1
|
Serra-Castelló C, Possas A, Jofré A, Garriga M, Bover-Cid S. High pressure processing to control Salmonella in raw pet food without compromising the freshness appearance: The impact of acidulation and frozen storage. Food Microbiol 2023; 109:104139. [PMID: 36309441 DOI: 10.1016/j.fm.2022.104139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
|
2
|
Hu X, Pan C, Cai M, Li L, Yang X, Xiang H, Chen S. Novel Antioxidant Peptides from Grateloupia livida Hydrolysates: Purification and Identification. Foods 2022; 11:1498. [PMID: 35627068 PMCID: PMC9141318 DOI: 10.3390/foods11101498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Grateloupia livida protein was hydrolyzed with various proteases (alkaline protease, Protamex and neutral protease) to obtain anti-oxidative peptides. Antioxidant activity of the enzymatic hydrolysates was evaluated by the DPPH radical scavenging, ABTS radical scavenging and reducing power assays. The results suggested that hydrolysates obtained by neutral protease 1 h hydrolysis displayed the highest antioxidant activity (DPPH IC50 value of 3.96 mg/mL ± 0.41 mg/mL, ABTS IC50 value of 0.88 ± 0.13 mg/mL and reducing power of 0.531 ± 0.012 at 8 mg/mL), and had low molecular weight distribution (almost 99% below 3 kDa). Three fractions (F1-F3) were then isolated from the hydrolysates by using semi-preparative RP-HPLC, and the fraction F3 showed the highest antioxidant ability. Four antioxidant peptides were identified as LYEEMKESKVINADK, LEADNVGVVLMGDGR, LIDDSFGTDAPVPERL, and GLDELSEEDRLT from the F3 by LC-MS/MS. Online prediction showed that the four peptides possessed good water solubility, non-toxic and non-allergenic characteristics. Moreover, the LYEEMKESKVINADK exhibited the highest antioxidant ability. Molecular docking revealed that these peptides could all well bind with Kelch-like ECH-associated protein 1 (Keap1), among which LYEEMKESKVINADK had the lowest docking energy (-216.878 kcal/mol). These results demonstrated that the antioxidant peptides from Grateloupia livida could potentially be used as natural antioxidant.
Collapse
Affiliation(s)
- Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Miaomiao Cai
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian 116034, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian 116034, China
| |
Collapse
|
3
|
Infusions prepared with Stevia rebaudiana: application of a simplex centroid mixture design for the study of natural sweeteners and phenolic compounds. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:55-64. [PMID: 35068551 PMCID: PMC8758884 DOI: 10.1007/s13197-021-04979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
Three mixture designs were used to characterize herbal formulations for infusions prepared with cedron, boldo, and yerba mate in addition to stevia. This study aimed to investigate if the inclusion of stevia in infusions could affect the recovery of phenolic compounds with antioxidant activity. Infusions with higher phenolic content and higher antioxidant activity were obtained when yerba mate or boldo predominated in the infusion. The highest tannin content was found in mixtures containing yerba mate, boldo, and stevia, while the minimum tannin contents were found in some cedron infusions. The content of steviol glycosides increased as the proportion of stevia increased in the infusions. In general, the recovery of natural sweeteners or phenolic compounds with antioxidant activity exhibited different patterns, depending on the components of the infusions. The presence of stevia and steviol glycosides did not influence the recovery of phenolic compounds with antioxidant activity. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s13197-021-04979-9).
Collapse
|
4
|
Yuan JF, Hou ZC, Wang DH, Qiu ZJ, Gong MG, Sun JR. Microwave irradiation: Effect on activities and properties of polyphenol oxidase in grape maceration stage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
A Grape Juice Supplemented with Natural Grape Extracts Is Well Accepted by Consumers and Reduces Brain Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10050677. [PMID: 33926060 PMCID: PMC8146453 DOI: 10.3390/antiox10050677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases pose a major health problem for developed countries. Stress, which induces oxidation in the brain, has been identified as the main risk factor for these disorders. We have developed an antioxidant-enriched drink and have examined its protective properties against acute oxidative stress. We found that addition of red grape polyphenols and MecobalActive® to grape juice did not provoke changes in juice organoleptic characteristics, and that the pasteurization process did not greatly affect the levels of flavonoids and vitamin B12. Out of all combinations, grape juice with red grape polyphenols was selected by expert judges (28.6% selected it as their first choice). In vivo, oral administration of grape juice supplemented with red grape polyphenols exerted an antioxidant effect in the brain of stressed mice reducing two-fold the expression of genes involved in inflammation and oxidation mechanisms and increasing three-fold the expression of genes related to protection against oxidative stress. In addition, we found that this drink augmented antioxidant enzyme activity (17.8 vs. 8.2 nmol/mg), and prevented lipid peroxidation in the brain (49.7 vs. 96.5 nmol/mg). Therefore, we propose supporting the use of this drink by the general population as a new and global strategy for the prevention of neurodegeneration.
Collapse
|
6
|
de la Fuente B, Pallarés N, Barba FJ, Berrada H. An Integrated Approach for the Valorization of Sea Bass ( Dicentrarchus labrax) Side Streams: Evaluation of Contaminants and Development of Antioxidant Protein Extracts by Pressurized Liquid Extraction. Foods 2021; 10:546. [PMID: 33800768 PMCID: PMC8000804 DOI: 10.3390/foods10030546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, the presence of As, Hg, Cd, Pb, and mycotoxins in sea bass side streams (muscle, head, viscera, skin, and tailfin) was evaluated as a preliminary step to assess the effect of an innovative extraction technique (Pressurized Liquid Extraction; PLE) to obtain antioxidant protein extracts. Then, a response surface methodology-central composite design was used to evaluate and optimize the PLE extraction factors (pH, temperature, and extraction time) in terms of total protein content and total antioxidant capacity (TEAC and ORAC). Heavy metals were found in all samples while DON mycotoxin only in viscera, both far below the safe limits established by authorities for fish muscle tissue and fish feed, respectively. The selected optimal PLE extraction conditions were pH 7, 20 °C, 5 min for muscle, pH 4, 60 °C, 15 min for heads, pH 7, 50 °C, 15 min for viscera, pH 7, 55 °C, 5 min for skin, and pH 7, 60 °C, 15 min for tailfins. Optimal PLE conditions allowed increasing protein content (1.2-4.5 fold) and antioxidant capacity (1-5 fold) of sea bass side stream extracts compared to controls (conventional extraction). The highest amount of protein was extracted from muscle while the highest protein recovery percentage was found in viscera. Muscle, head, and viscera extracts showed higher antioxidant capacity than skin and tailfin extracts. Moreover, different SDS-PAGE patterns were observed among samples and a greater quantity of protein fragments of lower molecular weight were found in optimal than control extracts.
Collapse
Affiliation(s)
| | | | - Francisco J. Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avenida. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (B.d.l.F.); (N.P.)
| | - Houda Berrada
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avenida. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (B.d.l.F.); (N.P.)
| |
Collapse
|
7
|
Basharat S, Huang Z, Gong M, Lv X, Ahmed A, Hussain I, Li J, Du G, Liu L. A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Bolumar T, Orlien V, Sikes A, Aganovic K, Bak KH, Guyon C, Stübler AS, de Lamballerie M, Hertel C, Brüggemann DA. High-pressure processing of meat: Molecular impacts and industrial applications. Compr Rev Food Sci Food Saf 2020; 20:332-368. [PMID: 33443800 DOI: 10.1111/1541-4337.12670] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
High-pressure processing (HPP) has been the most adopted nonthermal processing technology in the food industry with a current ever-growing implementation, and meat products represent about a quarter of the HPP foods. The intensive research conducted in the last decades has described the molecular impacts of HPP on microorganisms and endogenous meat components such as structural proteins, enzyme activities, myoglobin and meat color chemistry, and lipids, resulting in the characterization of the mechanisms responsible for most of the texture, color, and oxidative changes observed when meat is submitted to HPP. These molecular mechanisms with major effect on the safety and quality of muscle foods are comprehensively reviewed. The understanding of the high pressure-induced molecular impacts has permitted a directed use of the HPP technology, and nowadays, HPP is applied as a cold pasteurization method to inactive vegetative spoilage and pathogenic microorganisms in ready-to-eat cold cuts and to extend shelf life, allowing the reduction of food waste and the gain of market boundaries in a globalized economy. Yet, other applications of HPP have been explored in detail, namely, its use for meat tenderization and for structure formation in the manufacturing of processed meats, though these two practices have scarcely been taken up by industry. This review condenses the most pertinent-related knowledge that can unlock the utilization of these two mainstream transformation processes of meat and facilitate the development of healthier clean label processed meats and a rapid method for achieving sous vide tenderness. Finally, scientific and technological challenges still to be overcome are discussed in order to leverage the development of innovative applications using HPP technology for the future meat industry.
Collapse
Affiliation(s)
- Tomas Bolumar
- Department of Safety and Quality of Meat, Meat Technology, Max Rubner Institute (MRI), Kulmbach, Germany
| | - Vibeke Orlien
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Anita Sikes
- Department of Agriculture and Food, Commonwealth for Scientific and Industrial Research Organization (CSIRO), Brisbane, Australia
| | - Kemal Aganovic
- Advanced Technologies, German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Kathrine H Bak
- Department of Food Technology and Veterinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claire Guyon
- Food Science and Engineering (ONIRIS), Nantes-Atlantic National College of Veterinary Medicine, Nantes, France
| | - Anna-Sophie Stübler
- Advanced Technologies, German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Marie de Lamballerie
- Food Science and Engineering (ONIRIS), Nantes-Atlantic National College of Veterinary Medicine, Nantes, France
| | - Christian Hertel
- Advanced Technologies, German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Dagmar A Brüggemann
- Department of Safety and Quality of Meat, Meat Technology, Max Rubner Institute (MRI), Kulmbach, Germany
| |
Collapse
|
9
|
Tuoheti T, Rasheed HA, Meng L, Dong MS. High hydrostatic pressure enhances the anti-proliferative properties of lotus bee pollen on the human prostate cancer PC-3 cells via increased metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113057. [PMID: 32505838 DOI: 10.1016/j.jep.2020.113057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/09/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The beneficial effects of bee pollen on prostate diseases are well known. Clinicians confirm that, in nonbacterial prostate diseases, bee pollen improves the condition of patients effectively. However, there is insufficient evidence to rate effectiveness of bee pollen on prostate cancer. AIM OF THE STUDY High hydrostatic pressure (HHP), an effective non-thermal technique to improve the nutritional quality and bio-functionality of plant-based foods, was used to increase the anti-proliferative properties of Lotus (Nelumbo nucifera) bee pollen (LBP) in prostate cancer PC-3 cells via enhancement of bioactive compounds. MATERIALS AND METHODS Freeze-dried lotus bee pollen produced from Fu Zhou city, Jiangxi province, China, was processed by high hydrostatic pressure (HHP). The anti-proliferative activities, apoptosis of ethanol and methanol extracts in prostate cancer PC-3 cells was evaluated using MTT method and Annexin-V/PI cell apoptosis assay kit, respectively. The changes of metabolites were determined using UPLC-Triple-TOF-MS analysis platform. RESULTS HHP treatment enhanced anti-proliferative activities, cell apoptosis, cell cycle disruption, glutathione-depletion in prostate cancer PC-3 cells. The metabolomics analysis showed that some metabolites such as chaetoglobosin A, glutathione oxidized, cyanidin 3-rutinoside, brassicoside, sophoranone, curcumin II, soyasaponin II were significantly increased (p < 0.05) after the HHP treatment, PCA results shown that these bioactive components have quite correlation with anti-proliferative activities of lotus bee pollen on the PC-3 cells. The results indicated that HHP enhances the anti-prostate cancer activity of lotus bee pollen via increased metabolites.
Collapse
Affiliation(s)
- Tuhanguli Tuoheti
- College of Food Science & Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, People's Republic of China
| | - Hafiz Abdul Rasheed
- College of Food Science & Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, People's Republic of China
| | - Ling Meng
- College of Food Science & Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, People's Republic of China
| | - Ming Sheng Dong
- College of Food Science & Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Rocchetti G, Alcántara C, Bäuerl C, García-Pérez JV, Lorenzo JM, Lucini L, Collado MC, Barba FJ. Bacterial growth and biological properties of Cymbopogon schoenanthus and Ziziphus lotus are modulated by extraction conditions. Food Res Int 2020; 136:109534. [PMID: 32846595 DOI: 10.1016/j.foodres.2020.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
The present study aims to evaluate the antibacterial activity and biological properties of two traditional Saharian plants (Cymbopogon schoenanthus and Ziziphus lotus). The plant extracts were obtained by using a different combination of extraction methods (conventional vs. ultrasound-assisted) and solvents (water vs. ethanol:water (50:50, v/v)). The antioxidant profile, anti-inflammatory activity and impact on bacterial growth (foodborne and probiotic bacteria) of the obtained extracts were assessed. The plant species showed the hierarchically more important role in determining the biological properties of the extracts, followed by extraction solvent and extraction conditions. Conventional Z. lotus hydroethanolic extracts showed the highest total phenolic content (20.4 mg GAE/g), while Z. lotus ethanol extracts from ultrasound-assisted process presented the highest content of carotenoids (0.15 mg/g). In addition, ultrasound-assisted Z. lotus hydroethanolic extracts presented the highest in vitro radical scavenging activity, being 7.93 mmol Trolox/g. Multivariate analysis statistics (PCA) showed that both the extraction methodology and the solvent used strongly affected the bacterial growth. Z. lotus mainly decreased the growth rate of S. aureus and L. innocua. Interestingly, the aqueous extracts of this plant as well as those from C. schoenanthus, obtained by conventional extraction, significantly increased the growth rate and the maximal optical density of L. casei. Aqueous extracts of both Z. lotus and C. schoenanthus slightly influenced the growth of Bifidobacterium. Overall, the extracts of these plants showed selective activities with respect to pathogens and probiotic bacteria and may provide an advantage both in terms of antimicrobial and prebiotic activity.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Cristina Alcántara
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - Jose V García-Pérez
- Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia 46022, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n 46100, Burjassot, València, Spain.
| |
Collapse
|
11
|
Leyva-Jiménez FJ, Lozano-Sánchez J, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A. Optimized Extraction of Phenylpropanoids and Flavonoids from Lemon Verbena Leaves by Supercritical Fluid System Using Response Surface Methodology. Foods 2020; 9:E931. [PMID: 32674478 PMCID: PMC7404463 DOI: 10.3390/foods9070931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023] Open
Abstract
The aim of this work was to optimize the recovery of phenolic compounds from Lippia citriodora using supercritical fluid extraction (SFE). To achieve this goal, response surface methodology based on a 23 central composite design was used to evaluate the effects of the following experimental factors: temperature, pressure and co-solvent percentage. The effects of these variables on the extraction yield and total polar compound contents were evaluated. With respect to the phytochemical composition, an exhaustive individual phenolic compound quantitation was carried out by HPLC-ESI-TOF-MS to analyze the functional ingredients produced by this system design. To the best of our knowledge, this is the first time that a standardized supercritical fluid process has been developed to obtain functional ingredients based on phenolic compounds from L. citriodora in which the individual compound concentration was monitored over the different SFE conditions. The results enabled the establishment of the optimal technical parameters for developing functional ingredients and revealed the main factors that should be included in the extraction process control. This functional food ingredient design could be used as a control system to be applied in nutraceutical and functional food production industry.
Collapse
Affiliation(s)
- Francisco Javier Leyva-Jiménez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| | - Jesús Lozano-Sánchez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
- Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Álvaro Fernández-Ochoa
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | - David Arráez-Román
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | - Antonio Segura-Carretero
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18016 Granada, Spain; (F.J.L.-J.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| |
Collapse
|
12
|
Munekata PES, Alcántara C, Žugčić T, Abdelkebir R, Collado MC, García-Pérez JV, Jambrak AR, Gavahian M, Barba FJ, Lorenzo JM. Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Res Int 2020; 134:109242. [PMID: 32517919 DOI: 10.1016/j.foodres.2020.109242] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 11/19/2022]
Abstract
Mediterranean herbs, specially thyme and rosemary, are important ingredients in food preparation and more recently have been studied as natural sources of bioactive compounds. This study aimed to study the effect of matrix (thyme vs. rosemary), and extraction protocol (conventional extraction vs. ultrasound assisted extraction) solvent composition (water vs. 50:50 ethanol:water solution) on the extraction of high value compounds (phenolic compounds, flavonoids and carotenoids) and also explore the antioxidant, antimicrobial (Listeria innocua, Staphylococcus aureus, and Salmonella enterica), probiotic (Lactobacillus casei and Bifidobacterium lactis), and anti-inflammatory activities. The phenolic, flavonoid and carotenoid content of extracts was greatly influenced by extraction conditions wherein the ultrasound pre-treatment improved the extraction of carotenoids but induced the opposite effect for polyphenols and flavonoids in both herbs. Only the aqueous extract of thyme obtained from ultrasound pre-treatment was the only extract that inhibited the growth of potentially pathogenic bacteria, stimulated the probiotic bacteria and achieved high anti-inflammatory and antioxidant activity. Moreover, this extract also was rich on phenolic compounds (such as p-coumaric acid 4-O-glucoside, kaempferol 3-O-rutinoside, feruloyl glucose, and 4-vinylguaiacol) and carotenoids. Therefore, ultrasound extraction of bioactive compounds with water as solvent could be explored in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Cristina Alcántara
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - Tihana Žugčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; Universitat de València, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Radhia Abdelkebir
- Universitat de València, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; Range Ecology Laboratory in the Institute of Arid Regions (IRA) of Medenine, Medenine, Tunisia
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain.
| | - Jose V García-Pérez
- Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia 46022, Spain
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201 Taiwan
| | - Francisco J Barba
- Universitat de València, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain.
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| |
Collapse
|
13
|
Barba FJ, Alcántara C, Abdelkebir R, Bäuerl C, Pérez-Martínez G, Lorenzo JM, Carmen Collado M, García-Pérez JV. Ultrasonically-Assisted and Conventional Extraction from Erodium Glaucophyllum Roots Using Ethanol:Water Mixtures: Phenolic Characterization, Antioxidant, and Anti-Inflammatory Activities. Molecules 2020; 25:E1759. [PMID: 32290312 PMCID: PMC7181019 DOI: 10.3390/molecules25071759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/30/2023] Open
Abstract
The paper presents experimental results concerning the ultrasonically-assisted extraction of bioactive compounds from Erodium glaucophyllum roots. A comparison with conventional methodology is presented, and thereby the phytochemical composition and the antioxidant and anti-inflammatory activities of extracts are evaluated. The phenolic profile of Erodium extracts was analyzed by TOF-LC-MS-MS. The identification of phenolic compounds revealed that the major component was (+)-gallocatechin in the aqueous extracts obtained for the different extraction methodologies. The highest quantity of phenolic compounds and antioxidant capacity was found in the hydroethanolic extract obtained by conventional extraction (29.22-25.50 mg GAE/g DM; 21.174 mM Trolox equivalent). The highest content of carotenoids, varying from 0.035 to 0.114 mg/g dry matter, was reached by ultrasonic-assisted extraction. Furthermore, Erodium extracts showed a potent inhibition of the inflammatory reaction by means of the inhibition of tumor necrosis factor-alpha (TNF-α). The extracts obtained when ultrasound extraction was combined with ethanol:water (50:50, v/v) presented the greatest inhibition (92%).
Collapse
Affiliation(s)
- Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain;
| | - Cristina Alcántara
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 València, Spain; (C.A.); (C.B.)
| | - Radhia Abdelkebir
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain;
- Range Ecology Laboratory, Institute of Arid Regions (IRA), University of Gabès, Medenine 4100, Tunisia
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 València, Spain; (C.A.); (C.B.)
| | - Gaspar Pérez-Martínez
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 València, Spain; (C.A.); (C.B.)
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n°4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 València, Spain; (C.A.); (C.B.)
| | - Jose V. García-Pérez
- Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Cami de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
14
|
Optimizing High Pressure Processing Parameters to Produce Milkshakes Using Chokeberry Pomace. Foods 2020; 9:foods9040405. [PMID: 32244662 PMCID: PMC7230439 DOI: 10.3390/foods9040405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
High hydrostatic pressure is a non-thermal treatment of great interest because of its importance for producing food with additional or enhanced benefits above their nutritional value. In the present study, the effect of high hydrostatic pressure processing parameters (200–500 MPa; 1–10 min) is investigated through response surface methodology (RSM) to optimize the treatment conditions, maximizing the phenol content and antioxidant capacity while minimizing microbiological survival, in milkshakes prepared with chokeberry pomace (2.5–10%). The measurement of fluorescence intensity of the samples was used as an indicator of total phenolic content and antioxidant capacity. The results showed that the intensity of the treatments had different effects on the milkshakes. The RSM described that the greatest retention of phenolic compounds and antioxidant capacity with minimum microbiological survival were found at 500 MPa for 10 min and 10% (w/v) chokeberry pomace. Therefore, this study offers the opportunity to develop microbiologically safe novel dairy products of high nutritional quality.
Collapse
|
15
|
Jahangir Chughtai MF, Pasha I, Zahoor T, Khaliq A, Ahsan S, Wu Z, Nadeem M, Mehmood T, Amir RM, Yasmin I, Liaqat A, Tanweer S. Nutritional and therapeutic perspectives of Stevia rebaudiana as emerging sweetener; a way forward for sweetener industry. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1721562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Imran Pasha
- National Institute of Food Science & Technology, Faculty of Food Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Tahir Zahoor
- National Institute of Food Science & Technology, Faculty of Food Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Adnan Khaliq
- Department of Food Science & Technology, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Samreen Ahsan
- Department of Food Science & Technology, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Zhengzhong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Punjab, Pakistan
| | - Tariq Mehmood
- Department of Food Science & Technology, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Iqra Yasmin
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
- Barani Agricultural Research Institute, Chakwal, Pakistan
| | - Atif Liaqat
- Department of Food Science & Technology, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Saira Tanweer
- Department of Food Science and Technology, University College of Agricultural and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
16
|
Myint KZ, Wu K, Xia Y, Fan Y, Shen J, Zhang P, Gu J. Polyphenols from Stevia rebaudiana (Bertoni) leaves and their functional properties. J Food Sci 2020; 85:240-248. [PMID: 31990038 DOI: 10.1111/1750-3841.15017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
The major polyphenol components from Stevia rebaudiana (Bertoni) leaves (PPS) are chlorogenic acids, a polyphenol family of esters, including hydroxycinnamic acids with quinic acid, which possesses excellent hydrophilic antioxidant activity and other therapeutic properties. As an abundant byproduct during production of steviol glycosides, the PPS would be a new antioxidantive food resource or additives applied in foods and drugs with antidiabetic function. Extracting PPS from S. rebaudiana (Bertoni) leaves together with steviol glycosides would be an economic process, which will change most operation process in current Stevia factories. The quantification of PPS needs to be unified for regulation. In view of the current regulation status of polyphenols and extracts from Stevia, the PPS would be ready to go to the market with few regulation barriers in the near future. This review will summarize the analysis, extraction, and some functional properties of PPS, such as antioxidant, antidiabetic, antimicrobial, anti-inflammatory, and anticancer.
Collapse
Affiliation(s)
- Khaing Zar Myint
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids of Ministry of Education, School of Chemical and Materials Engineering, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Ke Wu
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids of Ministry of Education, School of Chemical and Materials Engineering, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids of Ministry of Education, School of Chemical and Materials Engineering, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Ye Fan
- Key Laboratory of Synthetic and Biological Colloids of Ministry of Education, School of Chemical and Materials Engineering, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Jie Shen
- Key Laboratory of Synthetic and Biological Colloids of Ministry of Education, School of Chemical and Materials Engineering, Jiangnan Univ., 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Peter Zhang
- Nascent Health Science LLC, 325 East 80th Street, 4E, New York, NY, 10075, U.S.A
| | - Jianxin Gu
- Dept. of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan Univ., 130 Dong'an Rood, Shanghai, 200032, China
| |
Collapse
|
17
|
Nowacka M, Wiktor A, Dadan M, Rybak K, Anuszewska A, Materek L, Witrow-Rajchert D. The Application of Combined Pre-treatment with Utilization of Sonication and Reduced Pressure to Accelerate the Osmotic Dehydration Process and Modify the Selected Properties of Cranberries. Foods 2019; 8:foods8080283. [PMID: 31344943 PMCID: PMC6722831 DOI: 10.3390/foods8080283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to investigate the effect of a pretreatment, performed by a combined method based on blanching, ultrasound, and vacuum application, on the kinetics of osmotic dehydration and selected quality properties such as water activity, color, and bioactive compound (polyphenols, flavonoids, and anthocyanins) content. The pretreatment was carried out using blanching, reduced pressure, and ultrasound (20 min, 21 kHz) in various combinations: Blanching at reduced pressure treatment conducted three times for 10 min in osmotic solution; blanching with reduced pressure for 10 min and sonicated for 20 min in osmotic solution; and blanching with 20 min of sonication and 10 min of reduced pressure. The osmotic dehydration was performed in different solutions (61.5% sucrose and 30% sucrose with the addition of 0.1% of steviol glycosides) to ensure the acceptable taste of the final product. The changes caused by the pretreatment affected the osmotic dehydration process by improving the efficiency of the process. The use of combined pretreatment led to an increase of dry matter from 9.3% to 28.4%, and soluble solids content from 21.2% to 41.5%, lightness around 17.3% to 56.9%, as well as to the reduction of bioactive compounds concentration until even 39.2% in comparison to the blanched sample not subjected to combined treatment. The osmotic dehydration caused further changes in all investigated properties.
Collapse
Affiliation(s)
- Malgorzata Nowacka
- Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Aleksandra Anuszewska
- Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Lukasz Materek
- Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Dorota Witrow-Rajchert
- Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
18
|
Klug TV, Collado E, Martínez-Hernández GB, Artés F, Artés-Hernández F. Effect of stevia supplementation of kale juice spheres on their quality changes during refrigerated shelf life. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2384-2392. [PMID: 30357844 DOI: 10.1002/jsfa.9445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Kale is a vegetable that contains a high proportion of health-promoting compounds although its consumption as a beverage is very limited due to its bitter flavor. Nonetheless, the bitter flavor of Brassica may be masked by sweetening. The effects were studied of different stevia extracts (CTRL, S0.5 (g L-1 ), S1.25 and S2.5) added to a kale beverage on the quality of kale juice spheres over a period of 7 days at 5 °C. Kale juice spheres were produced with a double-spherification technique, which allowed hydrogel spheres to be produced with high mechanical resistance. RESULTS The addition of the stevia extracts did not affect the physicochemical quality of spheres. In particular, S2.5 spheres showed the least color changes after 7 days. All spheres showed good microbiological quality throughout storage, with loads < 7 log CFU g-1 , regardless of the stevia concentration. The sulforaphane content of kale spheres was not affected by the stevia supplementation over the 7-day period. CONCLUSION The addition of stevia to the kale juice spheres led to a better flavor without altering product quality during refrigerated storage. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tâmmila V Klug
- Department of Food Engineering, Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena, Murcia, Spain
| | - Elena Collado
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Murcia, Spain
| | - Ginés B Martínez-Hernández
- Department of Food Engineering, Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Murcia, Spain
| | - Francisco Artés
- Department of Food Engineering, Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Murcia, Spain
| | - Francisco Artés-Hernández
- Department of Food Engineering, Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Murcia, Spain
| |
Collapse
|
19
|
Comparative effect of supercritical carbon dioxide and high pressure processing on structural changes and activity loss of oxidoreductive enzymes. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2018.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Bursać Kovačević D, Maras M, Barba FJ, Granato D, Roohinejad S, Mallikarjunan K, Montesano D, Lorenzo JM, Putnik P. Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: A review. Food Chem 2018; 268:513-521. [DOI: 10.1016/j.foodchem.2018.06.091] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023]
|
21
|
Pina-Pérez MC, Rivas A, Martínez A, Rodrigo D. Effect of thermal treatment, microwave, and pulsed electric field processing on the antimicrobial potential of açaí (Euterpe oleracea), stevia (Stevia rebaudiana Bertoni), and ginseng (Panax quinquefolius L.) extracts. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Effect of Stevia rebaudiana Bert. Addition on the Antioxidant Activity of Red Raspberry (Rubus idaeus L.) Juices. BEVERAGES 2018. [DOI: 10.3390/beverages4030052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The demand for antioxidant-rich beverages is steadily expanding. At the same time, the possibility of manufacturing products with reduced sugar content, sweetened with natural ingredients, represents a decisive aspect of obtaining quality products with health benefits. Stevia rebaudiana Bertoni (stevia) is a natural sweetener that can help to control caloric intake and is also a good source of antioxidant compounds. The present study was designed to assess the feasibility of producing high-quality berry juices sweetened with dry-grinded stevia leaves or their crude extract. The effect of the stevia supplementation on the antioxidant activities of raspberry juices was determined at two different production steps by means of the Folin–Ciocalteu, the oxygen radical absorbance capacity (ORAC), and the cellular antioxidant activity (CAA) assays. The addition of stevia significantly increased the antioxidant activity of the juices and resulted in significantly higher ascorbic acid and total phenolic content. A positive correlation was observed between ORAC, CAA, and total phenolic values. These findings show that supplementation with stevia not only promotes a healthy diet by reducing sugar intake but may also enhance the antioxidant potential of the beverage.
Collapse
|
23
|
Roselló-Soto E, Poojary MM, Barba FJ, Koubaa M, Lorenzo JM, Mañes J, Moltó JC. Thermal and non-thermal preservation techniques of tiger nuts' beverage “horchata de chufa”. Implications for food safety, nutritional and quality properties. Food Res Int 2018; 105:945-951. [DOI: 10.1016/j.foodres.2017.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022]
|
24
|
Zhang L, Dai S, Brannan RG. Effect of high pressure processing, browning treatments, and refrigerated storage on sensory analysis, color, and polyphenol oxidase activity in pawpaw (Asimina triloba L.) pulp. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Barba FJ, Koubaa M, do Prado-Silva L, Orlien V, Sant’Ana ADS. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.05.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Ortiz-Viedma J, Romero N, Puente L, Burgos K, Toro M, Ramirez L, Rodriguez A, Barros-Velazquez J, Aubourg SP. Antioxidant and antimicrobial effects of stevia (Stevia rebaudiana
Bert.) extracts during preservation of refrigerated salmon paste. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600467] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaime Ortiz-Viedma
- Department of Food Science and Chemical Technology; Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| | - Nalda Romero
- Department of Food Science and Chemical Technology; Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| | - Luís Puente
- Department of Food Science and Chemical Technology; Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| | - Katherine Burgos
- Department of Food Science and Chemical Technology; Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| | - María Toro
- Department of Food Science and Chemical Technology; Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| | - Leslie Ramirez
- Department of Food Science and Chemical Technology; Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| | - Alicia Rodriguez
- Department of Food Science and Chemical Technology; Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| | - Jorge Barros-Velazquez
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo Spain
| | - Santiago P. Aubourg
- Department of Food Science and Technology; Marine Research Institute (CSIC); Vigo Spain
| |
Collapse
|
27
|
Gallo M, Vitulano M, Andolfi A, DellaGreca M, Conte E, Ciaravolo M, Naviglio D. Rapid Solid-Liquid Dynamic Extraction (RSLDE): a New Rapid and Greener Method for Extracting Two Steviol Glycosides (Stevioside and Rebaudioside A) from Stevia Leaves. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:141-148. [PMID: 28108883 DOI: 10.1007/s11130-017-0598-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stevioside and rebaudioside A are the main diterpene glycosides present in the leaves of the Stevia rebaudiana plant, which is used in the production of foods and low-calorie beverages. The difficulties associated with their extraction and purification are currently a problem for the food processing industries. The objective of this study was to develop an effective and economically viable method to obtain a high-quality product while trying to overcome the disadvantages derived from the conventional transformation processes. For this reason, extractions were carried out using a conventional maceration (CM) and a cyclically pressurized extraction known as rapid solid-liquid dynamic extraction (RSLDE) by the Naviglio extractor (NE). After only 20 min of extraction using the NE, a quantity of rebaudioside A and stevioside equal to 1197.8 and 413.6 mg/L was obtained, respectively, while for the CM, the optimum time was 90 min. From the results, it can be stated that the extraction process by NE and its subsequent purification developed in this study is a simple, economical, environmentally friendly method for producing steviol glycosides. Therefore, this method constitutes a valid alternative to conventional extraction by reducing the extraction time and the consumption of toxic solvents and favouring the use of the extracted metabolites as food additives and/or nutraceuticals. As an added value and of local interest, the experiment was carried out on stevia leaves from the Benevento area (Italy), where a high content of rebaudioside A was observed, which exhibits a sweet taste compared to stevioside, which has a significant bitter aftertaste.
Collapse
Affiliation(s)
- Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini, 5, 80131, Naples, Italy.
| | - Manuela Vitulano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Esterina Conte
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Martina Ciaravolo
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| |
Collapse
|
28
|
Antioxidant activities of aqueous extract from Stevia rebaudiana stem waste to inhibit fish oil oxidation and identification of its phenolic compounds. Food Chem 2017; 232:379-386. [PMID: 28490088 DOI: 10.1016/j.foodchem.2017.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/12/2017] [Accepted: 04/03/2017] [Indexed: 11/20/2022]
Abstract
We investigated the potential for exploiting Stevia rebaudiana stem (SRS) waste as a source of edible plant-based antioxidants finding for the first time that the hot water extract of SRS had significantly higher antioxidant activity against fish oil oxidation than that of the leaf, despite SRS extract having lower total phenolic content, DPPH radical scavenging activity and ORAC values. To locate the major antioxidant ingredients, SRS extract was fractionated using liquid chromatography. Five phenolic compounds (primary antioxidant components in activity-containing fractions) were identified by NMR and HR-ESI-MS: vanillic acid 4-O-β-d-glucopyranoside (1), protocatechuic acid (2), caffeic acid (3), chlorogenic acid (4) and cryptochlorogenic acid (5). Further analysis showed that, among compounds 2-5, protocatechuic acid had the highest capacity to inhibit peroxides formation, but exhibited the lowest antioxidant activities in DPPH and ORAC assays. These results indicate that SRS waste can be used as strong natural antioxidant materials in the food industry.
Collapse
|
29
|
Quality change during high pressure processing and thermal processing of cloudy apple juice. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.08.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Jung SM, Park JS, Shim HJ, Kwon YS, Kim HG, Shin HS. Antioxidative effect of phycoerythrin derived from Grateloupia filicina on rat primary astrocytes. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0369-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Zuluaga C, Martínez A, Fernández J, López-Baldó J, Quiles A, Rodrigo D. Effect of high pressure processing on carotenoid and phenolic compounds, antioxidant capacity, and microbial counts of bee-pollen paste and bee-pollen-based beverage. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Changes of Antioxidant Compounds in a Fruit Juice-Stevia rebaudiana Blend Processed by Pulsed Electric Technologies and Ultrasound. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1706-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Aceval Arriola ND, de Medeiros PM, Prudencio ES, Olivera Müller CM, de Mello Castanho Amboni RD. Encapsulation of aqueous leaf extract of Stevia rebaudiana Bertoni with sodium alginate and its impact on phenolic content. FOOD BIOSCI 2016. [DOI: 10.1016/j.fbio.2015.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Touati N, Barba FJ, Louaileche H, Frigola A, Esteve MJ. Effect of Storage Time and Temperature on the Quality of Fruit Nectars: Determination of Nutritional Loss Indicators. J FOOD QUALITY 2016. [DOI: 10.1111/jfq.12189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Noureddine Touati
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie; Université Abderrahmane Mira; 06000 Bejaia Algérie
- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l'Univers; Université Mohamed El Bachir El Ibrahimi; 034000 Bordj Bou Arreridj Algérie
| | - Francisco José Barba
- Faculty of Pharmacy, Nutrition and Food Science Area; University of Valencia; Burjassot 46100 Spain
| | - Hayette Louaileche
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie; Université Abderrahmane Mira; 06000 Bejaia Algérie
| | - Ana Frigola
- Faculty of Pharmacy, Nutrition and Food Science Area; University of Valencia; Burjassot 46100 Spain
| | - Maria José Esteve
- Faculty of Pharmacy, Nutrition and Food Science Area; University of Valencia; Burjassot 46100 Spain
| |
Collapse
|
35
|
|
36
|
Periche Á, Castelló ML, Heredia A, Escriche I. S
tevia rebaudiana
, Oligofructose and Isomaltulose as Sugar Replacers in Marshmallows: Stability and Antioxidant Properties. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ángela Periche
- Universitat Politècnica de València, Institute of Food Engineering for Development; Valencia 46022 Spain
| | - María Luisa Castelló
- Universitat Politècnica de València, Institute of Food Engineering for Development; Valencia 46022 Spain
| | - Ana Heredia
- Universitat Politècnica de València, Institute of Food Engineering for Development; Valencia 46022 Spain
| | - Isabel Escriche
- Universitat Politècnica de València, Institute of Food Engineering for Development; Valencia 46022 Spain
| |
Collapse
|
37
|
Barba FJ, Terefe NS, Buckow R, Knorr D, Orlien V. New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. A review. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.05.015] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
|
39
|
Ferreira M, Almeida A, Delgadillo I, Saraiva J, Cunha Â. Susceptibility ofListeria monocytogenesto high pressure processing: A review. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1094816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
40
|
Koubaa M, Roselló-Soto E, Šic Žlabur J, Režek Jambrak A, Brnčić M, Grimi N, Boussetta N, Barba FJ. Current and New Insights in the Sustainable and Green Recovery of Nutritionally Valuable Compounds from Stevia rebaudiana Bertoni. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6835-6846. [PMID: 26172915 DOI: 10.1021/acs.jafc.5b01994] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The South American plant Stevia rebaudiana Bertoni is a great source of noncaloric sweeteners (steviol glycosides), mainly concentrated in its leaves, but also has important antioxidant compounds (vitamin C, polyphenols, chlorophylls, and carotenoids) and other important macro- and micronutrients such as folic acid and all of the essential amino acids except tryptophan. Traditionally, conventional methods have been used to recover nutritionally valuable compounds from plant food matrices. However, nowadays, the need for obtaining greener, sustainable, and viable processes has led both food industries and food scientists to develop new processes in full correspondence with the green extraction concept. This review focuses on some of the most promising nonconventional and emerging technologies, which may constitute a potential alternative to conventional methods or even could be combined to obtain a synergistic effect, thus reducing extraction time as well as solvent consumption and avoiding the use of toxic solvents.
Collapse
Affiliation(s)
- Mohamed Koubaa
- †Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Université de Technologie de Compiègne, Sorbonne Universités, Centre de Recherche de Royallieu, B.P. 20529, 60205 Compiègne Cedex, France
| | - Elena Roselló-Soto
- ‡Nutrition and Food Science Area, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, València Spain
| | - Jana Šic Žlabur
- §Department of Process Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Anet Režek Jambrak
- §Department of Process Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Mladen Brnčić
- §Department of Process Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nabil Grimi
- †Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Université de Technologie de Compiègne, Sorbonne Universités, Centre de Recherche de Royallieu, B.P. 20529, 60205 Compiègne Cedex, France
| | - Nadia Boussetta
- †Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Université de Technologie de Compiègne, Sorbonne Universités, Centre de Recherche de Royallieu, B.P. 20529, 60205 Compiègne Cedex, France
| | - Francisco J Barba
- ‡Nutrition and Food Science Area, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, València Spain
| |
Collapse
|
41
|
Roy A, De S. Resistance-in-series model for flux decline and optimal conditions of Stevia extract during ultrafiltration using novel CAP-PAN blend membranes. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2014.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Criado M, Civera M, Martínez A, Rodrigo D. Use of Weibull distribution to quantify the antioxidant effect of Stevia rebaudiana on oxidative enzymes. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.10.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Comparative study of the effects of citral on the growth and injury of Listeria innocua and Listeria monocytogenes cells. PLoS One 2015; 10:e0114026. [PMID: 25643164 PMCID: PMC4313941 DOI: 10.1371/journal.pone.0114026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022] Open
Abstract
This study investigates the effect of citral on growth and on the occurrence of sublethal damage in Listeria innocua Serovar 6a (CECT 910) and Listeria monocytogenes Serovar 4b (CECT 4032) cells that were exposed to citral as a natural antimicrobial agent. Two initial inoculum concentrations were considered in this investigation: 102 and 106 cfu/mL. Citral exhibited antilisterial activity against L. innocua and L. monocytogenes, and the observed effects were dependent on the concentration of citral present in the culture medium (0, 0.150 and 0.250 μL/mL) (p ≤ 0.05). L. innocua had a shorter lag phase than L. monocytogenes, and the two species had nearly identical maximum specific growth rates. These results indicate that L. innocua could be used as surrogate for L. monocytogenes when testing the effects of this antimicrobial. Significant differences in the lag phase and growth rate were observed between the small and large inoculum concentration (p ≤ 0.05). Citral-treated L. innocua and L. monocytogenes that were recovered on selective medium (i.e., TSA-YE-SC) had a shorter lag phase and a higher maximum specific growth rate than cells that were recovered on non-selective medium (i.e., TSA-YE) (p ≤ 0.05). This result suggests that damage occurs at sublethal concentrations of citral.
Collapse
|