1
|
Liu S, Shi T, Yu J, Li R, Lin H, Deng K. Research on Bitter Peptides in the Field of Bioinformatics: A Comprehensive Review. Int J Mol Sci 2024; 25:9844. [PMID: 39337334 PMCID: PMC11432553 DOI: 10.3390/ijms25189844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Bitter peptides are small molecular peptides produced by the hydrolysis of proteins under acidic, alkaline, or enzymatic conditions. These peptides can enhance food flavor and offer various health benefits, with attributes such as antihypertensive, antidiabetic, antioxidant, antibacterial, and immune-regulating properties. They show significant potential in the development of functional foods and the prevention and treatment of diseases. This review introduces the diverse sources of bitter peptides and discusses the mechanisms of bitterness generation and their physiological functions in the taste system. Additionally, it emphasizes the application of bioinformatics in bitter peptide research, including the establishment and improvement of bitter peptide databases, the use of quantitative structure-activity relationship (QSAR) models to predict bitterness thresholds, and the latest advancements in classification prediction models built using machine learning and deep learning algorithms for bitter peptide identification. Future research directions include enhancing databases, diversifying models, and applying generative models to advance bitter peptide research towards deepening and discovering more practical applications.
Collapse
Affiliation(s)
| | | | | | | | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| |
Collapse
|
2
|
Hu X, Yang Y, Chang C, Li J, Su Y, Gu L. The targeted development of collagen-active peptides based on composite enzyme hydrolysis: a study on the structure-activity relationship. Food Funct 2024; 15:401-410. [PMID: 38099483 DOI: 10.1039/d3fo04455f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Fish collagen, derived from sustainable sources, offers a valuable substrate for generating peptides with diverse biofunctionalities. In this study, alkaline, papain, and ginger protease were used to enzymatically hydrolyze fish skin collagen. The peptide molecular weight distribution and sequence were measured using HPLC and ICP-MS-MS, with papain/alkaline protease (AP) and papain/alkaline/ginger protease (APG) hydrolyzed samples compared. As the results showed, the incorporation of ginger protease was useful for increasing the degree of hydrolysis, with the content of <400 Da peptides increasing from 49.82% to 58.56%. The identified peptide sequence in the APG sample had more proline at the C-terminal. The peptides were separated into two components (different in molecular weight) using gel column chromatography. The molecular weight distribution, amino acid composition, ACE inhibitory activity, and fibroblast proliferation activity of the collected components were measured. In comparison, the contents of proline and hydroxyproline in the larger peptides decreased obviously after combined hydrolysis by ginger protease, reflecting the formation of a peptide sequence of smaller molecular weight containing glycine and hydroxyproline. The combined hydrolysis of ginger protease was beneficial for the improvement of the ACE inhibitory activity of the sample. However, the fibroblast proliferation activity of AP was higher than that of APG, indicating that further hydrolysis by ginger protease may destroy the hydroxyproline at the end of the peptide sequence. This study proposed a creative directional hydrolysis method and provided practical guidance for the production of collagen peptides with enhanced functional activity.
Collapse
Affiliation(s)
- Xinnuo Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yanjun Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cuihua Chang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Junhua Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yujie Su
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Luping Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
3
|
Integrated in silico-in vitro molecular modeling and design of halogenated phenylalanine-containing antihypertensive peptide inhibitors with halogen bonds to target human angiotensin-I-converting enzyme. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Fu J, Chen S, Ni Z. Rational truncation, mutation, and halogenation of bradykinin neuropeptides as potent
ACEII
inhibitors by integrating molecular dynamics simulations, quantum mechanics calculations, and in vitro assays. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Fu
- Department of Neurology Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine Suzhou China
| | - Shenghui Chen
- Department of Neurology Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine Suzhou China
| | - Zhong Ni
- Institute of Life Sciences Jiangsu University Zhenjiang China
| |
Collapse
|
5
|
Singh BP, Bangar SP, Alblooshi M, Ajayi FF, Mudgil P, Maqsood S. Plant-derived proteins as a sustainable source of bioactive peptides: recent research updates on emerging production methods, bioactivities, and potential application. Crit Rev Food Sci Nutr 2022; 63:9539-9560. [PMID: 35521961 DOI: 10.1080/10408398.2022.2067120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The development of novel protein sources to compensate for the expected future shortage of traditional animal proteins due to their high carbon footprint is a major contemporary challenge in the agri-food industry currently. Therefore, both industry and consumers are placing a greater emphasis on plant proteins as a sustainable source of protein to meet the growing nutritional demand of ever increasing population. In addition to being key alternatives, many plant-based foods have biological properties that make them potentially functional or health-promoting foods, particularly physiologically active peptides and proteins accounting for most of these properties. This review discusses the importance of plant-based protein as a viable and sustainable alternative to animal proteins. The current advances in plant protein isolation and production and characterization of bioactive hydrolysates and peptides from plant proteins are described comprehensively. Furthermore, the recent research on bioactivities and bioavailability of plant protein-derived bioactive peptides is reviewed briefly. The limitations of using bioactive peptides, regulatory criteria, and the possible future applications of plant protein-derived bioactive peptides are highlighted. This review may help understand plant proteins and their bioactive peptides and provide valuable suggestions for future research and applications in the food industry.
Collapse
Affiliation(s)
- Brij Pal Singh
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Munira Alblooshi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Feyisola Fisayo Ajayi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
6
|
Duffuler P, Bhullar KS, de Campos Zani SC, Wu J. Bioactive Peptides: From Basic Research to Clinical Trials and Commercialization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3585-3595. [PMID: 35302369 DOI: 10.1021/acs.jafc.1c06289] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chronic diseases, including metabolic diseases, have become a worldwide public health issue. Research regarding the use of bioactive peptides or protein hydrolysates derived from food, as the diet-based strategies for the prevention and mitigation of chronic diseases, has increased exponentially in the past decades. Numerous in vitro and in vivo studies report the efficacy and safety of food-derived bioactive peptides and protein hydrolysates as antihypertensive, anti-inflammatory, antidiabetic, and antioxidant agents. However, despite promising preclinical results, an inadequate understanding of their mechanisms of action and pharmacokinetics restrict their clinical translation. Commercialization of bioactive peptides can be further hindered due to scarce information regarding their efficacy, safety, bitter taste, as well as the lack of a cost-effective method of production. This review provides an overview of the current clinical evidence and challenges to commercial applications of food-derived bioactive peptides and protein hydrolysates for the prevention and alleviation of chronic diseases.
Collapse
Affiliation(s)
- Pauline Duffuler
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Khushwant S Bhullar
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | | | - Jianping Wu
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
7
|
Zhou P, Wen L, Lin J, Mei L, Liu Q, Shang S, Li J, Shu J. Integrated unsupervised-supervised modeling and prediction of protein-peptide affinities at structural level. Brief Bioinform 2022; 23:6555404. [PMID: 35352094 DOI: 10.1093/bib/bbac097] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Cell signal networks are orchestrated directly or indirectly by various peptide-mediated protein-protein interactions, which are normally weak and transient and thus ideal for biological regulation and medicinal intervention. Here, we develop a general-purpose method for modeling and predicting the binding affinities of protein-peptide interactions (PpIs) at the structural level. The method is a hybrid strategy that employs an unsupervised approach to derive a layered PpI atom-residue interaction (ulPpI[a-r]) potential between different protein atom types and peptide residue types from thousands of solved PpI complex structures and then statistically correlates the potential descriptors with experimental affinities (KD values) over hundreds of known PpI samples in a supervised manner to create an integrated unsupervised-supervised PpI affinity (usPpIA) predictor. Although both the ulPpI[a-r] potential and usPpIA predictor can be used to calculate PpI affinities from their complex structures, the latter seems to perform much better than the former, suggesting that the unsupervised potential can be improved substantially with a further correction by supervised statistical learning. We examine the robustness and fault-tolerance of usPpIA predictor when applied to treat the coarse-grained PpI complex structures modeled computationally by sophisticated peptide docking and dynamics simulation. It is revealed that, despite developed solely based on solved structures, the integrated unsupervised-supervised method is also applicable for locally docked structures to reach a quantitative prediction but can only give a qualitative prediction on globally docked structures. The dynamics refinement seems not to change (or improve) the predictive results essentially, although it is computationally expensive and time-consuming relative to peptide docking. We also perform extrapolation of usPpIA predictor to the indirect affinity quantities of HLA-A*0201 binding epitope peptides and NHERF PDZ binding scaffold peptides, consequently resulting in a good and moderate correlation of the predicted KD with experimental IC50 and BLU on the two peptide sets, with Pearson's correlation coefficients Rp = 0.635 and 0.406, respectively.
Collapse
Affiliation(s)
- Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Li Wen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Jing Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Li Mei
- Institute of Culinary, Sichuan Tourism University, Chengdu 610100, China
| | - Qian Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Shuyong Shang
- of Ecological Environment Protection, Chengdu Normal University, Chengdu 611130, China
| | - Juelin Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Jianping Shu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| |
Collapse
|
8
|
High voltage electrical treatments can eco-efficiently promote the production of high added value peptides during chymotryptic hydrolysis of β-lactoglobulin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Vitrac O, Nguyen PM, Hayert M. In Silico Prediction of Food Properties: A Multiscale Perspective. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.786879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several open software packages have popularized modeling and simulation strategies at the food product scale. Food processing and key digestion steps can be described in 3D using the principles of continuum mechanics. However, compared to other branches of engineering, the necessary transport, mechanical, chemical, and thermodynamic properties have been insufficiently tabulated and documented. Natural variability, accented by food evolution during processing and deconstruction, requires considering composition and structure-dependent properties. This review presents practical approaches where the premises for modeling and simulation start at a so-called “microscopic” scale where constituents or phase properties are known. The concept of microscopic or ground scale is shown to be very flexible from atoms to cellular structures. Zooming in on spatial details tends to increase the overall cost of simulations and the integration over food regions or time scales. The independence of scales facilitates the reuse of calculations and makes multiscale modeling capable of meeting food manufacturing needs. On one hand, new image-modeling strategies without equations or meshes are emerging. On the other hand, complex notions such as compositional effects, multiphase organization, and non-equilibrium thermodynamics are naturally incorporated in models without linearization or simplifications. Multiscale method’s applicability to hierarchically predict food properties is discussed with comprehensive examples relevant to food science, engineering and packaging. Entropy-driven properties such as transport and sorption are emphasized to illustrate how microscopic details bring new degrees of freedom to explore food-specific concepts such as safety, bioavailability, shelf-life and food formulation. Routes for performing spatial and temporal homogenization with and without chemical details are developed. Creating a community sharing computational codes, force fields, and generic food structures is the next step and should be encouraged. This paper provides a framework for the transfer of results from other fields and the development of methods specific to the food domain.
Collapse
|
10
|
Zhang D, Tang W, Weng S, Zhang N, Luo T, Shen X, Dong L. Integrated in silico‐in vitro analysis of systematic kinase gatekeeper mutation effects on pan‐kinase inhibitors in targeted liver cancer therapy. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Danying Zhang
- Department of Gastroenterology Zhongshan Hospital of Fudan University Shanghai China
| | - Wenqing Tang
- Department of Gastroenterology Zhongshan Hospital of Fudan University Shanghai China
| | - Shuqiang Weng
- Department of Gastroenterology Zhongshan Hospital of Fudan University Shanghai China
| | - Ningping Zhang
- Department of Gastroenterology Zhongshan Hospital of Fudan University Shanghai China
| | - Tiancheng Luo
- Department of Gastroenterology Zhongshan Hospital of Fudan University Shanghai China
| | - Xizhong Shen
- Department of Gastroenterology Zhongshan Hospital of Fudan University Shanghai China
| | - Ling Dong
- Department of Gastroenterology Zhongshan Hospital of Fudan University Shanghai China
| |
Collapse
|
11
|
Zhou P, Liu Q, Wu T, Miao Q, Shang S, Wang H, Chen Z, Wang S, Wang H. Systematic Comparison and Comprehensive Evaluation of 80 Amino Acid Descriptors in Peptide QSAR Modeling. J Chem Inf Model 2021; 61:1718-1731. [DOI: 10.1021/acs.jcim.0c01370] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Zhou
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu 611731, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu 610054, China
| | - Qian Liu
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu 611731, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu 610054, China
| | - Ting Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu 610054, China
| | - Qingqing Miao
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu 611731, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu 610054, China
| | - Shuyong Shang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Heyi Wang
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu 611731, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu 610054, China
| | - Zheng Chen
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu 611731, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu 610054, China
| | - Shaozhou Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu 610054, China
| | - Heyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu 610054, China
| |
Collapse
|
12
|
A discovery-based metabolomic approach using UHPLC Q-TOF MS/MS unveils a plethora of prospective antihypertensive compounds in Korean fermented soybeans. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Structure-Based Optimization of Therapeutic Peptide Selectivity Between Cerebrovascular Rho-1 and Rho-2 Kinase Isoforms. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Manfredini PG, Cavanhi VAF, Costa JAV, Colla LM. Bioactive peptides and proteases: characteristics, applications and the simultaneous production in solid-state fermentation. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1849151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Paola Gouvêa Manfredini
- Graduation Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | | | | | - Luciane Maria Colla
- Graduation Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Brazil
| |
Collapse
|
15
|
Chen X, Wang H, Yang S, Zheng J, Liu X, Mao G. Structure-based discovery and redesign of TGF-β1 Elbow epitope recognition by its type-II receptor in hypertrophic scarring biotherapy. J Mol Recognit 2020; 34:e2881. [PMID: 33137847 DOI: 10.1002/jmr.2881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/05/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) signaling pathway has been implicated in the fibroblast activation of hypertrophic scarring (HS). Previously, we proposed a new biotherapeutic strategy to combat HS by disrupting the intermolecular interaction of TGF-β1 with its cognate type-II receptor (TβR-II). Here, we further demonstrate that the binding site of TGF-β1 to TβR-II is not overlapped with the conformational wrist epitope and linear knuckle epitope that are traditionally recognized as the functional binding sites of bone morphogenetic protein-2 (BMP-2) to its type-II receptor (BMPR-II), which can thus be regarded as a new functional site we called elbow epitope. Structural, energetic, and dynamic investigations reveal that the elbow epitope consists of two sequentially discontinuous, spatially vicinal segments Loop30-34 and Turn90-95 ; they cannot work effectively to independently interact with TβR-II. Rational redesign of the epitope is performed using an integrated in silio-in vitro method based on crystal and modeled structure data. In the procedure, the two epitope segments are split from the interface of TGF-β1-TβR-II complex and then connected with each other in a head-to-tail manner by adding a flexible poly-(Gly)n linker between them, thus resulting in a series of combined peptides. We found that the peptide affinity reaches maximum at n = 2, which shares a consistent binding mode with the elbow epitope at native complex interface. The linker of either too long (n > 2) or too short (n < 2) cannot properly place the gap space between the two segments, thus impairing the binding compatibility of designed peptides with TβR-II active site.
Collapse
Affiliation(s)
- Xiaoting Chen
- Department of Plastic Surgery, Inner Mongolia Baogang Hospital, Baotou, China
| | - Huixiong Wang
- Department of Hepatobiliary Surgery, Inner Mongolia Baogang Hospital, Baotou, China
| | - Songlin Yang
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianghong Zheng
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangdong Liu
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangyu Mao
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
16
|
Wu Y, Jia G, Chi H, Jiao Z, Sun Y. Integrated In Silico-In Vitro Identification and Optimization of Bone Morphogenic Protein-2 Armpit Epitope as Its Antagonist Binding Site. Protein J 2020; 39:703-710. [PMID: 33130958 DOI: 10.1007/s10930-020-09937-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 11/28/2022]
Abstract
Bone morphogenic protein-2 (BMP-2) is the most documented member of BMP family and plays a crucial role in bone formation and growth. In this study, we systematically analyze and compare the complex crystal structures and interaction properties of BMP-2 with its cognate receptors BMPR-I/BMPR-II and with its natural antagonist crossveinless-2 (CV-2) using an integrated in silico-in vitro strategy. It is found that the antagonist-binding site is not fully overlapped with the two receptor-binding sites on BMP-2 surface; the antagonist can competitively disrupt BMP-2-BMPR-II interaction using a blocking-out-of-site manner, but has no substantial influence on BMP-2-BMPR-I interaction. Here, the antagonist-binding site is assigned as a new functional epitope armpit to differ from the traditional conformational epitope wrist and linear epitope knuckle at receptor-binding sites. Structural analysis reveals that the armpit comprises three sequentially discontinuous, structurally vicinal peptide segments, separately corresponding to a loop region and two β-strands crawling on the protein surface. The three segments cannot work independently when splitting from the protein context, but can restore binding capability to CV-2 if they are connected to a single peptide. A systematic combination of different-length polyglycine linkers between these segments obtains a series of designed single peptides, from which several peptides that can potently interact with the armpit-recognition site of CV-2 with high affinity and specificity are identified using energetic analysis and fluorescence assay; they are expected to target BMP-2-CV-2 interaction in a self-inhibitory manner.
Collapse
Affiliation(s)
- Yanping Wu
- Department of Joint and Traumatic Orthopedics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Guanghong Jia
- Department of Pediatrics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Haiyan Chi
- Department of Pediatrics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Zhaode Jiao
- Department of Joint and Traumatic Orthopedics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Yinghua Sun
- Department of Joint and Traumatic Orthopedics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China.
| |
Collapse
|
17
|
Zhang D, He D, Pan X, Liu L. Rational Design and Intramolecular Cyclization of Hotspot Peptide Segments at YAP–TEAD4 Complex Interface. Protein Pept Lett 2020; 27:999-1006. [DOI: 10.2174/0929866527666200414160723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022]
Abstract
Background:
The Yes-Associated Protein (YAP) is a central regulator of Hippo pathway
involved in carcinogenesis, which functions through interaction with TEA Domain (TEAD)
transcription factors. Pharmacological disruption of YAP–TEAD4 complexes has been recognized
as a potential therapeutic strategy against diverse cancers by suppressing the oncogenic activity of
YAP.
Objective:
Two peptides, termed PS-1 and PS-2 are split from the interfacial context of YAP protein.
Dynamics simulations, energetics analyses and fluorescence polarizations are employed to
characterize the intrinsic disorder as well as binding energy/affinity of the two YAP peptides to
TEAD4 protein.
Methods:
Two peptides, termed PS-1 and PS-2 are split from the interfacial context of YAP protein.
Dynamics simulations, energetics analyses and fluorescence polarizations are employed to
characterize the intrinsic disorder as well as binding energy/affinity of the two YAP peptides to
TEAD4 protein.
Result:
The native conformation of PS-2 peptide is a cyclic loop, which is supposed to be constrained
by adding a disulfide bond across the spatially vicinal residue pair Arg87-Phe96 or Met86-
Phe95 at the peptide’s two ends, consequently resulting in two intramolecular cyclized counterparts
of linear PS-2 peptide, namely PS-2(cyc87,96) and PS-2(cyc86,95). The linear PS-2 peptide
is determined as a weak binder of TEAD4 (Kd = 190 μM), while the two cyclic PS-2(cyc87,96) and
PS-2(cyc86,95) peptides are measured to have moderate or high affinity towards TEAD4 (Kd = 21
and 45 μM, respectively).
Conclusion:
PS-1 and PS-2 peptides are highly flexible and cannot maintain in native active conformation
when splitting from the interfacial context, and thus would incur a considerable entropy
penalty upon rebinding to the interface. Cyclization does not influence the direct interaction between
PS-2 peptide and TEAD4 protein, but can largely reduce the intrinsic disorder of PS-2 peptide
in free state and considerably minimize indirect entropy effect upon the peptide binding.
Collapse
Affiliation(s)
- Dingwa Zhang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343009, China
| | - Deyong He
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343009, China
| | - Xiaoliang Pan
- School of Mechanical and Electrical Engineering, Jinggangshan University, Ji’an 343009, China
| | - Lijun Liu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343009, China
| |
Collapse
|
18
|
Wang H, Yang Z, Liu Y. Systematic characterization of
adenosine triphosphate
response to lung cancer epidermal growth factor receptor missense mutations: A molecular insight into “generic” drug resistance mutations. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hui Wang
- Department of Respiratory Medicine Zhucheng People's Hospital Affiliated to Weifang Medical University Zhucheng China
| | - Zengjian Yang
- Department of Respiratory Medicine Zhucheng People's Hospital Affiliated to Weifang Medical University Zhucheng China
| | - Yanliang Liu
- Department of Respiratory Medicine Zhucheng People's Hospital Affiliated to Weifang Medical University Zhucheng China
| |
Collapse
|
19
|
Gao S, Wang Y, Ji L. Rational design and chemical modification of TEAD coactivator peptides to target hippo signaling pathway against gastrointestinal cancers. J Recept Signal Transduct Res 2020; 41:408-415. [PMID: 32912021 DOI: 10.1080/10799893.2020.1818093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human Hippo signaling pathway has been recognized as a new and promising therapeutic target of gastrointestinal cancers, which is regulated by the intermolecular recognition between the TEA domain (TEAD) transcription factor and its prime coactivators. The coactivator proteins adopt two hotspot sites, namely α-helix and Ω-loop, to interact with TEAD. Here, we demonstrate that both the α-helix and Ω-loop peptides cannot maintain in structured state when splitting from the full-length coactivator proteins; they exhibit a large intrinsic disorder in free state that prevents the coactivator peptide recognition by TEAD. Rational design is used to optimize the interfacial residues of coactivator α-helix peptides, which can effectively improve the favorable direct readout effect upon the peptide binding to TEAD. Chemical modification is employed to constrain the free α-helix peptide into native ordered conformation. The method introduces an all-hydrocarbon bridge across i and i + 4 residues to stabilize the helical structure of a free coactivator peptide, which can considerably reduce the unfavorable indirect readout effect upon the peptide binding to TEAD. The all-hydrocarbon bridge is designed to point out of the TEAD-peptide complex interface, which would not disrupt the direct intermolecular interaction between the TEAD and peptide. Therefore, the stapling only improves peptide affinity, but does not alter peptide specificity, to TEAD. Affinity assay confirms that the binding potency of coactivator α-helix peptides is improved substantially by >5-fold upon the rational design and chemical modification. Structural analysis reveals that the optimized/stapled peptides can form diverse nonbonded interactions such as hydrogen bonds and hydrophobic contacts with TEAD, thus conferring stability and specificity to the TEAD-peptide complex systems.
Collapse
Affiliation(s)
- Shuxia Gao
- Department of Gastroenterology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Yingchao Wang
- Department of Gastroenterology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Lijuan Ji
- Department of Gastroenterology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| |
Collapse
|
20
|
Dos Santos-Silva CA, Zupin L, Oliveira-Lima M, Vilela LMB, Bezerra-Neto JP, Ferreira-Neto JR, Ferreira JDC, de Oliveira-Silva RL, Pires CDJ, Aburjaile FF, de Oliveira MF, Kido EA, Crovella S, Benko-Iseppon AM. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era. Bioinform Biol Insights 2020; 14:1177932220952739. [PMID: 32952397 PMCID: PMC7476358 DOI: 10.1177/1177932220952739] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Even before the perception or interaction with pathogens, plants rely on constitutively guardian molecules, often specific to tissue or stage, with further expression after contact with the pathogen. These guardians include small molecules as antimicrobial peptides (AMPs), generally cysteine-rich, functioning to prevent pathogen establishment. Some of these AMPs are shared among eukaryotes (eg, defensins and cyclotides), others are plant specific (eg, snakins), while some are specific to certain plant families (such as heveins). When compared with other organisms, plants tend to present a higher amount of AMP isoforms due to gene duplications or polyploidy, an occurrence possibly also associated with the sessile habit of plants, which prevents them from evading biotic and environmental stresses. Therefore, plants arise as a rich resource for new AMPs. As these molecules are difficult to retrieve from databases using simple sequence alignments, a description of their characteristics and in silico (bioinformatics) approaches used to retrieve them is provided, considering resources and databases available. The possibilities and applications based on tools versus database approaches are considerable and have been so far underestimated.
Collapse
Affiliation(s)
| | - Luisa Zupin
- Genetic Immunology laboratory, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, Trieste, Italy
| | - Marx Oliveira-Lima
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | - José Diogo Cavalcanti Ferreira
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Genética, Instituto Federal de Pernambuco, Pesqueira, Brazil
| | | | | | | | | | - Ederson Akio Kido
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | - Sergio Crovella
- Genetic Immunology laboratory, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
21
|
Liu Q, Zhou J, Gao J, Ma W, Wang S, Xing L. Rational design of EGFR dimerization-disrupting peptides: A new strategy to combat drug resistance in targeted lung cancer therapy. Biochimie 2020; 176:128-137. [DOI: 10.1016/j.biochi.2020.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022]
|
22
|
Daliri EBM, Ofosu FK, Chelliah R, Kim JH, Kim JR, Yoo D, Oh DH. Untargeted Metabolomics of Fermented Rice Using UHPLC Q-TOF MS/MS Reveals an Abundance of Potential Antihypertensive Compounds. Foods 2020; 9:foods9081007. [PMID: 32726971 PMCID: PMC7466378 DOI: 10.3390/foods9081007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Enzyme treatment and fermentation of cereals are known processes that enhance the release of bound bioactive compounds to make them available for bioactivity. In this study, we tested the angiotensin converting enzyme (ACE) inhibitory ability of destarched rice, Prozyme 2000p treated destarched rice (DP), and fermented DP samples. Prozyme 2000p treatment increased the ACE inhibitory ability from 15 ± 5% to 45 ± 3%. Fermentation of the Prozyme 2000p treated samples with Enterococcus faecium EBD1 significantly increased the ACE inhibitory ability to 75 ± 5%, while captopril showed an ACE inhibition of 92 ± 4%. An untargeted metabolomics approach using Ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry revealed the abundance of vitamins, phenolic compounds, antioxidant peptides, DPP IV inhibitory peptides, and antihypertensive peptides in the fermented samples which may account for its strong ACE inhibition. Although fermented DP had decreased fatty acid levels, the amount of essential amino acid improved drastically compared to destarched rice. Our results show that fermenting Prozyme-treated destarched rice with Enterococcus faecium EBD1 generates abundant bioactive compounds necessary for developing antihypertensive functional foods.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
| | - Joong-Hark Kim
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea;
- R&D, Erom, Co., Ltd., Chuncheon 24427, Gangwon-do, Korea
| | - Jong-Rae Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
- R&D, Hanmi Natural Nutrition Co., LTD 44-20, Tongil-ro 1888 beon-gil, Munsan, Paju 10808, Gyeonggi, Korea
| | - Daesang Yoo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
- R&D, H-FOOD, 108-66, 390 gil, Jingun Oh Nam-Ro, Nam Yang, Ju-Shi 12041, Gyung Gi-Do, Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
- Correspondence:
| |
Collapse
|
23
|
Zhou W, Yang H, Wang H. Inverse in silico-in vitro fishing of unexpected paroxetine kinase targets from tumor druggable kinome. J Mol Model 2020; 26:197. [PMID: 32623519 DOI: 10.1007/s00894-020-04444-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
The serotonin selective reuptake inhibitor paroxetine has been clinically observed to reposition a significant suppressing potency on human tumors by unexpectedly targeting diverse kinase pathways involved in tumorigenesis. Here, we describe an inverse in silico-in vitro strategy to fish potential kinase targets using the paroxetine as bait. This is different (inverse) to the traditional drug discovery process that commonly screens small-molecule inhibitors for a specific kinase target. In the procedure, cell viability assays demonstrate that paroxetine has strong cytotoxicity on human tumor cell lines. Various protooncogene protein kinases are ontologically/manually enriched to define a druggable kinome, and a systematic interaction profile of paroxetine with the kinome is created, which indicates that paroxetine can potentially bind to some known targets or key regulators of human tumors. Kinase assays determine that paroxetine can effectively inhibit c-Src family kinases at nanomolar or micromolar levels. It is observed that the paroxetine ligand forms a tightly packed interface against the active site of these unexpected kinase targets to constitute several specific hydrogen bonds/π-π/cation-π stackings and a number of nonspecific hydrophobic/vdW contacts, while exposing a portion of molecular surface to solvent. More significantly, the ligand adopts two distinct binding modes (i.e., class I and class II) to interact with different kinases; the class-I mode has a higher stability and inhibitory activity than class-II mode. Steric clash seems to cause the ligand flipping from class I to class II. Graphical abstract.
Collapse
Affiliation(s)
- Weiyan Zhou
- Department of Gynaecology, The Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'an, Huai'an, 223002, China
| | - Hongbo Yang
- Department of Gynaecology, Huai'an Maternal and Child Health Care Center, The Affiliated Hospital of Yangzhou University Medical College, Huai'an, 223000, China
| | - Haifeng Wang
- Department of Gynaecology, Huai'an Maternal and Child Health Care Center, The Affiliated Hospital of Yangzhou University Medical College, Huai'an, 223000, China.
| |
Collapse
|
24
|
Tang W, Wang C, Zhou Y, Luo J, Ye T, Yang B. Hydrocarbon-stapling stabilization of the reduced homodimerization interaction of hepatic cancer DAP12 transmembrane domain in water phase. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-01016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Yu X, Zhang A, Sun G, Li X. Molecular selectivity design of mitogen-inducible gene-derived phosphopeptides between oncogenic HER kinases. J Mol Graph Model 2020; 99:107661. [PMID: 32574989 DOI: 10.1016/j.jmgm.2020.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 11/28/2022]
Abstract
Mitogen-inducible gene (MIG) is a natural negative regulator of the oncogenic HER kinase signaling by binding at the activation interface of kinase domain to disrupt the kinase dimerization. In this study, we systematically examine the binding structures, dynamics and energetics of MIG region 2 to four HER kinases based on their crystal or modeled complex structures, and identify an 8-mer phosphopeptide segment pYpY from the core strand sequence of MIG region 2 as the binding hotspot of MIG protein to HER kinases. We demonstrate that the small pYpY phosphopeptide can partially restore the binding affinity of full-length MIG protein, but exhibit a moderate selectivity over different HER kinases (S = 2.3-fold). In addition, the two phosphotyrosine residues pTyr394 and pTyr395 play an essential role in MIG-HER binding; dephosphorylation of them would fully eliminate the binding capability. A machine evolution algorithm is used to optimize the wild-type pYpY phosphopeptide, aiming to simultaneously improve affinity for these kinases and to maximize the affinity gap between different kinases. Consequently, a population is computationally evolved as selective phosphopeptide candidates; the dissociation constants of four representatives with HER kinases are systematically determined using binding affinity analysis, from which their selectivity is derived. The designed pYpYp3 phosphopeptide possesses a high selectivity over different HER kinases (S = 4.8-fold) and satisfactory affinity profile to these kinase (KD = 140-1000 μM). Structural analysis observes that the global binding modes of pYpYp3 to different kinases are roughly consistent, but its local conformation may vary considerably, thus conferring specificity to the phosphopeptide.
Collapse
Affiliation(s)
- Xiuli Yu
- Department of Radiotherapy, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Aiying Zhang
- Orthopaedic Trauma, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Guoyu Sun
- Intensive Care Unit, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Xuebo Li
- Department of Radiotherapy, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China.
| |
Collapse
|
26
|
Song L, Zhu C, Zheng W, Lu D, Jiao H, Zhao R, Bao Z. Computational systematic selectivity of the Fasalog inhibitors between ROCK-I and ROCK-II kinase isoforms in Alzheimer's disease. Comput Biol Chem 2020; 87:107314. [PMID: 32619776 DOI: 10.1016/j.compbiolchem.2020.107314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Human Rho-associated coiled-coil forming kinase (ROCK) is a class of essential neurokinases that consists of two structurally conserved isoforms ROCK-I and ROCK-II; they have been revealed to play distinct roles in the pathogenesis of Alzheimer's disease (AD) and other neurological disorders. Selective targeting of the two kinase isoforms with small-molecule inhibitors is a great challenge due to the surprisingly high homology in kinase domain (92 %) and the full identity in kinase active site (100 %). Here, we describe a computational protocol to systematically profile the selectivity of Fasudil and its 25 analogs (termed as Fasalogs) between the two kinase isoforms. It is suggested that the substitution of Fasudil's 1,4-diazepane moiety with rigid ring such as Ripasudil and Dimehtylfasudil would render the resulting inhibitors of ROCK-II over ROCK-I (II-o-I) selectivity, while the substitution with long, flexible group such as H-89 and BDBM92607 tends to have I-o-II selectivity. Structural analysis reveals that the inhibitor affinity is not only determined by the identical active site, but also contributed from the non-identical first and second shells of the site as well as other non-conserved kinase regions, which can indirectly influence the active site and inhibitor binding through allosteric effect. A further kinase assay basically confirms the computational findings, which also exhibits a good consistence with theoretical selectivity over 10 tested samples (Rp = 0.89). In particular, the Fasalog compounds Dimehtylfasudil and H-89 are identified as II-o-I and I-o-II selective inhibitors. They can be considered as promising lead molecular entities to develop new specific ROCK isoform-selective Fasalog inhibitors.
Collapse
Affiliation(s)
- Laijun Song
- Department of Neurology, Daqing Oil Field General Hospital, Daqing, 163001, China
| | - Chunyu Zhu
- Department of Neurology, Daqing Oil Field General Hospital, Daqing, 163001, China
| | - Wenxin Zheng
- Department of Neurology, Daqing Oil Field General Hospital, Daqing, 163001, China
| | - Dan Lu
- Department of Neurology, Daqing Oil Field General Hospital, Daqing, 163001, China
| | - Hong Jiao
- Department of Neurology, Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Rongbing Zhao
- Department of Neurology, Daqing Oil Field General Hospital, Daqing, 163001, China.
| | - Zhonglei Bao
- Department of Neurology, Daqing Oil Field General Hospital, Daqing, 163001, China.
| |
Collapse
|
27
|
Studying Calcium Ion-Dependent Effect on the Inter-subunit Interaction Between the cTnC N-terminal Domain and cTnI C-terminal Switch Peptide of Human Cardiac Troponin via Chou’s 5-Steps Rule. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09875-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Wu D, Luo L, Yang Z, Chen Y, Quan Y, Min Z. Targeting Human Hippo TEAD Binding Interface with YAP/TAZ-Derived, Flexibility-Reduced Peptides in Gastric Cancer. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10069-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Xiao D, Fan Z, Jiaqi W, Liu H, Shen L, He B, Zhang M. Rational molecular targeting of the inter-subunit interaction between human cardiac troponin hcTnC and hcTnI using switch peptide-competitive biogenic medicines. Comput Biol Chem 2020; 87:107272. [PMID: 32438115 DOI: 10.1016/j.compbiolchem.2020.107272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 01/19/2023]
Abstract
The human cardiac troponin (hcTn) has been implicated in diverse cardiovascular diseases (CDs). The protein function is regulated by the inter-subunit interaction between the N-terminal domain of hcTnC and the C-terminal switch peptide of hcTnI; disruption of the interaction has been recognized as a potential therapeutic strategy for CDs. Here, we report use of biogenic medicines as small-molecule competitors to directly disrupt the protein-protein interaction by competitively targeting the core binding site (CBS) of hcTnC NTD domain. A multistep virtual screening protocol is performed against a biogenic compound library to identify competitor candidates and competition assay is employed to verify the screening results. Consequently, two compounds Collismycin and Compound e are identified as strong competitors (CC50 < 10 μM) with hcTnI for hcTnC CBS site, while other tested compounds are found to have moderate (CC50 = 10-100 μM), low (CC50 > 100 μM) or no (CC50 = N.D.) potency. The competitor ligands are anchored at the core groove of hcTnC CBS site through aromatic and hydrophobic interactions, while few peripheral hydrogen bonds are formed to further confer specificity for domain-compound recognition. These molecular-level findings would benefit from further in vitro and in vivo studies at cellular and animal levels, which can help to practice the ultimate therapeutic purpose.
Collapse
Affiliation(s)
- Danrui Xiao
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Zixun Fan
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Wu Jiaqi
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Hua Liu
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Linghong Shen
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ben He
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Min Zhang
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| |
Collapse
|
30
|
Fan X, Xia H, Liu X, Li B, Fang J. Computational Design and Experimental Confirmation of a Head-to-Tail Cyclic Peptide to Target Human Bone Morphogenic Protein 2 based on its Type-IA Receptor. J Bioinform Comput Biol 2020. [DOI: 10.1142/s0219720020500213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Zhang W, Liu J, Shan H, Yin F, Zhong B, Zhang C, Yu X. Machine learning-guided evolution of BMP-2 knuckle Epitope-Derived osteogenic peptides to target BMP receptor II. J Drug Target 2020; 28:802-810. [PMID: 32354236 DOI: 10.1080/1061186x.2020.1757100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Wei Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiazhi Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haojie Shan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fuli Yin
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Biao Zhong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chi Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
32
|
Ding X, Tong C, Chen R, Wang X, Gao D, Zhu L. Systematic molecular profiling of inhibitor response to the clinical missense mutations of ErbB family kinases in human gastric cancer. J Mol Graph Model 2020; 96:107526. [DOI: 10.1016/j.jmgm.2019.107526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/14/2019] [Accepted: 12/24/2019] [Indexed: 01/20/2023]
|
33
|
Rational Derivation of Osteogenic Peptides from Bone
Morphogenetic Protein-2 Knuckle Epitope by Integrating In
Silico Analysis and In Vitro Assay. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10058-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
He Y. Systematic response of staurosporine scaffold-based inhibitors to drug-resistant cancer kinase mutations. Arch Pharm (Weinheim) 2020; 353:e1900320. [PMID: 32285482 DOI: 10.1002/ardp.201900320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 03/24/2020] [Indexed: 11/10/2022]
Abstract
Human protein kinases have been established as promising druggable targets in cancer therapy. However, a large number of acquired drug-resistant kinase mutations are observed after first- and second-line kinase inhibitor treatments, largely limiting the application of small-molecule inhibitors in the targeted cancer therapy. Previously, the pan-kinase inhibitor staurosporine and its derivatives have been reported to selectively inhibit gatekeeper mutants over wild-type kinases, suggesting that the staurosporine scaffold is potentially helpful in developing wild-type-sparing inhibitors of drug-resistant kinase mutants. Here, a systematic response profile of 32 staurosporine scaffold-based inhibitors (SSBIs) for 61 ontology-enriched drug-resistant cancer kinase mutations is created using a combination of in silico analysis and in vitro assay, from which it is possible to identify those mutations that have the potential to cause resistance or confer sensitivity to SSBIs. The profile reveals that SSBIs exhibit distinct responses to kinase gatekeeper and nongatekeeper mutations, and SSBIs bearing p7 substituents can considerably influence their response to kinase gatekeeper mutations, particularly for the mutations of the Ile residue, which possesses a Cβ methyl group that tends to cause steric clash with bound SSBIs. Nongatekeeper mutations generally have a moderate and unfavorable effect on SSBI activity, as most of them are outside the kinase active site and do not directly contact inhibitor ligands. In addition, it is found that resistance is commonly caused by mutation-induced hindrance effects, whereas sensitivity is primarily conferred by mutation-established additional interactions.
Collapse
Affiliation(s)
- Yongkang He
- Department of Infectious Diseases, Taixing People's Hospital, Yangzhou University, Taixing, China
| |
Collapse
|
35
|
Lian F, Wang Z, Zhou Z, Xu G. Identification, characterization, and comparison of n-alkanols and anesthetics binding to the C1b subdomain of protein kinase cα: similar function with different binding sites. J Recept Signal Transduct Res 2020; 40:109-116. [PMID: 32054382 DOI: 10.1080/10799893.2020.1726950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Protein kinase C (PKC) is a family of lipid-activated enzymes involved in anesthetic preconditioning signaling pathways. Previously, n-alkanols and general anesthetics have been found to activate PKC by binding to the kinase C1B subdomain. In the present study, we attempt to ascertain the molecular mechanism and interaction mode of human PKCα C1B subdomain with a variety of exogenous n-alkanols and volatile general anesthetics as well as endogenous activator phorbol ester (PE) and co-activator diacylglycerol (DG). Systematic bioinformatics analysis identifies three spatially vicinal sites on the subdomain surface to potentially accommodate small-molecule ligands, where the site 1 is a narrow, amphipathic pocket, the site 2 is a wide, flat and hydrophobic pocket, and the site 3 is a rugged, polar pocket. Further interaction modeling reveals that site 1 is the cognate binding region of natural PE activator, which can moderately simulate the kinase activity in an independent manner. The short-chain n-alkanols are speculated to also bind at the site to competitively inhibit PE-induced kinase activation. The long-chain n-alkanols and co-activator DG are found to target site 2 in a nonspecific manner, while the volatile anesthetics prefer to interact with site 3 in a specific manner. Since the site 1 is composed of two protein loops that are also shared by sites 2 and 3, binding of n-alkanols, DG and anesthetics to sites 2 and 3 can trigger a conformational displacement on the two loops, which enlarges the pocket size and changes the pocket configuration of site 1 through an allosteric mechanism, consequently enhancing kinase activation by improving PE affinity to the site.
Collapse
Affiliation(s)
- Fang Lian
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhong Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhidong Zhou
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Systematic profiling of staralog response to acquired drug resistant kinase gatekeeper mutations in targeted cancer therapy. Amino Acids 2020; 52:511-521. [PMID: 32206932 DOI: 10.1007/s00726-020-02832-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
Kinase-targeted therapy has been widely used as a lifesaving strategy for cancer patients. However, many patients treated with targeted cancer drugs are clinically observed to rapidly develop acquired resistance. Kinase gatekeeper mutation is one of the most chief factors contributing to the resistance, which modulates the accessibility of kinase's ATP-binding pocket. Previously, the pan-kinase inhibitor Staurosporine and its analogs (termed as Staralogs) have been reported to exhibit wild-type sparing selectivity for some kinase gatekeeper mutants, such as EGFR T790M, Her2 T798M and cSrc T338M. Here, we describe an integrative approach to systematically profile the molecular response of 15 representative Staralogs to 17 kinase gatekeeper mutations in targeted cancer therapy. With the profile we are able to divide gatekeeper mutations into three classes (i.e. classes I, II and III) and to divide Staralogs into two groups (i.e. groups 1 and 2) using heuristic clustering. The class I and II mutations confer consistent sensitivity and resistance for all Staralogs, respectively, while the class III mutations address divergent effects on different Staralogs. The mutations to Ile residue can generally reduce Staralog affinity by inducing unfavorable steric hindrance, whereas the mutations to Met and Leu residues would improve Staralog affinity by establishing favorable S···π interaction, van der Waals packing and/or hydrophobic contact. The group 1 and 2 Staralogs are primarily determined by carbonyl or hydroxyl substitution state at the position 7 of Staralog core, where points to kinase gatekeeper residue and can thus be directly influenced by gatekeeper mutation.
Collapse
|
37
|
Li Y, Wei X, Wang Q, Li W, Yang T. Inverse screening of Simvastatin kinase targets from glioblastoma druggable kinome. Comput Biol Chem 2020; 86:107243. [PMID: 32172201 DOI: 10.1016/j.compbiolchem.2020.107243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022]
Abstract
The statin drug Simvastatin is a HMG-CoA reductase inhibitor that has been widely used to lower blood lipid. However, the drug is clinically observed to reposition a significant suppressing potency on glioblastoma (GBM) by unexpectedly targeting diverse kinase pathways involved in GBM tumorigensis. Here, an inverse screening strategy is described to discover potential kinase targets of Simvastatin. Various human protein kinases implicated in GBM are enriched to define a druggable kinome; the binding behavior of Simvastatin to the kinome is profiled systematically via an integrative computational approach, from which most kinases have only low or moderate binding potency to Simvastatin, while only few are identified as promising kinase hits. It is revealed that Simvastatin can potentially interact with certain known targets or key regulators of GBM such as ErbB, c-Src and FGFR signaling pathways, but exhibit low affinity to the well-established GBM target of PI3K/Akt/mTOR pathway. Further assays determine that Simvastatin can inhibit kinase hits EGFR, MET, SRC and HER2 at nanomolar level, which are comparable with those of cognate kinase inhibitors. Structural analyses reveal that the sophisticated T790 M gatekeeper mutation can considerably reduce Simvastatin sensitivity to EGFR by inducing the ligand change between different binding modes.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurosurgery, Second Affiliated Hospital, Zunyi Medical University, Zunyi 563006, China
| | - Xu Wei
- Department of Neurosurgery, Second Affiliated Hospital, Zunyi Medical University, Zunyi 563006, China
| | - Qiuhong Wang
- Department of Neurosurgery, Second Affiliated Hospital, Zunyi Medical University, Zunyi 563006, China
| | - Wei Li
- Department of Neurosurgery, Second Affiliated Hospital, Zunyi Medical University, Zunyi 563006, China
| | - Tao Yang
- Department of Neurosurgery, Second Affiliated Hospital, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
38
|
Ge C, Zhang W, He R, Cai H. Systematic Identification and Comparative Analysis of Human Cartilage-Derived Self-peptides Presented Differently by Ankylosing Spondylitis (AS)-Associated HLA-B*27:05 and Non-AS-associated HLA-B*27:09. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Gu Z, Yan T, Yan F. Rational design and improvement of the dimerization-disrupting peptide selectivity between ROCK-I and ROCK-II kinase isoforms in cerebrovascular diseases. J Mol Recognit 2020; 33:e2835. [PMID: 31995258 DOI: 10.1002/jmr.2835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 02/05/2023]
Abstract
Human rho-associated coiled-coil forming kinases (ROCKs) ROCK-I and ROCK-II have been documented as attractive therapeutic targets for cerebrovascular diseases. Although ROCK-I and ROCK-II share a high degree of structural conservation and are both present in classic rho/ROCK signaling pathway, their downstream substrates and pathological functions may be quite different. Selective targeting of the two kinase isoforms with traditional small-molecule inhibitors is a great challenge due to their surprisingly high homology in kinase domain (~90%) and the full identity in kinase active site (100%). Here, instead of developing small-molecule drugs to selectively target the adenosine triphosphate (ATP) site of two isoforms, we attempt to design peptide agents to selectively disrupt the homo-dimerization event of ROCK kinases through their dimerization domains which have a relatively low conservation (~60%). Three helical peptides H1, H2, and H3 are split from the kinase dimerization domain, from which the isolated H2 peptide is found to have the best capability to rebind at the dimerization interface. A simulated annealing (SA) iteration method is used to improve the H2 peptide selectivity between ROCK-I and ROCK-II. The method accepts moderate degradation in peptide affinity in order to maximize the affinity difference between peptide binding to the two isoforms. Consequently, hundreds of parallel SA runs yielded six promising peptide candidates with ROCK-I over ROCK-II (I over II [IoII]) calculated selectivity and four promising peptide candidates with ROCK-II over ROCK-I (II over I [IIoI]) calculated selectivity. Subsequent anisotropy assays confirm that the selectivity values range between 13.2-fold and 83.9-fold for IoII peptides, and between 5.8-fold and 21.2-fold for IIoI peptides, which are considerably increased relative to wild-type H2 peptide (2.6-fold for IoII and 2.0-fold for IIoI). The molecular origin of the designed peptide selectivity is also analyzed at structural level; it is revealed that the peptide residues can be classified into conserved, non-conserved, and others, in which the non-conserved residues play a crucial role in defining peptide selectivity, while conserved residues confer stability to kinase-peptide binding.
Collapse
Affiliation(s)
- Zhengtian Gu
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tingting Yan
- Department of Pediatrics, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Fuling Yan
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
40
|
Xu L, Chen Z, Shao K, Wang Y, Cui L, Guo N. Rational discovery of novel type-III FTF antagonists to competitively suppress TIF-2 coactivation in liver cancer. J Recept Signal Transduct Res 2019; 39:304-311. [PMID: 31755335 DOI: 10.1080/10799893.2019.1690513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Linlin Xu
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, the Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Zhongming Chen
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, the Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Keke Shao
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, the Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Yungang Wang
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, the Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Leilei Cui
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, the Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Naizhou Guo
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, the Fourth Affiliated Hospital of Nantong University, Yancheng, China
| |
Collapse
|
41
|
Chen Z, Yu X, Zhang A, Wang F, Xing Y. De Novo Hydrocarbon-Stapling Design of Single-Turn α-Helical Antimicrobial Peptides. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09964-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Zhu J, Wei S, Huang L, Zhao Q, Zhu H, Zhang A. Molecular modeling and rational design of hydrocarbon-stapled/halogenated helical peptides targeting CETP self-binding site: Therapeutic implication for atherosclerosis. J Mol Graph Model 2019; 94:107455. [PMID: 31586754 DOI: 10.1016/j.jmgm.2019.107455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022]
Abstract
The human plasma cholesteryl ester transfer protein (CETP) collects triglycerides from very-/low-density lipoproteins (V/LDL) and exchanges them for cholesteryl esters from high-density lipoproteins (HDL), which has recognized as an important therapeutic target for atherosclerosis. The protein has a C-terminal amphipathic α-helix that serves as self-binding peptide to fulfill biological function by dynamically binding to/unbinding from its cognate site (termed self-binding site) in the same protein. Previously, we successfully derived and halogenated the helical peptide to competitively disrupt the self-binding behavior of CETP C-terminal tail. However, the halogenated peptides have only a limited affinity increase as compared to native helical peptide (∼3-fold), thus exhibiting only a moderate competitive potency. Here, instead of optimizing the direct intermolecular interaction of peptide with CETP self-binding site we attempt to further improve the peptide competitive potency by reducing its conformational flexibility with hydrocarbon-stapling technique. Computational analysis reveals that the helical peptide has large intrinsic disorder in unbound free state, which would incur a considerable entropy penalty upon rebinding to the self-binding site. All-hydrocarbon bridge is designed and optimized on native and halogenated peptides in terms of the helical pattern and binding mode of self-binding peptide. Dynamics simulation and circular dichroism indicate that the stapling can considerably reduce peptide disorder in free state. Energetics calculation and fluorescence assay conform that the binding affinity of stapled/halogenated peptides is improved substantially (by > 5-fold), thus exhibiting an effective competition potency with native peptide for the self-binding site. Structural examination suggests that the binding modes and nonbonded interactions of native and halogenated peptides are not influenced essentially due to the stapling.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Vascular Surgery, The Affiliated Hospital of Jiangsu University (Kunshan 1st People's Hospital), Kunshan, 215300, China
| | - Sen Wei
- Department of Vascular Surgery, The Affiliated Hospital of Jiangsu University (Kunshan 1st People's Hospital), Kunshan, 215300, China.
| | - Linchen Huang
- Department of Vascular Surgery, The Affiliated Hospital of Jiangsu University (Kunshan 1st People's Hospital), Kunshan, 215300, China
| | - Qi Zhao
- Department of Vascular Surgery, The Affiliated Hospital of Jiangsu University (Kunshan 1st People's Hospital), Kunshan, 215300, China
| | - Haichao Zhu
- Department of Vascular Surgery, The Affiliated Hospital of Jiangsu University (Kunshan 1st People's Hospital), Kunshan, 215300, China
| | - Anwei Zhang
- Department of Vascular Surgery, The Affiliated Hospital of Jiangsu University (Kunshan 1st People's Hospital), Kunshan, 215300, China
| |
Collapse
|
43
|
Zhou K, Lu J, Yin X, Xu H, Li L, Ma B. Structure-based derivation and intramolecular cyclization of peptide inhibitors from PD-1/PD-L1 complex interface as immune checkpoint blockade for breast cancer immunotherapy. Biophys Chem 2019; 253:106213. [DOI: 10.1016/j.bpc.2019.106213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
|
44
|
Bo G, Cao F, Li M, Xing J, Su X, Zhu Y, Wu D. Exploring calcium ion-dependent effect on the intermolecular interaction between human secreted phospholipase A2 and its peptide inhibitors in coronary artery disease. J Mol Graph Model 2019; 93:107449. [PMID: 31536875 DOI: 10.1016/j.jmgm.2019.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
Human secreted phospholipase A2 (hsPLA2) is a small calcium ion (Ca2+)-regulatory protein secreting from platelets, eosinophils and T-lymphocytes, which has been established as an important biomarker and potential target for the diagnosis and therapy of coronary artery disease. Short peptide inhibitors are used to competitively suppress the enzymatic activity of hsPLA2. Here, Ca2+ effect on the intermolecular recognition and interaction between hsPLA2 and its peptide inhibitors is investigated systematically by using molecular modeling and bioinformatics analysis. Dynamics simulations reveal that the hsPLA2 structure bound with Ca2+ is rather stable and has low thermal motion; removal of Ca2+ considerably increases structural flexibility and intrinsic disorder of the protein. Energetics calculations suggest that presence of Ca2+ can effectively promote the interaction of hsPLA2 with peptide inhibitors. In particular, the local substructures of hsPLA2 such as helix H1, loop L2 and double-stranded β-sheet DS that participate in peptide recognition are involved in or nearby Ca2+-coordinating site and can be directly stabilized by the Ca2+. In addition, a significant concentration-dependent effect of Ca2+ on peptide-hsPLA2 binding is observed in vitro, that is, a little of Ca2+ can largely improve peptide binding affinity, but high Ca2+ concentration does not increase the affinity substantially. The correlation between calculated free energy and experimental binding affinity over different peptide inhibitors is improved considerably by adding Ca2+ to hsPLA2. Specifically, the FLSYK peptide can generally bind to Ca2+-bound hsPLA2 with a moderate or high affinity (Kd ranges between 56 and 210 μM), but have only a modest affinity or even nonbinding to Ca2+-free hsPLA2 (Kd > 400 μM or = n.d.).
Collapse
Affiliation(s)
- Guanggan Bo
- Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210014, China.
| | - Fang Cao
- Department of Respiration, Anhui Provincial Children's Hospital, Hefei, 230051, China
| | - Min Li
- Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210014, China
| | - Junwu Xing
- Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210014, China
| | - Xiaoye Su
- Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210014, China
| | - Yunxian Zhu
- Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210014, China
| | - Dingkun Wu
- Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210014, China
| |
Collapse
|
45
|
Tang W, Zhao Z, Wang C, Ye T, Yang B. Molecular design and optimization of hepatic cancer SLP76-derived PLCγ1 SH3-binding peptide with the systematic N-substitution of peptide PXXP motif. J Mol Recognit 2019; 32:e2806. [PMID: 31397025 DOI: 10.1002/jmr.2806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/23/2022]
Abstract
The phospholipase Cγ1 (PLCγ1) is essential for T-cell signaling and activation in hepatic cancer immune response, which has a regulatory Src homology 3 (SH3) domain that can specifically recognize and interact with the PXXP-containing decapeptide segment (185 QPPVPPQRPM194 , termed as SLP76185-194 peptide) of adaptor protein SLP76 following T-cell receptor ligation. The isolated peptide can only bind to the PLCγ1 SH3 domain with a moderate affinity due to lack of protein context support. Instead of the traditional natural residue mutagenesis that is limited by low structural diversity and shifted target specificity, we herein attempt to improve the peptide affinity by replacing the two key proline residues Pro187 and Pro190 of SLP76185-194 PXXP motif with nonnatural N-substituted amino acids, as the proline is the only endogenous N-substituted amino acid. The replacement would increase peptide flexibility but can restore peptide activity by establishing additional interactions with the domain. Structural analysis reveals that the domain pocket can be divided into a large amphipathic region and a small negatively charged region; they accommodate hydrophobic, aromatic, polar, and moderate-sized N-substituted amino acid types. A systematic replacement combination profile between the peptide residues Pro187 and Pro190 is created by structural modeling, dynamics simulation, and energetics analysis, from which six improved and two reduced N-substituted peptides as well as native SLP76185-194 peptide are identified and tested for their binding affinity to the recombinant protein of the human PLCγ1 SH3 domain using fluorescence-based assays. Two N-substituted peptides, SLP76185-194 (N-Leu187/N-Gln190) and SLP76185-194 (N-Thr187/N-Gln190), are designed to have high potency (Kd = 0.67 ± 0.18 and 1.7 ± 0.3 μM, respectively), with affinity improvement by, respectively, 8.5-fold and 3.4-fold relative to native peptide (Kd = 5.7 ± 1.2 μM).
Collapse
Affiliation(s)
- Wenqing Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Wang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Ye
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Liu H, Xu L, Huang H, Zhao P, Yang R, Zhou Q, Liu G. Systematic profiling of clinical missence mutation effects on the intermolecular interaction between human growth hormone and its receptor in isolated growth hormone deficiency. J Mol Graph Model 2019; 92:1-7. [PMID: 31279174 DOI: 10.1016/j.jmgm.2019.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/17/2022]
Abstract
Isolated growth hormone deficiency (IGHD) is the most common pituitary hormone deficiency and can result from congenital or acquired causes. Among the known factors, genetic mutations in human growth hormone (hGH) remain the most frequent cause of IGHD, which influence the binding of hGH to its cognate receptor (hGHbp). Although previous studies have systematically investigated the residue importance at hGH-hGHbp complex interface, the molecular role of IGHD-associated residue mutations in the complex function still remains largely unexplored. Here, a total of 21 known hGH naturally-occurring missence mutations that have been clinically observed to be involved in IGHD disorder are collected and confirmed by original literature; they effects on the conformation, energetics and dynamics of hGH-hGHbp recognition and interaction are dissected at molecular level by using atomistic dynamics simulations, binding energy calculations and fluorescence spectroscopy assays. A systematic profile of hGH-hGHbp binding response to these clinical missence mutations is created, based on which it is revealed that (i) most mutations have appreciably unfavorable effect on the binding, which potentially destabilize the complex interaction, while only very few are predicted as moderate stabilizers for the complex system, and (ii) these disease-related mutations can locate either at complex interface or in hGH protein interior far away from the interface; both can influence the complex binding through either direct interaction or indirect allostericity. Two mutations, E100K (non-interface) and G146R (interface), are identified to address potent destabilization effect on hGH-hGHbp complex system; they can reduce the complex binding affinity by 8-fold (Kd changes from 0.76 to 5.9 nM) and 46-fold (Kd changes from 0.76 to 34.7 nM), respectively.
Collapse
Affiliation(s)
- Hui Liu
- Department of Endocrinology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Hailong Huang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Peiran Zhao
- Department of Endocrinology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Rongrong Yang
- Department of Endocrinology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Qing Zhou
- Department of Endocrinology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Guanghua Liu
- Department of Pediatrics, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
47
|
Bai X, Chen X. Rational design, conformational analysis and membrane-penetrating dynamics study of Bac2A-derived antimicrobial peptides against gram-positive clinical strains isolated from pyemia. J Theor Biol 2019; 473:44-51. [DOI: 10.1016/j.jtbi.2019.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/17/2019] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
|
48
|
Fu Y, He P, Zhou Y, Huang S, Liang L, Liu S. Exploring the systematic effect of
N
‐substituted PxxP motifs on peptoid affinity to ARHGEF5/TIM SH3 domain and its relationship with ARHGEF5/TIM activation. Proteins 2019; 87:979-991. [PMID: 31197859 DOI: 10.1002/prot.25760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Fu
- Department of Endocrine and Breast SurgeryThe First Affiliated Hospital of Chongqing Medical University Chongqing China
- Department of Cardiothoracic SurgeryDianjiang People's Hospital of Chongqing Chongqing China
| | - Ping He
- Department of Cardiac SurgerySouthwest Hospital, Third Army Medical University Chongqing China
| | - Yu Zhou
- Department of Cardiothoracic SurgeryDianjiang People's Hospital of Chongqing Chongqing China
| | - Shengyuan Huang
- Department of Cardiothoracic SurgeryDianjiang People's Hospital of Chongqing Chongqing China
| | - Lin Liang
- Department of Cardiothoracic SurgeryDianjiang People's Hospital of Chongqing Chongqing China
| | - Shengchun Liu
- Department of Endocrine and Breast SurgeryThe First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
49
|
Han M, Sun D. Rational creation and systematic analysis of cervical cancer kinase–inhibitor binding profile. J Comput Aided Mol Des 2019; 33:689-698. [DOI: 10.1007/s10822-019-00211-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/08/2019] [Indexed: 10/26/2022]
|
50
|
Zhu LX, Liu Q, Hua YF, Yang N, Zhang XG, Ding X. Systematic Profiling and Evaluation of Structure-based Kinase–Inhibitor Interactome in Cervical Cancer by Integrating In Silico Analyses and In Vitro Assays at Molecular and Cellular Levels. Comput Biol Chem 2019; 80:324-332. [DOI: 10.1016/j.compbiolchem.2019.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022]
|