1
|
Li J, Li R, Peng Y, Tian J, Zhou L. Effect of high-pressure-homogenisation on the interaction between pomegranate peel pectin fractions and anthocyanins in acidic environment. Food Chem 2024; 457:140110. [PMID: 38905822 DOI: 10.1016/j.foodchem.2024.140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
In this study, changes in the basic composition and structural characterisation of water-soluble pectin (WSP), homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) from pomegranate peel were investigated after high-pressure-homogenisation (HPH) at 50 MPa and 300 MPa. The interactions between three pectin and anthocyanin (ACN) complex were also studied. The three pectin fractions were mainly composed of galacturonic acid (34.95%-87.69%), all with low degrees of methyl-esterification ≤41.20%. HPH at 300 MPa increased the binding ratios of ACN to three pectin fractions by 34.22%-34.59%. Changes in the structural characterisation results of pectin confirmed that the depolymerisation and breakdown of the side chains of pectin after HPH promoted electrostatic interactions, hydrogen bond and hydrophobic interaction between pectin and ACN. Correspondingly, the thermal and storage stabilities of ACN in the complex was boosted after HPH at 300 MPa. This study provides insights into the interaction between pectin and ACN under HPH.
Collapse
Affiliation(s)
- Jian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China.
| | - Rongping Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Yijin Peng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Jun Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
2
|
Wang Y, Xiao Y, Zhang L, Zhang H, Li C. Study on stability of rose anthocyanin extracts and physicochemical properties of complex with whey protein isolate after spray drying. J Food Sci 2024. [PMID: 39323284 DOI: 10.1111/1750-3841.17348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Pingyin rose is an edible flower rich in anthocyanins. In this study, antioxidant capacity and color were used as the main evaluation indexes to investigate the effects of common physical and chemical factors on the stability of rose anthocyanin extracts (RAEs). In addition, the physicochemical properties of the whey protein isolate (WPI)-RAEs complex after spray drying were studied. Vitamin C, temperature, and some metal ions can cause different degrees of discoloration of RAEs solution. More importantly, heat treatment, as well as most metal ions and sugars, had no significant effect on the antioxidant capacity of RAEs solution (p > 0.05). Moreover, compared to spray-dried pure WPI, the WPI-RAEs powder was delicate and uniform, and had higher particle size, bulk density, moisture activity, and better gel properties. The release rate of all WPI-RAEs sol/gel to RAEs reached about 89% in the intestinal digestion stage, but the WPI-RAEs interaction reduced the digestibility of protein in the intestinal digestion stage. We hope that this study can provide a theoretical basis for the development and utilization of WPI-RAEs as food ingredients.
Collapse
Affiliation(s)
- Yun Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Yuan Xiao
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Zhang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Chunmei Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Guo Y, Fang R, Zhen Y, Qiao D, Zhao S, Zhang B. Ion presence during thermal processing modulates the performance of rice albumin/anthocyanin binary system. Food Res Int 2024; 184:114274. [PMID: 38609251 DOI: 10.1016/j.foodres.2024.114274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Thermal processing with salt ions is widely used for the production of food products (such as whole grain food) containing protein and anthocyanin. To date, it is largely unexplored how salt ion presence during thermal processing regulates the practical performance of protein/anthocyanin binary system. Here, rice albumin (RA) and black rice anthocyanins (BRA) were used to prepare RA/BRA composite systems as a function of temperature (60-100 °C) and NaCl concentration (10-40 mM) or CaCl2 concentration (20 mM). It was revealed that the spontaneous complexing reaction between RA and BRA was driven by hydrophobic interactions and hydrogen bonds and becomes easier and more favorable at a higher temperature (≤90 °C), excessive temperature (100 °C), however, may result in the degradation of BRA. Moreover, the salt ion presence during thermal processing may bind with RA and BRA, respectively, which could restrict the interaction between BRA and RA. Additionally, the inclusion of Na+ or Ca2+ at 20 mM endowed the binary system with strengthened DPPH radical scavenging capacity (0.95 for Na+ and 0.99 for Ca2+). Notably, Ca2+ performed a greater impact on the stability of the system than Na+.
Collapse
Affiliation(s)
- Yabin Guo
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Ruolan Fang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiyuan Zhen
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Wang W, Yang P, Gao F, Wang Y, Xu Z, Liao X. Metal-free production of natural blue colorants through anthocyanin-protein interactions. J Adv Res 2024:S2090-1232(24)00080-8. [PMID: 38402948 DOI: 10.1016/j.jare.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION The scarcity of naturally available sources for blue colorants has driven reliance on synthetic alternatives. Nevertheless, growing health concerns have prompted the development of naturally derived blue colorants, which remains challenging with limited success thus far. Anthocyanins (ACNs) are known for providing blue colors in plants, and metal complexation with acylated ACNs remains the primary strategy to generate stable blue hues. However, this approach can be costly and raise concerns regarding potential metal consumption risks. OBJECTIVES Our study aims to introduce a metal-free approach to achieve blue coloration in commonly distributed non-acylated 3-glucoside ACNs by exploring their interactions with proteins and unveiling the underlying mechanisms. METHODS Using human serum albumin (HSA) as a model protein, we investigated the structural influences of ACNs on their blue color generation using visible absorption spectroscopy, fluorescence quenching, and molecular simulations. Additionally, we examined the bluing effects of six proteins derived from milk and egg and identified the remarkable roles of bovine serum albumin (BSA) and lysozyme (LYS). RESULTS Our findings highlighted the importance of two or more hydroxyl or methoxyl substituents in the B-ring of ACNs for generating blue colors. Cyanidin-, delphinidin- and petunidin-3-glucoside, featuring two neighboring hydroxyl groups in the B-ring, exhibited blue coloration when interacting with HSA or LYS, driven primarily by favorable enthalpy changes. In contrast, malvidin-3-glucoside, with two methoxyl substituents, achieved blue coloration through interactions with HSA or BSA, where entropy change played significant roles. CONCLUSION Our work, for the first time, demonstrates the remarkable capability of widely distributed 3-glucoside ACNs to generate diverse blue shades through interactions with certain proteins. This offers a promising and straightforward strategy for the production of ACN-based blue colorants, stimulating further research in this field.
Collapse
Affiliation(s)
- Wenxin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fuqing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China.
| |
Collapse
|
5
|
Vega-Galvez A, Gomez-Perez LS, Zepeda F, Vidal RL, Grunenwald F, Mejías N, Pasten A, Araya M, Ah-Hen KS. Assessment of Bio-Compounds Content, Antioxidant Activity, and Neuroprotective Effect of Red Cabbage ( Brassica oleracea var. Capitata rubra) Processed by Convective Drying at Different Temperatures. Antioxidants (Basel) 2023; 12:1789. [PMID: 37760092 PMCID: PMC10526076 DOI: 10.3390/antiox12091789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, and no efficient therapy able to cure or slow down PD is available. In this study, dehydrated red cabbage was evaluated as a novel source of bio-compounds with neuroprotective capacity. Convective drying was carried out at different temperatures. Total phenolics (TPC), flavonoids (TFC), anthocyanins (TAC), and glucosinolates (TGC) were determined using spectrophotometry, amino acid profile by LC-DAD and fatty acid profile by GC-FID. Phenolic characterization was determined by liquid chromatography-high-resolution mass spectrometry. Cytotoxicity and neuroprotection assays were evaluated in SH-SY5Y human cells, observing the effect on preformed fibrils of α-synuclein. Drying kinetic confirmed a shorter processing time with temperature increase. A high concentration of bio-compounds was observed, especially at 90 °C, with TPC = 1544.04 ± 11.4 mg GAE/100 g, TFC = 690.87 ± 4.0 mg QE/100 g and TGC = 5244.9 ± 260.2 µmol SngE/100 g. TAC degraded with temperature. Glutamic acid and arginine were predominant. Fatty acid profiles were relatively stable and were found to be mostly C18:3n3. The neochlorogenic acid was predominant. The extracts had no cytotoxicity and showed a neuroprotective effect at 24 h testing, which can extend in some cases to 48 h. The present findings underpin the use of red cabbage as a functional food ingredient.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Luis S. Gomez-Perez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Francisca Zepeda
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - René L. Vidal
- Facultad de Medicina, Instituto de Neurociencia Biomédica (BNI), Universidad de Chile, Santiago 8380000, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago 8380000, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
| | - Felipe Grunenwald
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
| | - Nicol Mejías
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Alexis Pasten
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile
| | - Kong Shun Ah-Hen
- Facultad de Ciencias Agrarias y Alimentarias, Instituto de Ciencia y Tecnología de los Alimentos, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
6
|
Mulyaningsih RD, Pratiwi R, Hasanah AN. An Update on the Use of Natural Pigments and Pigment Nanoparticle Adducts for Metal Detection Based on Colour Response. BIOSENSORS 2023; 13:bios13050554. [PMID: 37232915 DOI: 10.3390/bios13050554] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Natural pigments occur in plants as secondary metabolites and have been used as safe colourants in food. Studies have reported that their unstable colour intensity might be related to metal ion interaction, which leads to the formation of metal-pigment complexes. This underlines the need for further investigations on the use of natural pigments in metal detection using colorimetric methods, since metals are important elements and can be hazardous when present in large amounts. This review aimed to discuss the use of natural pigments (mainly betalains, anthocyanins, curcuminoids, carotenoids, and chlorophyll) as reagents for portable metal detection based on their limits of detection, to determine which pigment is best for certain metals. Colorimetric-related articles over the last decade were gathered, including those involving methodological modifications, sensor developments, and a general overview. When considering sensitivity and portability, the results revealed that betalains are best applied for copper, using a smartphone-assisted sensor; curcuminoids are best applied for lead, using a curcumin nanofiber; and anthocyanin is best applied for mercury, using anthocyanin hydrogel. This provides a new perspective on the use of colour instability for the detection of metals with modern sensor developments. In addition, a coloured sheet representing metal concentrations may be useful as a standard to support on-site detection with trials on masking agents to improve selectivity.
Collapse
Affiliation(s)
- Raspati D Mulyaningsih
- Master Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Aliya N Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
7
|
Zang Z, Tang S, Li Z, Chou S, Shu C, Chen Y, Chen W, Yang S, Yang Y, Tian J, Li B. An updated review on the stability of anthocyanins regarding the interaction with food proteins and polysaccharides. Compr Rev Food Sci Food Saf 2022; 21:4378-4401. [PMID: 36018502 DOI: 10.1111/1541-4337.13026] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 01/28/2023]
Abstract
The health benefits of anthocyanins are compromised by their chemical instability and susceptibility to external stress. Researchers found that the interaction between anthocyanins and macromolecular components such as proteins and polysaccharides substantially determines the stability of anthocyanins during food processing and storage. The topic thus has attracted much attention in recent years. This review underlines the new insights gained in our current study of physical and chemical properties and functional properties in complex food systems. It examines the interaction between anthocyanins and food proteins or polysaccharides by focusing on the "structure-stability" relationship. Furthermore, multispectral and molecular computing simulations are used as the chief instruments to explore the interaction's mechanism. During processing and storage, the stability of anthocyanins is generally influenced by the adverse characteristics of food and beverage, including temperature, light, oxygen, enzymes, pH. While the action modes and types between protein/polysaccharide and anthocyanins mainly depend on their structures, the noncovalent interaction between them is the key intermolecular force that increases the stability of anthocyanins. Our goal is to provide the latest understanding of the stability of anthocyanins under food processing conditions and further improve their utilization in food industries. Practical Application: This review provides support for the steady-state protection of active substances.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Siyi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
8
|
Gao R, Hu H, Shi T, Bao Y, Sun Q, Wang L, Ren Y, Jin W, Yuan L. Incorporation of gelatin and Fe 2+ increases the pH-sensitivity of zein-anthocyanin complex films used for milk spoilage detection. Curr Res Food Sci 2022; 5:677-686. [PMID: 35434649 PMCID: PMC9011025 DOI: 10.1016/j.crfs.2022.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 10/26/2022] Open
Abstract
In this study, blueberry anthocyanins, gelatin and Fe2+ were incorporated into zein matrix via electrospinning method to prepare colorimetric indicator films for monitoring milk freshness. Gelatin and Fe2+ were incorporated into the film to improve visual discrimination of indicator films' color changes in milk with different freshness degrees and in solution with pH 3-7. Results of SEM, FT-IR and XRD showed that there were intermolecular hydrogen bonds among components, which associated with the larger color difference of indicator films. UV-vis spectral analysis showed that blueberry anthocyanin solutions containing both gelatin and Fe2+ displayed the highest intensity absorption peaks. The optimal ability to distinguish the pH (3-7) of solutions was presented by the indicator film incorporating gelatin (1% (w/v)) and Fe2+ (0.07 mg/mL). Gelatin and Fe2+ increased the color-responsive sensitivity of the indicator film to pH. The film could be successfully used to detect the freshness of milk, whose color changes were visually perceivable: from purple black (fresh milk) to royal purple (spoiling milk) and then to violet red (spoiled milk). The color parameters (L*, a*, R, G and B) of the film revealed a high correlation with the pH/acidity of the milk during storage. The successful application of the indicator film embedding gelatin and Fe2+ for monitoring milk quality changes indicated that the addition of special substances could provide great potential for monitoring freshness and preparing intelligent packaging of food.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.,Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong, Sha'anxi Province, 723001, China
| | - Huiling Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Lin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yuhan Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong, Sha'anxi Province, 723001, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
9
|
Torrini F, Renai L, Scarano S, Del Bubba M, Palladino P, Minunni M. Colorimetric selective quantification of anthocyanins with catechol/pyrogallol moiety in edible plants upon zinc complexation. Talanta 2021; 240:123156. [PMID: 34942476 DOI: 10.1016/j.talanta.2021.123156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023]
Abstract
Here is examined the colour development from common anthocyanins (i.e., cyanidin, delphinidin, malvidin, and pelargonidin glycosides) and from anthocyanins-rich extracts (i.e., bilberries, strawberries, and raspberries), using zinc-anthocyanin complexes as molecular probe. We have observed the absorbance increase in the blue region in presence of large excess of zinc ion at acidic pH for cyanidin and delphinidin derivatives, likely due to quinoidal base stabilization from catechol and pyrogallol moiety. The assay condition were studied and applied to natural extracts containing these compounds. The same behaviour was observed for bilberry and, to a minor extent, for raspberry extracts, due to the larger cyanidin/delphinidin contents in the former than in the latter. Anthocyanin standard UV-Vis analysis in buffer has shown a very good linear correlation for cyanidin and delphinidin (R2 = 0.995 and 0.997, respectively), good precision (CV% = 7.4% and 5.3% respectively), high sensitivity (Cyε600nm = 8300 M-1 cm-1, LOD = 0.264 ± 0.005 mg L-1, LOQ = 0.478 ± 0.007 mg L-1, and Dpε600nm = 15,900 M-1 cm-1, LOD = 0.143 ± 0.002 mg L-1, LOQ = 0.478 ± 0.007 mg L-1). The effectiveness of this colorimetric method for the selective quantification of catechol/pyrogallol-based anthocyanins has been demonstrated in the aforementioned complex real matrices and compared to LC-MS/MS analysis and pH-differential method, offering a valuable tool to characterize plant and food extracts particularly rich in zinc-coordinating anthocyanins.
Collapse
Affiliation(s)
- Francesca Torrini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Lapo Renai
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Simona Scarano
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Massimo Del Bubba
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Pasquale Palladino
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| | - Maria Minunni
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chem 2021; 366:130611. [PMID: 34388403 DOI: 10.1016/j.foodchem.2021.130611] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022]
Abstract
Anthocyanins are pigments abundant in fruits and vegetables, and commonly applied in foods due to attractive colour and health-promoting benefits. However, instability of anthocyanins leads to their easy degradation, reduced bioactivity, and colour fading in food processing, limiting their application and causing economic losses. Stability of anthocyanins depends on their own structures and environmental factors. For structural factors, modification including copigmentation, acylation and biosynthesis is a potential solution to increase anthocyanin stability due to forming stable structures. With regard to environmental factors, encapsulation such as microencapsulation, liposome and nanoparticles has been shown effectively to enhance the stability. We proposed the potential challenges and perspectives for the diversification of anthocyanin-rich products for food application, particularly, introduction of hazards, technical limitations, interaction with other ingredients in food system and exploration of pyranoanthocyanins. The integrated strategies are warranted for improving anthocyanin stabilization for promoting their further application in food industry.
Collapse
|
11
|
Ghareaghajlou N, Hallaj-Nezhadi S, Ghasempour Z. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chem 2021; 365:130482. [PMID: 34243124 DOI: 10.1016/j.foodchem.2021.130482] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
Red cabbage anthocyanins are of great interest as natural food colorants in the food industry; as they represent the color over a broad range of pH-values compared to anthocyanins from other natural sources. It is important to select an appropriate technique with high recovery of anthocyanins from red cabbage, among which extraction with organic solvents is the most applied extraction method. Currently, novel extraction techniques are employed as an alternative to the solvent extraction method, providing advantages such as higher anthocyanin recovery in a shorter time, lower solvent utilization, and minimum quality degradation. However, the incorporation of extracted anthocyanins into foodstuffs and pharmacological products is limited due to their low bioavailability and relative instability toward environmental adverse conditions, such as pH, temperature, enzymes, light, oxygen and ascorbic acid. In addition to increased structural stability of anthocyanins through glycosylation and acylation, their stability could be improved by copigmentation and encapsulation.
Collapse
Affiliation(s)
- Nazila Ghareaghajlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Hallaj-Nezhadi
- Drug Applied Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Estévez L, Queizán M, Mosquera RA, Guidi L, Lo Piccolo E, Landi M. First Characterization of the Formation of Anthocyanin-Ge and Anthocyanin-B Complexes through UV-Vis Spectroscopy and Density Functional Theory Quantum Chemical Calculations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1272-1282. [PMID: 33481589 PMCID: PMC7875511 DOI: 10.1021/acs.jafc.0c06827] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The occurrence of anthocyanin (ACN) and metal (Me) complexes has been widely supported by many research works while the possibility that ACNs bind to metalloids (Mds) is yet to be proven. Here, metalloids (H3BO3 for B; GeO2 for Ge) were added to cyanidin-based solutions at pH 5, 6, and 7 and ACN-Md stoichiometric ratios of 1:1, 1:10, 1:100, and 1:500, and UV-vis transmittance spectroscopy as well as density functional theory (DFT) calculations were performed to test this hypothesis. Ge and B addition caused bathochromic and hyperchromic shifts on ACN UV-vis spectra, particularly pronounced at pH 5 and a 1:500 (ACN:Md) ratio. ACN-Me complexation reactions have been evaluated where Ge showed a higher capability to bind to ACNs than B. Among the complexes envisioned, those labeled as b1, b2, and b3 feature UV-vis spectra compatible with experiments. The combination of experimental and computational data offers for the first time evidence of the formation of ACN-Md complexes.
Collapse
Affiliation(s)
- Laura Estévez
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310−Vigo, Galicia, Spain
- (L.E.)
| | - Marta Queizán
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310−Vigo, Galicia, Spain
| | - Ricardo A. Mosquera
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310−Vigo, Galicia, Spain
| | - Lucia Guidi
- Department
of Agriculture, Food and Environment. University
of Pisa, I-56124 Pisa, Italy
| | - Ermes Lo Piccolo
- Department
of Agriculture, Food and Environment. University
of Pisa, I-56124 Pisa, Italy
| | - Marco Landi
- Department
of Agriculture, Food and Environment. University
of Pisa, I-56124 Pisa, Italy
- (M.L.)
| |
Collapse
|
13
|
Fan M, Lian W, Li T, Rao Z, Li Y, Qian H, Zhang H, Qi X, Wang L. Characterization of promising natural blue pigment from Vaccinium bracteatum thunb. leaves: Insights of the stability and the inhibition of α-amylase. Food Chem 2020; 326:126962. [DOI: 10.1016/j.foodchem.2020.126962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022]
|
14
|
Zhao L, Pan F, Mehmood A, Zhang Y, Hao S, Rehman AU, Li J, Wang C, Wang Y. Protective effect and mechanism of action of xanthan gum on the color stability of black rice anthocyanins in model beverage systems. Int J Biol Macromol 2020; 164:3800-3807. [PMID: 32910958 DOI: 10.1016/j.ijbiomac.2020.09.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
We investigated the effect and mechanism of action of xanthan gum (XG) on the color stability of black rice anthocyanins (BRA) in model beverage systems (pH 3.0) containing l-ascorbic acid under different conditions. The color stability of BRA was significantly enhanced in the presence of XG under accelerated storage conditions (40 °C), particularly at 0.25% (w/v). The degradation of BRA followed a first-order reaction rate (R2 > 0.89) during storage and thermal processing conditions. The addition of XG effectively improved the storage stability of BRA in the presence of l-ascorbic acid, particularly at 4 °C in the dark. Moreover, the thermal stability of BRA was enhanced by XG under thermal treatment (80 °C, 90 °C and 100 °C). The FTIR spectrum, X-ray diffraction and molecular simulation results showed that the interaction between XG and BRA was driven mainly by hydrogen bonds and hydrophobic interactions, leading to the increased stability of BRA. Our study demonstrated the benefits of using XG to improve the color stability of BRA in model beverage systems, further expanding the practical application of XG in anthocyanin-rich beverages.
Collapse
Affiliation(s)
- Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Fei Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Yali Zhang
- Pony Testing International Group Co., Ltd., Beijing 100095, China
| | - Shuai Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
15
|
Iorizzo M, Curaba J, Pottorff M, Ferruzzi MG, Simon P, Cavagnaro PF. Carrot Anthocyanins Genetics and Genomics: Status and Perspectives to Improve Its Application for the Food Colorant Industry. Genes (Basel) 2020; 11:E906. [PMID: 32784714 PMCID: PMC7465225 DOI: 10.3390/genes11080906] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Purple or black carrots (Daucus carota ssp. sativus var. atrorubens Alef) are characterized by their dark purple- to black-colored roots, owing their appearance to high anthocyanin concentrations. In recent years, there has been increasing interest in the use of black carrot anthocyanins as natural food dyes. Black carrot roots contain large quantities of mono-acylated anthocyanins, which impart a measure of heat-, light- and pH-stability, enhancing the color-stability of food products over their shelf-life. The genetic pathway controlling anthocyanin biosynthesis appears well conserved among land plants; however, different variants of anthocyanin-related genes between cultivars results in tissue-specific accumulations of purple pigments. Thus, broad genetic variations of anthocyanin profile, and tissue-specific distributions in carrot tissues and organs, can be observed, and the ratio of acylated to non-acylated anthocyanins varies significantly in the purple carrot germplasm. Additionally, anthocyanins synthesis can also be influenced by a wide range of external factors, such as abiotic stressors and/or chemical elicitors, directly affecting the anthocyanin yield and stability potential in food and beverage applications. In this study, we critically review and discuss the current knowledge on anthocyanin diversity, genetics and the molecular mechanisms controlling anthocyanin accumulation in carrots. We also provide a view of the current knowledge gaps and advancement needs as regards developing and applying innovative molecular tools to improve the yield, product performance and stability of carrot anthocyanin for use as a natural food colorant.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Julien Curaba
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
| | - Mario G. Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
| | - Philipp Simon
- Department of Horticulture, University of Wisconsin–Madison, Madison, WI 53706, USA;
- Vegetable Crops Research Unit, US Department of Agriculture–Agricultural Research Service, Madison, WI 53706, USA
| | - Pablo F. Cavagnaro
- National Scientific and Technical Research Council (CONICET), National Agricultural Technology Institute (INTA) E.E.A. La Consulta, Mendoza 5567, Argentina;
- Faculty of Agricultural Sciences, National University of Cuyo, Mendoza 5505, Argentina
| |
Collapse
|
16
|
VIANA KWC, OLIVEIRA IRND, ROCHA JDCG, BARROS FARD, STRINGHETA PC. Study of adsorption isotherms and physicochemical characterization of natural food colourants. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.37217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
|
18
|
Müller-Maatsch J, Gurtner K, Carle R, Björn Steingass C. Investigation into the removal of glucosinolates and volatiles from anthocyanin-rich extracts of red cabbage. Food Chem 2019; 278:406-414. [DOI: 10.1016/j.foodchem.2018.10.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022]
|
19
|
Evaluation of the colloidal/chemical performance of core-shell nanoparticle formed by zein and gum Arabic. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Synergistic Bathochromic and Hyperchromic Shifts of Anthocyanin Spectra Observed Following Complexation with Iron Salts and Chondroitin Sulfate. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2055-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Gordillo B, Sigurdson GT, Lao F, González-Miret ML, Heredia FJ, Giusti MM. Assessment of the color modulation and stability of naturally copigmented anthocyanin-grape colorants with different levels of purification. Food Res Int 2018; 106:791-799. [PMID: 29579988 DOI: 10.1016/j.foodres.2018.01.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/04/2018] [Accepted: 01/21/2018] [Indexed: 11/27/2022]
Abstract
Grape skins or their by-products from wine production are rich sources of anthocyanins and various colorless phenolics, depending on the grape variety. Phenolics have strong antioxidant and anthocyanin stabilizing properties and help to produce functional anthocyanin colorants with improved stability. This study aimed to assess differences in color expression and stability of anthocyanin colorants from red grape varieties naturally copigmented and with different levels of purity and to compare them to synthetic FD&C Red No. 3. Model juice systems were prepared at pH 3.5 with anthocyanins and phenolic copigments extracted from four Vitis vinifera grape varieties ('Tempranillo', 'Syrah', 'C. Sauvignon', and 'Graciano') both crude and purified by C18 solid phase extraction. Attention was focused on differential colorimetry and phenolic composition related to the color. Degradation kinetics of total color were also studied during storage of 17 days in darkness at 25 °C. Grape variety significantly influenced pigment yield, proportion of acylation, and proportion of copigments:pigments ratios in crude extracts; purification modulated the copigment:pigment ratios. This proportion was related to perceptible color variability among colorants and to different stabilities. With the same pigment content, grape varieties richer in skin copigments and higher copigment/pigment ratios ('Syrah' and 'Tempranillo') produced more intensely colored crude extracts whose tonalities ranged from reddish ('Graciano') to red-bluish ('Syrah'), depending on the proportion of acylation. Increasing the purity of the pigments diminished the color variability due to variety, making them less vivid and visually more similar to one another and also to the synthetic colorant. Degradation kinetic studies showed that unpurified grape colorants had higher color stability over time, with the greatest stabilizing effects achieved with varieties richer in skin flavonols ('Tempranillo' and 'Syrah').
Collapse
Affiliation(s)
- Belén Gordillo
- Food Colour & Quality Laboratory, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Gregory T Sigurdson
- Dept. of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA.
| | - Fei Lao
- Dept. of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA.
| | | | - Francisco J Heredia
- Food Colour & Quality Laboratory, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - M Mónica Giusti
- Dept. of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
22
|
Luna-Vital D, Cortez R, Ongkowijoyo P, Gonzalez de Mejia E. Protection of color and chemical degradation of anthocyanin from purple corn (Zea mays L.) by zinc ions and alginate through chemical interaction in a beverage model. Food Res Int 2017; 105:169-177. [PMID: 29433204 DOI: 10.1016/j.foodres.2017.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/22/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
Anthocyanin-rich purple corn pericarp water extract (PCW) has the potential to be used as a natural pigment in beverages. However, it has a limited shelf-life in aqueous solutions. The aim was to evaluate the effect of zinc ion (Zn2+) and alginate on color and chemical stability of anthocyanins from colored corn (PCW) in a beverage model for 12weeks. PCW was incorporated to Kool-Aid® Invisible™ along with ZnCl2 and/or alginate. Individual ANC were quantified through HPLC, and color stability was evaluated through the CIE-L*a*b* color system. Complexation between PCW and Zn/alginate was evaluated with fluorescence spectroscopy. The combination of Zn and alginate was the most effective treatment improving the half-life of total ANC concentration (10.4weeks), cyanidin-3-O-glucoside (7.5weeks) and chroma (18.4weeks), compared to only PCW (6.6, 4.5 and 12.7weeks, respectively). Zn and alginate had bimolecular quenching constants (Zn kq: 3.4×1011 M-1S-1 and AA kq: 1.0×1012 M-1S-1) suggesting that fluorescence quenching was binding rather than collisional. Results suggested that Zn/alginate interacted with ANC from purple corn slowing its chemical degradation.
Collapse
Affiliation(s)
- Diego Luna-Vital
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Regina Cortez
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Paulina Ongkowijoyo
- School of Chemistry, University of Illinois at Urbana-Champaign, J. S. Morrill Hall, 505 S. Mathews Ave., Urbana, IL 61801, USA
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, United States.
| |
Collapse
|
23
|
Fedenko VS, Shemet SA, Landi M. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:13-28. [PMID: 28242414 DOI: 10.1016/j.jplph.2017.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 05/24/2023]
Abstract
Although anthocyanin (ACN) biosynthesis is one of the best studied pathways of secondary metabolism in plants, the possible physiological and ecological role(s) of these pigments continue to intrigue scientists. Like other dihydroxy B-ring substituted flavonoids, ACNs have an ability to bind metal and metalloid ions, a property that has been exploited for a variety of purposes. For example, the metal binding ability may be used to stabilize ACNs from plant food sources, or to modify their colors for using them as food colorants. The complexation of metals with cyanidin derivatives can also be used as a simple, sensitive, cheap, and rapid method for determination concentrations of several metals in biological and environmental samples using UV-vis spectroscopy. Far less information is available on the ecological significance of ACN-metal complexes in plant-environment interactions. Metalloanthocyanins (protocyanin, nemophilin, commelinin, protodelphin, cyanosalvianin) are involved in the copigmentation phenomenon that leads to blue-pigmented petals, which may facilitate specific plant-pollinator interactions. ACN-metal formation and compartmentation into the vacuole has also been proposed to be part of an orchestrated detoxification mechanism in plants which experience metal/metalloid excess. However, investigations into ACN-metal interactions in plant biology may be limited because of the complexity of the analytical techniques required. To address this concern, here we describe simple methods for the detection of ACN-metal both in vitro and in vivo using UV-vis spectroscopy and colorimetric models. In particular, the use of UV-vis spectra, difference absorption spectra, and colorimetry techniques will be described for in vitro determination of ACN-metal features, whereas reflectance spectroscopy and colorimetric parameters related to CIE L*a*b* and CIE XYZ systems will be detailed for in vivo analyses. In this way, we hope to make this high-informative tool more accessible to plant physiologists and ecologists.
Collapse
Affiliation(s)
- Volodymyr S Fedenko
- Scientific Research Institute of Biology, Oles Honchar Dnipropetrovsk National University,72 Gagarin Avenue, Dnipro 49010, Ukraine
| | - Sergiy A Shemet
- Scientific Research Institute of Biology, Oles Honchar Dnipropetrovsk National University,72 Gagarin Avenue, Dnipro 49010, Ukraine
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80 I-56124, Pisa, Italy.
| |
Collapse
|
24
|
Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates. Food Chem 2017; 234:131-138. [PMID: 28551216 DOI: 10.1016/j.foodchem.2017.04.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 11/24/2022]
Abstract
Mechanisms to recreate many anthocyanin blue hues in nature are not fully understood, but interactions with metal ions and phenolic compounds are thought to play important roles. Bluing effects of hydroxycinnamic acids on cyanidin and chelates were investigated by addition of the acids to triglycosylated cyanidin (0-50×[anthocyanin]) and by comparison to hydroxycinnamic acid monoacylated and diacylated Cy fractions by spectrophotometry (380-700nm) and colorimetry in pH 5-8. With no metal ions, λmax and absorbance was greatest for cyanidin with diacylation>monoacylation>increasing [acids]. Hydroxycinnamic acids added to cyanidin solutions weakly impacted color characteristics (ΔE<5); while acylation (covalent acid attachment) resulted in ΔE 5-15. Triglycosylated cyanidin expressed blue color (pH 7-8), suggesting glycosylation pattern also plays a role. Al3+ chelation increased absorbance 2-42× and λmax≳40nm (pH 5-6) compared to added hydroxycinnamic acids. Metal chelation and aromatic diacylation resulted in the most blue hues.
Collapse
|
25
|
Ratanapoompinyo J, Nguyen LT, Devkota L, Shrestha P. The effects of selected metal ions on the stability of red cabbage anthocyanins and total phenolic compounds subjected to encapsulation process. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13234] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jakaphan Ratanapoompinyo
- Food Engineering and Bioprocess Technology; Asian Institute of Technology, PO Box 4, Klong Luang, Pathumthani 12120; Bangkok Thailand
| | - Loc T. Nguyen
- Food Engineering and Bioprocess Technology; Asian Institute of Technology, PO Box 4, Klong Luang, Pathumthani 12120; Bangkok Thailand
| | - Lavaraj Devkota
- Food Engineering and Bioprocess Technology; Asian Institute of Technology, PO Box 4, Klong Luang, Pathumthani 12120; Bangkok Thailand
| | - Pratiksha Shrestha
- Food Engineering and Bioprocess Technology; Asian Institute of Technology, PO Box 4, Klong Luang, Pathumthani 12120; Bangkok Thailand
| |
Collapse
|
26
|
Abstract
The color of food is often associated with the flavor, safety, and nutritional value of the product. Synthetic food colorants have been used because of their high stability and low cost. However, consumer perception and demand have driven the replacement of synthetic colorants with naturally derived alternatives. Natural pigment applications can be limited by lower stability, weaker tinctorial strength, interactions with food ingredients, and inability to match desired hues. Therefore, no single naturally derived colorant can serve as a universal alternative for a specified synthetic colorant in all applications. This review summarizes major environmental and biological sources for natural colorants as well as nature-identical counterparts. Chemical characteristics of prevalent pigments, including anthocyanins, carotenoids, betalains, and chlorophylls, are described. The possible applications and hues (warm, cool, and achromatic) of currently used natural pigments, such as anthocyanins as red and blue colorants, and possible future alternatives, such as purple violacein and red pyranoanthocyanins, are also discussed.
Collapse
Affiliation(s)
- Gregory T Sigurdson
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210-1007;
| | - Peipei Tang
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210-1007;
| | - M Mónica Giusti
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210-1007;
| |
Collapse
|
27
|
Sigurdson GT, Robbins RJ, Collins TM, Giusti MM. Spectral and colorimetric characteristics of metal chelates of acylated cyanidin derivatives. Food Chem 2016; 221:1088-1095. [PMID: 27979063 DOI: 10.1016/j.foodchem.2016.11.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 02/02/2023]
Abstract
Colorants derived from nature are increasingly popular due to consumer demand. Anthocyanins are a class of naturally occurring pigments that produce red-purple-blue hues in nature, especially when interacting with metal ions and co-pigments. The role of various acylations of cyanidin (Cy) derivatives on color expression and stability of Al3+ and Fe3+ chelates in pH 6-7 were evaluated by spectrophotometry (380-700nm) and colorimetry (CIE-L∗a∗b∗) during dark, ambient storage (48h). Increased substitution generally increased λmax of Cy chelates: malonic acid monoacylation<triglycosylated Cy<Cy monoacylated with hydroxycinnamic acids<diacylated Cy. Patterns were similar regarding bathochromic shifts. Acyl moieties of diacylated Cy with smaller substitution patterns resulted in greater λmax, and no pattern emerged for monoacylated cyanidin. Pigment stability was improved with increasing proportions of metal ions and acylation. Stability followed that diacylated cyanidin (p-coumaric-sinapic>ferulic-sinapic>sinapic-sinapic)>monoacylated (malonic≈sinapic>ferulic>p-coumaric).
Collapse
Affiliation(s)
- G T Sigurdson
- The Ohio State University, Dept. of Food Science and Technology, 2015 Fyffe Ct., Columbus, OH 43210-1007, United States
| | - R J Robbins
- Science and Discovery Group, Mars Inc., 800 High St., Hackettstown, NJ 07840, United States
| | - T M Collins
- Science and Discovery Group, Mars Inc., 800 High St., Hackettstown, NJ 07840, United States
| | - M M Giusti
- The Ohio State University, Dept. of Food Science and Technology, 2015 Fyffe Ct., Columbus, OH 43210-1007, United States.
| |
Collapse
|
28
|
Brauch JE, Zapata-Porras SP, Buchweitz M, Aschoff JK, Carle R. Jagua blue derived from Genipa americana L. fruit: A natural alternative to commonly used blue food colorants? Food Res Int 2016; 89:391-398. [PMID: 28460930 DOI: 10.1016/j.foodres.2016.08.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/02/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
Abstract
Due to consumers' increasing health awareness, food industry aims at replacing synthetic dyes by natural counterparts. The substitution of blue synthetic dyes is particularly challenging since current natural alternatives such as phycocyanin (Spirulina) suffer from poor stability. Jagua blue (produced from Genipa americana L. fruit) might represent a potential novel blue pigment source. However, only little is known about its color properties, and application in food systems. Therefore, the blue color and the stability of Jagua blue were assessed for the first time and compared to commonly used colorants, namely, Spirulina, brilliant blue FCF (Blue no. 1), and indigo carmine (Blue no. 2). The reaction rate of Jagua blue was independent of its concentration, confirming thermal degradation to follow first-order kinetics. Between pH 3.6 and 5.0, the color hue of Jagua blue solutions was similar to that of Blue no. 2. However, Jagua blue revealed markedly higher storage stabilities (t1/2=86-105days) than Blue no. 2 (t1/2≤9days) and was less susceptible to acidic pH of 3.6 (t1/2=86days) than Spirulina (t1/2=70days). High negative b* values (blueness) of colored gelatin gels were only obtained for Jagua blue and Spirulina, and the former exhibited higher light stabilities (t1/2=15days) than Spirulina gels (t1/2=4days). Our findings indicate Jagua blue to be a most promising alternative to synthetic dyes, providing relevant information regarding potential food applications.
Collapse
Affiliation(s)
- J E Brauch
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Garbenstrasse 25, D-70599 Stuttgart, Germany.
| | - S P Zapata-Porras
- Ecoflora SAS, Calle 80 Sur # 47 D 65, Bodegas La Holanda 103, Sabaneta, Antioquia, Colombia
| | - M Buchweitz
- Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - J K Aschoff
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Garbenstrasse 25, D-70599 Stuttgart, Germany
| | - R Carle
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Garbenstrasse 25, D-70599 Stuttgart, Germany; Biological Science Department, King Abdulaziz University, PO Box 80257, Jeddah 21589, Saudi Arabia
| |
Collapse
|
29
|
Sigurdson GT, Robbins RJ, Collins TM, Giusti MM. Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH. Food Chem 2016; 208:26-34. [PMID: 27132820 DOI: 10.1016/j.foodchem.2016.03.109] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 11/24/2022]
Abstract
In many food products, colorants derived from natural sources are increasingly popular due to consumer demand. Anthocyanins are one class of versatile and abundant naturally occurring chromophores that produce different hues in nature, especially with metal ions and other copigments assisting. The effects of chelation of metal ions (Mg(2+), Al(3+), Cr(3+), Fe(3+), and Ga(3+)) in factorial excesses to anthocyanin concentration (0-500×) on the spectral characteristics (380-700nm) of cyanidin and acylated cyanidin derivatives were evaluated to better understand the color evolution of anthocyanin-metal chelates in pH 3-8. In all pH, anthocyanins exhibited bathochromic and hyperchromic shifts. Largest bathochromic shifts most often occurred in pH 6; while largest hyperchromic shifts occurred in pH 5. Divalent Mg(2+) showed no observable effect on anthocyanin color while trivalent metal ions caused bathochromic shifts and hue changes. Generally, bathochromic shifts on anthocyanins were greatest with more electron rich metal ions (Fe(3+)≈Ga(3+)>Al(3+)>Cr(3+)).
Collapse
Affiliation(s)
- G T Sigurdson
- The Ohio State University, Dept. of Food Science and Technology, 2015 Fyffe Ct., Columbus, OH 43210-1007, United States
| | - R J Robbins
- Science and Discovery Group, Mars Inc., 800 High St., Hackettstown, NJ 07840, United States
| | - T M Collins
- Science and Discovery Group, Mars Inc., 800 High St., Hackettstown, NJ 07840, United States
| | - M M Giusti
- The Ohio State University, Dept. of Food Science and Technology, 2015 Fyffe Ct., Columbus, OH 43210-1007, United States.
| |
Collapse
|
30
|
Brauch JE, Kroner M, Schweiggert RM, Carle R. Studies into the Stability of 3-O-Glycosylated and 3,5-O-Diglycosylated Anthocyanins in Differently Purified Liquid and Dried Maqui (Aristotelia chilensis (Mol.) Stuntz) Preparations during Storage and Thermal Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8705-14. [PMID: 26338479 DOI: 10.1021/acs.jafc.5b03471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Anthocyanin stabilities in diluted and differently purified maqui preparations were assessed during storage and thermal treatment at different pH values. By sequentially depleting the matrix, the influence of polar low-molecular-weight matrix constituents and non-anthocyanin phenolics was shown to be negligible. In contrast, pH substantially affected thermal stabilities of differently glycosylated cyanidin and delphinidin derivatives. At pH 3.6, half-lives of 3-O-glycosides were substantially shorter than those of respective 3,5-O-diglycosides. However, at pH 2.2, an inverse stability behavior was observed. Findings were corroborated using isolated pigments. Upon heating, cyanidin derivatives were more stable than their respective delphinidins, but their stability was similar during storage. Anthocyanins in liquid samples were more stable when stored at 4 °C as compared to 20 °C, whereas those in dried powders revealed maximum stability throughout storage. The study contains a detailed discussion and mechanistic hypothesis for the above-mentioned findings, providing insights relevant for food applications of maqui anthocyanins.
Collapse
Affiliation(s)
- Johanna E Brauch
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim , Garbenstrasse 25, D-70599 Stuttgart, Germany
| | - Mareike Kroner
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim , Garbenstrasse 25, D-70599 Stuttgart, Germany
| | - Ralf M Schweiggert
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim , Garbenstrasse 25, D-70599 Stuttgart, Germany
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim , Garbenstrasse 25, D-70599 Stuttgart, Germany
- Biological Science Department, King Abdulaziz University , P.O. Box 80257, Jeddah 21589, Saudi Arabia
| |
Collapse
|
31
|
Application of ferric anthocyanin chelates as natural blue food colorants in polysaccharide and gelatin based gels. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.11.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|