei Lu
- Children's Institute of Three Gorges University, Yichang Central People's Hospital, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443003, PR China
| |
Collapse
|
14
|
Ozawa H, Miyazawa T, Miyazawa T. Effects of Dietary Food Components on Cognitive Functions in Older Adults. Nutrients 2021; 13:2804. [PMID: 34444965 PMCID: PMC8398286 DOI: 10.3390/nu13082804] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022] Open
Abstract
Population aging has recently been an important issue as the number of elderly people is growing worldwide every year, and the extension of social security costs is financially costly. The increase in the number of elderly people with cognitive decline is a serious problem related to the aging of populations. Therefore, it is necessary to consider not only physical care but also cognitive patterns in the future care of older adults. Since food contains a variety of bioactive substances, dietary patterns may help improve age-related cognitive decline. However, the relationship between cognitive function and individual food components remains ambiguous as no clear efficacy or mechanism has been confirmed. Against this background, this review summarizes previous reports on the biological process of cognitive decline in the elderly and the relationship between individual compounds in foods and cognitive function, as well as the role of individual components of food in cognitive function, in the following order: lipids, carotenoids, vitamins, phenolic compounds, amino acids, peptides, and proteins. Based on the research presented in this review, a proper diet that preserves cognitive function has the potential to improve age-related cognitive decline, Alzheimer's disease, and Parkinson's disease. Hopefully, this review will help to trigger the development of new foods and technologies that improve aging and cognitive functions and extend the healthy life span.
Collapse
Affiliation(s)
| | | | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (H.O.); (T.M.)
| |
Collapse
|
15
|
Giannenas I, Grigoriadou K, Sidiropoulou E, Bonos E, Cheilari A, Vontzalidou A, Karaiskou C, Aligiannis N, Florou-Paneri P, Christaki E. Untargeted UHPLC-MS metabolic profiling as a valuable tool for the evaluation of eggs quality parameters after dietary supplementation with oregano, thyme, sideritis tea and chamomile on brown laying hens. Metabolomics 2021; 17:51. [PMID: 34021818 DOI: 10.1007/s11306-021-01801-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Bioactive constituents of medicinal-aromatic plants used as feed additives may affect the metabolic profile and oxidative stability of hen eggs. OBJECTIVES To determine the effects of dietary supplementation with a mixture of dried oregano, thyme, sideritis tea and chamomile on laying hen performance, egg quality parameters, and oxidative stability in the egg yolk were monitored. METHODS In this trial 432 hens were allocated in two treatments (unsupplemented vs. supplemented with the mixture) and fed for 42 days. Eggs were collected at the end of the trial period, egg yolk was separated, extracted, and the total phenolic content (TPC) and oxidative stability was measured. Furthermore, LC-MS metabolic profile of eggs was studied and pathway analysis was elaborated in MetaboAnalyst to facilitate annotation of features. RESULTS Overall, egg production and feed conversion ratio were not affected by the supplementation. However, eggs from the supplemented treatment showed improved shell thickness and strength, and yolk resistance to oxidation. Moreover, LC-MS metabolomic analysis of egg yolk of supplemented and unsupplemented layers showed significant variations and tight clustering in unsupervised principal component analysis due to different chemical profiling of egg yolk. LC-MS study showed that secondary metabolites of aromatic plants did not transfer into yolk, nevertheless the feed supplementation impacted the pathway metabolism of tyrosine, phenylalanine, propanate, and the biosynthesis of aminoacyl-tRNA, phenylalanine, tyrosine and tryptophan. CONCLUSIONS The dietary supplementation of layers with a mixture of dried medicinal aromatic plants affected shell thickness and strength, the lipid and protein oxidative stability and increased tyrosine and phenylalanine content in eggs.
Collapse
Affiliation(s)
- Ilias Giannenas
- Laboratory of Animal Nutrition, School of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece.
| | - Katerina Grigoriadou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization - DEMETER, P.O. Box 60458, Thermi, 570 01, Thessaloniki, Greece
- ELVIZ Hellenic Feedstuff Industry S.A, 59300, Plati-Imathia, Greece
| | - Erasmia Sidiropoulou
- Laboratory of Animal Nutrition, School of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece
| | - Eleftherios Bonos
- Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi, 47100, Artas, Greece
| | - Antigoni Cheilari
- Section of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Argyro Vontzalidou
- Section of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Chrisoula Karaiskou
- Laboratory of Animal Husbandry, School of Agriculture, Aristotle University, 54124, Thessaloniki, Greece
| | - Nektarios Aligiannis
- Section of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Panagiota Florou-Paneri
- Laboratory of Animal Nutrition, School of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece
| | - Efterpi Christaki
- Laboratory of Animal Nutrition, School of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece
| |
Collapse
|
16
|
Lamarre J, Cheema SK, Robertson GJ, Wilson DR. Omega-3 fatty acids accelerate fledging in an avian marine predator: a potential role of cognition. J Exp Biol 2021; 224:jeb.235929. [PMID: 33462136 PMCID: PMC7929930 DOI: 10.1242/jeb.235929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Consuming omega-3 fatty acids (n-3 LCPUFAs) during development improves cognition in mammals, but the effect remains untested in other taxa. In aquatic ecosystems, n-3 LCPUFAs are produced by phytoplankton and bioaccumulate in the food web. Alarmingly, the warming and acidification of aquatic systems caused by climate change impair n-3 LCPUFA production, with an anticipated decrease of 80% by the year 2100. We tested whether n-3 LCPUFA consumption affects the physiology, morphology, behaviour and cognition of the chicks of a top marine predator, the ring-billed gull. Using a colony with little access to n-3 LCPUFAs, we supplemented siblings from 22 fenced nests with contrasting treatments from hatching until fledging; one sibling received n-3 LCPUFA-rich fish oil and the other, a control sucrose solution without n-3 LCPUFAs. Halfway through the nestling period, half the chicks receiving fish oil were switched to the sucrose solution to test whether n-3 LCPUFA intake remains crucial past the main growth phase (chronic versus transient treatments). Upon fledging, n-3 LCPUFAs were elevated in the blood and brains of chicks receiving the chronic treatment, but were comparable to control levels among those receiving the transient treatment. Across the entire sample, chicks with elevated n-3 LCPUFAs in their tissues fledged earlier despite their morphology and activity levels being unrelated to fledging age. Fledging required chicks to escape fences encircling their nest. We therefore interpret fledging age as a possible indicator of cognition, with chicks with improved cognition fledging earlier. These results provide insight into whether declining dietary n-3 LCPUFAs will compromise top predators' problem-solving skills, and thus their ability to survive in a rapidly changing world.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Sukhinder Kaur Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada, A1N 4T3
| | - David R Wilson
- Department of Psychology, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| |
Collapse
|
17
|
Kao YF, Tu MC, Chai HJ, Lin YL, Chen YC. Suppressive effects of an apoptotic mimicry prepared from jumbo-flying squid-skin phospholipids on the osteoclastogenesis in receptor activator of nuclear factor kappa B ligand/macrophage colony-stimulating factor-induced RAW 264.7 cells. J Chin Med Assoc 2021; 84:51-60. [PMID: 33177403 DOI: 10.1097/jcma.0000000000000447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Liposomes containing docosahexaenoic acid (DHA) and phosphatidylserine were claimed to inhibit osteoclast formation and bone resorption in the inflammatory status. Herein, we proposed that an apoptotic mimicry (SQ liposome) prepared from squid-skin phospholipids can explore the suppressive osteoclastogenesis. METHODS The intermolecular fatty-acid composition in the phospholipid of squid-skin extract was analyzed by GC-FID. The SQ liposome structure was characterized by size distribution and zeta potential (ζ). RAW 264.7 cell is used to study the effect of SQ liposomes on osteoclast differentiation. Secretion of prostaglandin E2 (PGE2) and transforming growth factor-β (TGF-β) from RAW 264.7 cells were assayed. Antiosteoclastogenesis effects were performed via the tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cell (MNC) counting, bone resorption pit assay, and TRAP activity analysis. The specific gene expressions related to antiosteoclastogenesis were also detected. RESULTS An apoptotic mimicry through the use of a single-layer liposome (SQ liposome) with phosphatidylserine exposure contains DHA (28.7%) and eicosapentaenoic acid (EPA, 11.8%). Co-treatment with receptor activator of nuclear factor kappa B ligand (RANKL)/macrophage colony-stimulating factor induced RAW 264.7-cell differentiation into mature osteoclasts, thus enhancing PGE2 and TGF-β secretion. However, cotreatment with 1 mg/mL of SQ liposome restored (p < 0.05) the cell viabilities under the RANKL stress. Increased PGE2 levels was downregulated (p < 0.05) in cotreatments with 0.11 and 0.33 mg/mL of SQ liposome, but on the TGF-β levels were not (p > 0.05) influenced in SQ liposome cotreatments. Cotreatments with 0.33-1 mg/mL of SQ liposome suppressed (p < 0.05) the osteoclast maturation (such as decreased MNCs and bone pit formation), inhibited TRAP activities, and downregulated the osteoclastogenesis-related gene expressions. CONCLUSION In summary, current data support that a possible prevention of our prepared SQ liposomes which are rich in DHA and EPA on bone loss is through the suppression of osteoclastogenesis. Moreover, based on the results from this study an in vivo study warrants a further investigation.
Collapse
Affiliation(s)
- Yi-Feng Kao
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Seafood Technology Division, Fisheries Research Institute, Council of Agriculture, Executive Yuan, Keelung, Taiwan, ROC
| | - Ming-Chieh Tu
- Seafood Technology Division, Fisheries Research Institute, Council of Agriculture, Executive Yuan, Keelung, Taiwan, ROC
| | - Huey-Jine Chai
- Seafood Technology Division, Fisheries Research Institute, Council of Agriculture, Executive Yuan, Keelung, Taiwan, ROC
| | - Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
18
|
Zhu W, Cui G, Li T, Chen H, Zhu J, Ding Y, Zhao L. Docosahexaenoic Acid Protects Traumatic Brain Injury by Regulating NOX 2 Generation via Nrf2 Signaling Pathway. Neurochem Res 2020; 45:1839-1850. [PMID: 32676950 PMCID: PMC7378046 DOI: 10.1007/s11064-020-03078-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Docosahexaenoic acid (DHA) is verified to have neuroprotective effects on traumatic brain injury (TBI) rats by activating Nrf2 signaling pathway, but the role of NOX2 in this effect has not been illuminated. So this study explored the role of NOX2 in TBI models treated with DHA, aiming to complete the mechanism of DHA. TBI rat models were constructed with or without DHA treatment, and H2O2-induced hippocampal neurons were pretreated with DHA alone or in combination with Nrf2 inhibitor brusatol. The neurological function, cognitive ability, and cerebral edema degree of rats were assessed. The apoptosis rate and viability of cells was measured. The generation of NOX2, Nrf2, HO-1 and NQO-1 expression levels, and ROS content in hippocampal CA1 region and hippocampal neurons were detected. DHA could not only improve the neurological function, brain edema and cognitive ability in TBI rats, but also decrease effectively the contents of NOX2 and ROS in hippocampal CA1 region and hippocampal neurons. DHA promoted the nuclear transposition of Nrf2 and the expression levels of HO-1 and NQO-1 in hippocampal CA1 region and hippocampal neurons. On the contrary, Nrf2 inhibitor brusatol inhibited the nuclear transposition of Nrf2 and the expression levels of HO-1 and NQO-1 in hippocampal neurons, promoted the generation of ROS and NOX2, and accelerated cell apoptosis. Both in vivo and in vitro experiments demonstrated that DHA treated TBI by reducing NOX2 generation that might function on Nrf2 signaling pathway, providing a potential evidence for its clinical application.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong China
| | - Guangqiang Cui
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong China
| | - Tuo Li
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong China
| | - Hongguang Chen
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong China
| | - Jian Zhu
- Department of Medical Engineering, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong China
| | - Yuexia Ding
- Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, East Yuhuangding Road, Zhifu District, Yantai, 264000 Shandong China
| | - Li Zhao
- Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, East Yuhuangding Road, Zhifu District, Yantai, 264000 Shandong China
| |
Collapse
|
19
|
Yi M, Zhang C, Zhang Z, Yi P, Xu P, Huang J, Peng W. Integrated Metabolomic and Lipidomic Analysis Reveals the Neuroprotective Mechanisms of Bushen Tiansui Formula in an A β1-42-Induced Rat Model of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5243453. [PMID: 32655770 PMCID: PMC7322593 DOI: 10.1155/2020/5243453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022]
Abstract
Bushen Tiansui Formula (BSTSF) is a traditional Chinese medicine prescription. It has been widely applied to treat Alzheimer's disease (AD) in the clinic; however, the mechanisms underlying its effects remain largely unknown. In this study, we used a rat AD model to study the effects of BSTSF on cognitive performance, and UPLC-MS/MS-based metabolomic and lipidomic analysis was further performed to identify significantly altered metabolites in the cerebral cortices of AD rats and determine the effects of BSTSF on the metabolomic and lipidomic profiles in the cerebral cortices of these animals. The results revealed that the levels of 47 metabolites and 30 lipids primarily associated with sphingolipid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism were significantly changed in the cerebral cortices of AD rats. Among the altered lipids, ceramides, phosphatidylethanolamines, lysophosphatidylethanolamines, phosphatidylcholines, lysophosphatidylcholines, phosphatidylserines, sphingomyelins, and phosphatidylglycerols showed robust changes. Moreover, 34 differential endogenous metabolites and 21 lipids, of which the levels were mostly improved in the BSTSF treatment group, were identified as potential therapeutic targets of BSTSF against AD. Our results suggest that lipid metabolism is highly dysregulated in the cerebral cortices of AD rats, and BSTSF may exert its neuroprotective mechanisms by restoring metabolic balance, including that of sphingolipid metabolism, glycerophospholipid metabolism, alanine, aspartate, and glutamate metabolism, and D-glutamine and D-glutamate metabolism. Our data may lead to a deeper understanding of the AD-associated metabolic profile and shed new light on the mechanism underlying the therapeutic effects of BSTSF.
Collapse
Affiliation(s)
- Min Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chunhu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Pengji Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Panpan Xu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
20
|
Zhang Y, Wu G, Zhang Y, Wang X, Jin Q, Zhang H. Advances in exogenous docosahexaenoic acid-containing phospholipids: Sources, positional isomerism, biological activities, and advantages. Compr Rev Food Sci Food Saf 2020; 19:1420-1448. [PMID: 33337094 DOI: 10.1111/1541-4337.12543] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/05/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
In recent years, docosahexaenoic acid-containing phospholipids (DHA-PLs) have attracted much attention because of theirs unique health benefits. Compared with other forms of docosahexaenoic acid (DHA), DHA-PLs possess superior biological effects (e.g., anticancer, lipid metabolism regulation, visual development, and brain and nervous system biochemical reactions), more intricate metabolism mechanisms, and a stronger attraction to consumer. The production of DHA-PLs is hampered by several challenges associated with the limited content of DHA-PLs in natural sources, incomplete utilization of by-products, few microorganisms for DHA-PLs production, high cost, and complex process of artificial preparation of DHA-PLs. In this article, the sources, biological activities, and commercial applications of DHA-PLs were summarized, with intensive discussions on advantages of DHA-PLs over DHA, isomerism of DHA in phospholipids (PLs), and brain health. The excellent biological characteristics of DHA-PLs are primarily concerned with DHA and PLs. The metabolic fate of different DHA-PLs varies from the position of DHA in PLs to polar groups in DHA-PLs. Overall, well understanding of DHA-PLs about their sources and characteristics is critical to accelerate the production of DHA-PLs, economically enhance the value of DHA-PLs, and improve the applicability of DHA-PLs and the acceptance of consumers.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yanjie Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Zamanian G, Partoazar A, Tavangar SM, Rashidian A, Mirzaei P, Niaz Q, Sharifi K, Dehpour AR, Jazaeri F. Effect of phosphatidylserine on cirrhosis-induced hepatic encephalopathy: Response to acute endotoxemia in cirrhotic rats. Life Sci 2020; 253:117606. [PMID: 32320707 DOI: 10.1016/j.lfs.2020.117606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND/AIMS In cirrhosis, the levels of proinflammatory cytokines are high in the liver and blood. Endotoxin decreases level of consciousness in cirrhotic rats. Phosphatidylserine exists in the cell membrane structure and is essential for the survival of neurons. Phosphatidylserine receptor is found in phagocytic cells and also activates the signaling of membrane proteins in apoptotic process. Therefore this study was aimed to explore the hypothesis that hepatic encephalopathy is prevented by phosphatidylserine treatment and if so, whether this is associated with altered level of proinflammatory cytokines in the brain. METHODS Cirrhosis was induced by surgical ligation of the bile duct in male Wister rats. The groups were treated with phosphatidylserine and saline for 4 weeks. Brain IL6, TNFα and the expression of phosphatidylserine receptor were assessed. Intraperitoneal injections of either saline or lipopolysaccharide (0.1 mg/kg) were administered to each group. Finally, animal behavior, blood ammonia and the expression of toll like receptor 4 were examined in the brain. RESULTS Cirrhosis in rats was associated with altered expression of toll-like receptor4 in brain cortex and phosphatidylserine treatment increases toll-like receptor4 receptor expression. Phosphatidylserine had anti-inflammatory effect in healthy rats but no effect in cirrhotic rats. Chronic phosphatidylserine treatment decreased blood ammonia in BDL cirrhotic rats treated with lipopolysaccharide. CONCLUSION The brain of cirrhotic rat is more susceptible to acute endotoxemia and chronic phosphatidylserine treatment decreases blood ammonia and encephalopathy in cirrhotic rats by encountering endotoxin. Phosphatidylserine may boost immune system against endotoxin.
Collapse
Affiliation(s)
- Golnaz Zamanian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parto Mirzaei
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Qamar Niaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Sharifi
- School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farahnaz Jazaeri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Ahmmed MK, Ahmmed F, Tian HS, Carne A, Bekhit AED. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr Rev Food Sci Food Saf 2019; 19:64-123. [PMID: 33319514 DOI: 10.1111/1541-4337.12510] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
For several decades, there has been considerable interest in marine-derived long chain n-3 fatty acids (n-3 LCPUFAs) due to their outstanding health benefits. n-3 LCPUFAs can be found in nature either in triglycerides (TAGs) or in phospholipid (PL) form. From brain health point of view, PL n-3 is more bioavailable and potent compared to n-3 in TAG form, as only PL n-3 is able to cross the blood-brain barrier and can be involved in brain biochemical reactions. However, PL n-3 has been ignored in the fish oil industry and frequently removed as an impurity during degumming processes. As a result, PL products derived from marine sources are very limited compared to TAG products. Commercially, PLs are being used in pharmaceutical industries as drug carriers, in food manufacturing as emulsifiers and in cosmetic industries as skin care agents, but most of the PLs used in these applications are produced from vegetable sources that contain less (without EPA, DPA, and DHA) or sometimes no n-3 LCPUFAs. This review provides a comprehensive account of the properties, structures, and major sources of marine PLs, and provides focussed discussion of their relationship to brain health. Epidemiological, laboratory, and clinical studies on n-3 LCPUFAs enriched PLs using different model systems in relation to brain and mental health that have been published over the past few years are discussed in detail.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
23
|
Zheng L, Fleith M, Giuffrida F, O'Neill BV, Schneider N. Dietary Polar Lipids and Cognitive Development: A Narrative Review. Adv Nutr 2019; 10:1163-1176. [PMID: 31147721 PMCID: PMC6855982 DOI: 10.1093/advances/nmz051] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polar lipids are amphiphilic lipids with a hydrophilic head and a hydrophobic tail. Polar lipids mainly include phospholipids and sphingolipids. They are structural components of neural tissues, with the peak rate of accretion overlapping with neurodevelopmental milestones. The critical role of polar lipids in cognitive development is thought to be mediated through the regulation of signal transduction, myelination, and synaptic plasticity. Animal products (egg, meat, and dairy) are the major dietary sources of polar lipids for children and adults, whereas human milk and infant formula provide polar lipids to infants. Due to the differences observed in both concentration and proportion of polar lipids in human milk, the estimated daily intake in infants encompasses a wide range. In addition, health authorities define neither intake recommendations nor guidelines for polar lipid intake. However, adequate intake is defined for 2 nutrients that are elements of these polar lipids, namely choline and DHA. To date, limited studies exist on the brain bioavailability of dietary polar lipids via either placental transfer or the blood-brain barrier. Nevertheless, due to their role in pre- and postnatal development of the brain, there is a growing interest for the use of gangliosides, which are sphingolipids, as a dietary supplement for pregnant/lactating mothers or infants. In line with this, supplementing gangliosides and phospholipids in wild-type animals and healthy infants does suggest some positive effects on cognitive performance. Whether there is indeed added benefit of supplementing polar lipids in pregnant/lactating mothers or infants requires more clinical research. In this article, we report findings of a review of the state-of-the-art evidence on polar lipid supplementation and cognitive development. Dietary sources, recommended intake, and brain bioavailability of polar lipids are also discussed.
Collapse
Affiliation(s)
- Lu Zheng
- Nestec Ltd., Nestlé Research, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Solfrizzi V, Agosti P, Lozupone M, Custodero C, Schilardi A, Valiani V, Santamato A, Sardone R, Dibello V, Di Lena L, Stallone R, Ranieri M, Bellomo A, Greco A, Daniele A, Seripa D, Sabbà C, Logroscino G, Panza F. Nutritional interventions and cognitive-related outcomes in patients with late-life cognitive disorders: A systematic review. Neurosci Biobehav Rev 2018; 95:480-498. [PMID: 30395922 DOI: 10.1016/j.neubiorev.2018.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022]
Abstract
There have been a large number of observational studies on the impact of nutrition on neuroprotection, however, there was a lack of evidence from randomized clinical trials (RCTs). In the present systematic review, from the 32 included RCTs published in the last four years (2014-2017) in patients aged 60 years and older with different late-life cognitive disorders, nutritional intervention through medical food/nutraceutical supplementation and multidomain approach improved magnetic resonance imaging findings and other cognitive-related biomarkers, but without clear effect on cognition in mild Alzheimer's disease (AD) and mild cognitive impairment (MCI). Antioxidant-rich foods (nuts, grapes, cherries) and fatty acid supplementation, mainly n-3 polyunsaturated fatty acids (PUFA), improved specific cognitive domains and cognitive-related outcomes in MCI, mild-to-moderate dementia, and AD. Antioxidant vitamin and trace element supplementations improved only cognitive-related outcomes and biomarkers, high-dose B vitamin supplementation in AD and MCI patients improved cognitive outcomes in the subjects with a high baseline plasma n-3 PUFA, while folic acid supplementation had positive impact on specific cognitive domains in those with high homocysteine.
Collapse
Affiliation(s)
- Vincenzo Solfrizzi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy.
| | - Pasquale Agosti
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Custodero
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Andrea Schilardi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Vincenzo Valiani
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Andrea Santamato
- Physical Medicine and Rehabilitation Section, "OORR Hospital", University of Foggia, Foggia, Italy
| | - Rodolfo Sardone
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy; Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari AldoMoro, Bari, Italy
| | - Vittorio Dibello
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luca Di Lena
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy; Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari AldoMoro, Bari, Italy
| | - Roberta Stallone
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy; Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari AldoMoro, Bari, Italy
| | - Maurizio Ranieri
- Physical Medicine and Rehabilitation Section, "OORR Hospital", University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Greco
- Geriatric Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Davide Seripa
- Geriatric Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Carlo Sabbà
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy
| | - Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Geriatric Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy; Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy.
| |
Collapse
|
25
|
Zhao F, Chang Y, Gao L, Qin X, Du G, Zhang X, Zhou Y. Protective effects of Scutellaria baicalensis Georgi extract on D-galactose induced aging rats. Metab Brain Dis 2018; 33:1401-1412. [PMID: 29855978 DOI: 10.1007/s11011-018-0229-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/06/2018] [Indexed: 10/14/2022]
Abstract
Scutellaria baicalensis Georgi (SBG), a traditional Chinese herb, has attracted considerable attention for its wide range of pharmacological activities. This study aimed to investigate the intervention effects of SBG ethanol extract on aging rats induced by D-galactose (D-gal) and to explore potential mechanisms by serum and liver metabolic profiles. The aging rats were induced by the D-gal (100 mg/kg) for 10 weeks continuously with subcutaneous injection, while the control rats received physiological saline. Two other groups of rats were administered with 100 mg/kg/day and 200 mg/kg/day of SBG by oral route following D-gal injections. The abilities of spatial and learning memory were evaluated by open-field test and Morris water maze test. Then, some biochemical indexes related to cognitive ability and aging were measured. Histopathological feature in hippocampal region was observed by Hematoxylin and eosin (HE) staining. The changes of metabolic profiles were evaluated using proton nuclear magnetic resonance (1H NMR) spectroscopy coupled with multivariate data analysis. Results showed that SBG could significantly improve the learning and memory functions, reducing oxidative damage and histological abnormalities of hippocampus neurons. In addition, significant differences in the metabolic profiles were observed both in serum and liver between the model group and the control group. After the treatment using SBG, the levels of these metabolites are significantly changed back to their similar levels in the control group. These metabolic changes are related to the disturbance in amino acid metabolism, glycometabolism and choline metabolism. Hence, SBG may have the potential to improve neurodegeneration and provide brain protection. Graphical abstract A 1H NMR-based metabonomic study was conducted to provide a global view of metabolites related to D-gal induced aging rats and assess the holistic efficacy of Scutellaria baicalensis Georgi.
Collapse
Affiliation(s)
- Fanfan Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan, China
- College of Chemistry and Chemical Engineering, Shanxi University, No.92, Wucheng Road, Taiyuan, China
| | - Yanfen Chang
- Maternity and Child Care Hospital, Shanxi Provincial Children Hospital, Taiyuan, China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan, China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiang Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan, China
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan, China.
| |
Collapse
|
26
|
Reddan JM, White DJ, Macpherson H, Scholey A, Pipingas A. Glycerophospholipid Supplementation as a Potential Intervention for Supporting Cerebral Structure in Older Adults. Front Aging Neurosci 2018; 10:49. [PMID: 29563868 PMCID: PMC5845902 DOI: 10.3389/fnagi.2018.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/15/2018] [Indexed: 01/13/2023] Open
Abstract
Modifying nutritional intake through supplementation may be efficacious for altering the trajectory of cerebral structural decline evident with increasing age. To date, there have been a number of clinical trials in older adults whereby chronic supplementation with B vitamins, omega-3 fatty acids, or resveratrol, has been observed to either slow the rate of decline or repair cerebral tissue. There is also some evidence from animal studies indicating that supplementation with glycerophospholipids (GPL) may benefit cerebral structure, though these effects have not yet been investigated in adult humans. Despite this paucity of research, there are a number of factors predicting poorer cerebral structure in older humans, which GPL supplementation appears to beneficially modify or protect against. These include elevated concentrations of homocysteine, unbalanced activity of reactive oxygen species both increasing the risk of oxidative stress, increased concentrations of pro-inflammatory messengers, as well as poorer cardio- and cerebrovascular function. As such, it is hypothesized that GPL supplementation will support cerebral structure in older adults. These cerebral effects may influence cognitive function. The current review aims to provide a theoretical basis for future clinical trials investigating the effects of GPL supplementation on cerebral structural integrity in older adults.
Collapse
Affiliation(s)
- Jeffery M Reddan
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Helen Macpherson
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Barbosa BS, Martins LG, Costa TBBC, Cruz G, Tasic L. Qualitative and Quantitative NMR Approaches in Blood Serum Lipidomics. Methods Mol Biol 2018; 1735:365-379. [PMID: 29380328 DOI: 10.1007/978-1-4939-7614-0_25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy in combination with chemometrics can be applied in the analysis of complex biological samples in many ways. For example, we can analyze lipids, elucidate their structures, determine their nutritional values, and determine their distribution in blood serum. As lipids are not soluble in water, they are transported in blood as lipid-rich self-assembled particles, divided into different density assemblies from high- to very-low-density lipoproteins (HDL to VLDL), or by combining with serum proteins, such as albumins (human serum albumins (HSA)). Therefore, serum lipids can be analyzed as they are using only a 1:1 (v/v) dilution with a buffer or deuterated water prior to analysis by applying 1H NMR or 1H NMR edited-by-diffusion techniques. Alternatively, lipids can be extracted from the serum using liquid partition equilibrium and then analyzed using liquid-state NMR techniques. Our chapter describes protocols that are used for extraction of blood serum lipids and their quantitative 1H NMR (1H qNMR) analysis in lipid extracts as well as 1H NMR edited by diffusion for direct blood serum lipid analysis.
Collapse
Affiliation(s)
- Banny Silva Barbosa
- Laboratório de Química Biológica, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Lucas Gelain Martins
- Laboratório de Química Biológica, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Tássia B B C Costa
- Laboratório de Química Biológica, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Guilherme Cruz
- Laboratório de Química Biológica, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ljubica Tasic
- Laboratório de Química Biológica, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
28
|
Orhan C, Şahin N, Tuzcu Z, Komorowski JR, Şahin K. Combined oral supplementation of chromium picolinate, docosahexaenoic acid, and boron enhances neuroprotection in rats fed a high-fat diet. Turk J Med Sci 2017; 47:1616-1625. [PMID: 29152944 DOI: 10.3906/sag-1701-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background/aim: A novel complex of a nutritional supplement (CDB) contains chromium picolinate (CrPic), phosphatidylserine (PS), docosahexaenoic acid (DHA), and boron (B). The present study aimed to investigate the effects of CDB on the metabolic profile and memory acquisition in rats fed a high-fat diet (HFD). Materials and methods: Male Wistar rats were divided into six groups and received either a regular diet or HFD supplemented with or without different levels of CDB (0, 11, or 22 mg/kg BW). Results: Rats fed the HFD had greater glucose, insulin, lipid profile, and serum malondialdehyde concentrations, but lower serotonin and tryptophan in the serum and brain and lower Cr concentrations in serum, kidney, brain, and liver (P < 0.0001). CDB complex supplementation reversed all the effects, and the reversal effect was more pronounced with HFD for some parameters. Latency was less (P < 0.05) but probe was greater (P < 0.0001) for rats fed a regular diet. Increasing CDB complex levels in the diets resulted in a linear decrease in latency (P < 0.0002) but a linear increase in probe (P < 0.0002). Conclusion: Findings of the present work indicate that the CDB complex could be considered as an alternative treatment for preventing certain metabolic diseases and improving neurological functions, such as learning and memory.
Collapse
|
29
|
Liu Y, Huang L, Li M, Liu H, Guo W, Gui S, Niu J, Lu F. Characterization of the recombinant porcine pancreas phospholipase A 2 expressed in Pichia pastoris GS115 and its application to synthesis of 2-DHA-PS. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance. Eur J Pharmacol 2016; 785:116-132. [DOI: 10.1016/j.ejphar.2015.08.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/19/2015] [Accepted: 08/26/2015] [Indexed: 01/22/2023]
|
31
|
Ding L, Wang D, Zhou M, Du L, Xu J, Xue C, Wang Y. Comparative Study of EPA-enriched Phosphatidylcholine and EPA-enriched Phosphatidylserine on Lipid Metabolism in Mice. J Oleo Sci 2016; 65:593-602. [PMID: 27321119 DOI: 10.5650/jos.ess16005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies have shown that EPA enriched PLs have beneficial effects on lipid metabolism. Our previous study has demonstrated that the anti-obesity and hypolipidemic effects of EPA-PL were superior to DHA-PL. In the present study, we comparatively evaluated the effects of EPA-enriched phosphatidylcholine (EPA-PC) and EPA-enriched phosphatidylserine (EPA-PS) on lipid metabolism in mice. Both 2% dietary EPA-PC and EPA-PS significantly improved serum and hepatic lipid levels in mice. The HDL-c level in mice on EPA-PC diet was significantly higher than the other two groups. The level of DHA in hepatic TG and PL were significantly increased in both EPA-PC and EPA-PS fed groups (98.3 and 117.8%, respectively; p < 0.05). Notably, the proportion of DHA in EPA-PS group was significantly higher than the EPA-PC group. EPA-PC and EPA-PS suppressed hepatic SREBP-1c mediated lipogenesis and activated PPARα mediated fatty acid β-oxidation in the liver. These data are the first to indicate that EPA-PS has beneficial effects on lipid metabolism.
Collapse
Affiliation(s)
- Lin Ding
- College of Food Science and Engineering, Ocean University of China
| | | | | | | | | | | | | |
Collapse
|
32
|
Long-Term Supplementation with Beta Serum Concentrate (BSC), a Complex of Milk Lipids, during Post-Natal Brain Development Improves Memory in Rats. Nutrients 2015; 7:4526-41. [PMID: 26056919 PMCID: PMC4488800 DOI: 10.3390/nu7064526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 11/26/2022] Open
Abstract
We have previously reported that the supplementation of ganglioside-enriched complex-milk-lipids improves cognitive function and that a phospholipid-enriched complex-milk-lipid prevents age-related cognitive decline in rats. This current study evaluated the effects of post-natal supplementation of ganglioside- and phospholipid-enriched complex-milk-lipids beta serum concentrate (BSC) on cognitive function in young rats. The diet of male rats was supplemented with either gels formulated BSC (n = 16) or blank gels (n = 16) from post-natal day 10 to day 70. Memory and anxiety-like behaviors were evaluated using the Morris water maze, dark–light boxes, and elevated plus maze tests. Neuroplasticity and white matter were measured using immunohistochemical staining. The overall performance in seven-day acquisition trials was similar between the groups. Compared with the control group, BSC supplementation reduced the latency to the platform during day one of the acquisition tests. Supplementation improved memory by showing reduced latency and improved path efficiency to the platform quadrant, and smaller initial heading error from the platform zone. Supplemented rats showed an increase in striatal dopamine terminals and hippocampal glutamate receptors. Thus BSC supplementation during post-natal brain development improved learning and memory, independent from anxiety. The moderately enhanced neuroplasticity in dopamine and glutamate may be biological changes underlying the improved cognitive function.
Collapse
|
33
|
Moré MI, Freitas U, Rutenberg D. Positive effects of soy lecithin-derived phosphatidylserine plus phosphatidic acid on memory, cognition, daily functioning, and mood in elderly patients with Alzheimer's disease and dementia. Adv Ther 2014; 31:1247-62. [PMID: 25414047 PMCID: PMC4271139 DOI: 10.1007/s12325-014-0165-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Indexed: 01/17/2023]
Abstract
INTRODUCTION We report previously unpublished, early pilot studies performed with a brain-health food supplement containing a proprietary blend of 100 mg phosphatidylserine (PS) and 80 mg phosphatidic acid (PA) produced from soy lecithin. METHODS Serum analysis after single PS+PA ingestion was performed in healthy volunteers. A 3-month double-blind, placebo-controlled study assessed the influence of three PS+PA capsules/day, (300 mg PS + 240 mg PA/day) or placebo on memory and mood in functioning, non-depressive elderly people with memory problems, using the Wechsler Memory Scale and the List of Depressive Symptoms. Furthermore, a 2-month randomized, double-blind, placebo-controlled trial assessed the effect of three PS+PA capsules/day (300 mg PS + 240 mg PA/day) or placebo on daily functioning, mental health, emotional state, and self-reported general condition in patients with Alzheimer's disease (AD). RESULTS Serum PS peaked 90 min after ingestion, returning to baseline after 180 min. In the elderly, PS+PA [per protocol (PP) n = 31], unlike placebo (PP n = 26), significantly improved memory and prevented "winter blues" in a pre-post comparison. In the patients with AD, daily functioning (i.e., 7 activities of daily living) under PS+PA (PP n = 53) remained unchanged, but declined from 5.62 to 4.90 under placebo (PP n = 39; P = 0.035), with significant group difference (P = 0.021). The PS+PA group had 3.8% deterioration and 90.6% stability in daily functioning, compared to 17.9% and 79.5% under placebo, respectively (P = 0.066). Forty-nine percent of the PS+PA patients reported an improved general condition, compared to 26.3% under placebo (P = 0.084). Approximately, 43% of the PS+PA patients, but none under placebo, continued post-trial supplementation (while double-blinded). No negative side effects were observed. CONCLUSION PS is efficiently absorbed after oral consumption. A positive influence of PS+PA on memory, mood, and cognition was demonstrated among elderly test subjects. Short-term supplementation with PS+PA in patients with AD showed a stabilizing effect on daily functioning, emotional state and self-reported general condition. The data encourage long-term studies with PS+PA in AD patients and other elderly with memory or cognition problems.
Collapse
|
34
|
Glade MJ, Smith K. Phosphatidylserine and the human brain. Nutrition 2014; 31:781-6. [PMID: 25933483 DOI: 10.1016/j.nut.2014.10.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this study was to assess the roles and importance of phosphatidylserine (PS), an endogenous phospholipid and dietary nutrient, in human brain biochemistry, physiology, and function. METHODS A scientific literature search was conducted on MEDLINE for relevant articles regarding PS and the human brain published before June 2014. Additional publications were identified from references provided in original papers; 127 articles were selected for inclusion in this review. RESULTS A large body of scientific evidence describes the interactions among PS, cognitive activity, cognitive aging, and retention of cognitive functioning ability. CONCLUSION Phosphatidylserine is required for healthy nerve cell membranes and myelin. Aging of the human brain is associated with biochemical alterations and structural deterioration that impair neurotransmission. Exogenous PS (300-800 mg/d) is absorbed efficiently in humans, crosses the blood-brain barrier, and safely slows, halts, or reverses biochemical alterations and structural deterioration in nerve cells. It supports human cognitive functions, including the formation of short-term memory, the consolidation of long-term memory, the ability to create new memories, the ability to retrieve memories, the ability to learn and recall information, the ability to focus attention and concentrate, the ability to reason and solve problems, language skills, and the ability to communicate. It also supports locomotor functions, especially rapid reactions and reflexes.
Collapse
Affiliation(s)
| | - Kyl Smith
- Progressive Laboratories Inc., Irving, Texas
| |
Collapse
|
35
|
Turkez H, Geyikoglu F, Yousef MI. Ameliorative effects of docosahexaenoic acid on the toxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in cultured rat hepatocytes. Toxicol Ind Health 2014; 32:1074-85. [PMID: 25187318 DOI: 10.1177/0748233714547382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant toxicant that mediates carcinogenic effects associated with oxidative DNA damage. Docosahexaenoic acid (DHA) with antioxidant functions has many biochemical, cellular, and physiological functions for cells. The present study assessed, for the first time, the ameliorative effect of DHA in alleviating the toxicity of TCDD on primary cultured rat hepatocytes (HEPs). In vitro, isolated HEPs were incubated with TCDD (5 and 10 μM) in the presence and absence of DHA (5, 10, and 20 μM) for 48 h. The cell viability was detected by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) release. DNA damage was analyzed by liver micronucleus assay and 8-oxo-2-deoxyguanosine (8-OH-dG) level. In addition, total antioxidant capacity (TAC) and total oxidative stress (TOS) were assessed to determine the oxidative injury in HEPs. The results of MTT and LDH assays showed that TCDD decreased cell viability but not DHA. On the basis of increasing treatment concentrations, the dioxin caused significant increases of micronucleated HEPs and 8-OH-dG as compared to control culture. TCDD also led to significant increases in TOS content. On the contrary, in cultures treated with DHA, the level of TAC was significantly increased during treatment in a concentration-dependent fashion. DHA showed therapeutic potential against TCDD-mediated cell viability and DNA damages. As conclusion, this study provides the first evidence that DHA has protective effects against TCDD toxicity on primary cultured rat hepatocytes.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
36
|
Pinsolle A, Roy P, Cansell M. Modulation of enzymatic PS synthesis by liposome membrane composition. Colloids Surf B Biointerfaces 2014; 115:157-63. [DOI: 10.1016/j.colsurfb.2013.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/29/2013] [Accepted: 11/18/2013] [Indexed: 11/30/2022]
|
37
|
Li B, Wang L, Liu Y, Chen Y, Zhang Z, Zhang J. Jujube promotes learning and memory in a rat model by increasing estrogen levels in the blood and nitric oxide and acetylcholine levels in the brain. Exp Ther Med 2013; 5:1755-1759. [PMID: 23837068 PMCID: PMC3702657 DOI: 10.3892/etm.2013.1063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/27/2013] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to observe the effects of jujube on learning and memory in ovariectomized rats. The effects of jujube on learning and memory in ovariectomized rats were observed using the Morris water maze method. The serum follicle-stimulating hormone (FSH), estrogen and luteinizing hormone (LH) levels, and the brain nitric oxide synthase (NOS) and acetylcholinesterase (AChE) levels of the rats were determined. The results indicated that jujube reduced the latency period and increased the number of crossings made by the ovariectomized rats in the Morris water maze test. Jujube also increased the serum estrogen level, reduced the serum FSH and corpus luteum LH levels, increased brain NOS activity and reduced AChE activity. The results indicate that jujube promoted the learning and memory of the ovariectomized rats. This effect may be correlated with the increase in the estrogen level in the blood, and the changes in the nitric oxide and acetylcholine levels in the brain.
Collapse
Affiliation(s)
- Baoli Li
- Department of Pharmacology, Medical College of Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | | | | | | | | | | |
Collapse
|