1
|
Yu K, Yang L, Zhang N, Wang S, Song H, Liu H. Superabsorbent, antibacterial, and antioxidant nanocellulose aerogels: Preparation, characterization, and application in beef preservation. Food Chem 2025; 466:142251. [PMID: 39615360 DOI: 10.1016/j.foodchem.2024.142251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/29/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Herein, we prepared a new aerogel-based preservation pad using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), whey protein isolate (WPI), and cinnamon essential oil (CEO) as raw materials. The physicochemicals of the aerogel preservation pads were studied, and their effects on beef preservation were evaluated. The results showed that the aerogel monomers were crosslinked by hydrogen, ester bonds, and electrostatic interactions in the aerogels, and there were three-dimensional pores in the aerogels. Meanwhile, SHNC/PVA/WPI/CEO-3 (aerogel prepared using 2 g of SHNC) exhibited excellent mechanical properties (elongation: 251 %; tensile strength: 33.97 MPa) and super-high absorption performance. Additionally, the aerogel displayed excellent antioxidant and antibacterial properties (83.74 %). The preservation experiment showed that, at 4 °C, the aerogel preservation pad inhibited the growth and reproduction of bacteria on the surface of beef, inhibited lipid oxidation, effectively preserved the color of beef, and extended the shelf life of beef from 4 to 12 days.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China.
| | - Ning Zhang
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China
| | - Shengnan Wang
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China
| | - Hong Song
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
2
|
Antezana PE, Municoy S, Silva Sofrás FM, Bellino MG, Evelson P, Desimone MF. Alginate-based microencapsulation as a strategy to improve the therapeutic potential of cannabidiolic acid. Int J Pharm 2025; 669:125076. [PMID: 39667593 DOI: 10.1016/j.ijpharm.2024.125076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Cannabidiolic Acid (CBDA) is a promising natural compound with potent antioxidant, anti-inflammatory, and anti-emetic properties. Its antioxidant activity rivals that of vitamin E, while its anti-inflammatory effects are also remarkable. Additionally, CBDA has been shown to effectively reduce nausea and emetic attacks. As a more natural and water-soluble alternative to CBD, CBDA offers improved bioavailability and absorption. However, despite its promising potential, the development of effective CBDA delivery systems is still in its early stages. Among the various materials suitable for drug delivery, alginate is a widely used biopolymer due to its abundance and common availability in nature. This study aimed to develop an efficient CBDA delivery carrier using a microflow-dripping method to microencapsulate CBDA into alginate carriers (Alg-CBDA). The antioxidant, antimicrobial, and cytotoxicity properties of these Alg-CBDA capsules were then evaluated. Our results demonstrated that encapsulating CBDA within alginate capsules yielded a novel multifunctional biomaterial with prolonged antioxidant activity up to 72 h and antimicrobial activity against Gram-positive bacteria. Furthermore, the encapsulation process significantly reduced CBDA's cytotoxicity, broadening its potential applications. To our knowledge, this is the first study demonstrating the advantages of CBDA within a drug delivery framework.
Collapse
Affiliation(s)
- Pablo E Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Sofía Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina
| | - Fresia M Silva Sofrás
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina
| | - Martín G Bellino
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Martín F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina; Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
3
|
Wu X, Yan X, Zhang B, Zhang Q, Zhang X, Zhang J, Wu X. Effect of strengthening agents on properties of dual-modified cassava starch-based degradable films. Int J Biol Macromol 2024; 291:139142. [PMID: 39722390 DOI: 10.1016/j.ijbiomac.2024.139142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Insufficient hydrophobicity and mechanical properties pose significant challenges in the development of starch-based degradable films. This study prepared modified (crosslinked, acetylated, and crosslinked & acetylated) cassava starch films, and different concentrations of strengthening agents (polyvinyl alcohol, sodium alginate, gelatin, and hyaluronic acid) were added to produce modified starch composite films. The physical properties, structure characteristics, and degradability of these films were systematically evaluated. The dual-modified (crosslinked & acetylated) starch film exhibited superior hydrophobic properties (contact angle = 90.04°), and the addition of strengthening agents significantly enhanced the tensile strength of the composite films (p < 0.05). Fourier transform infrared spectra confirmed that the strengthening agents interacted with starch through hydrogen bonding. Additionally, the hyaluronic acid-starch composite film exhibited the most rapid degradation in soil (53 % weight loss after 30 days of storage) and achieved the highest comprehensive score for physical properties. This film combined exceptional hydrophobicity and mechanical properties, making it an ideal candidate for food packaging applications. These findings suggest that the hyaluronic acid-starch composite film has broad potential applications in the field of degradable food packaging films.
Collapse
Affiliation(s)
- Xiuli Wu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| | - Xiangxuan Yan
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| | - Bingqian Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| | - Qing Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| | - Xiaojia Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| | - Jianwen Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| | - Xuexu Wu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
4
|
Cai J, Zhong H, Luo J, Huang X, Xu Q, Li P. Inhalable multi-stimulus sensitive curcumin-alginate nanogels for scavenging reactive oxygen species and anti-inflammatory co-ordination to alleviate acute lung injury. Int J Biol Macromol 2024; 283:137816. [PMID: 39571867 DOI: 10.1016/j.ijbiomac.2024.137816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024]
Abstract
Acute lung injury (ALI) is one of the most common and extremely critical clinical conditions, which progresses with an inflammatory response and overproduction of reactive oxygen species (ROS), leading to oxidative damage to the lungs. Curcumin (Cur) has great potential in treating ALI due to its excellent antioxidant and anti-inflammatory effects. In this study, Cur and alginate were cross-linked by zinc ions and intermolecular hydrogen bonding to form an inhalable aqueous nanogel system to overcome Cur's low solubility and bioavailability. Cur-alginate (ZA-Cur) nanogels exhibited superior antioxidant properties and down-regulated inflammation-associated factors in vitro with controlled-release behavior under multi-stimulus conditions such as temperature, pH, and ions. Meanwhile, the nanogels system could effectively scavenge cellular ROS to repair oxidative stress damage. In a mice model of ALI, tracheal nebulised inhalation of ZA-Cur nanogels down-regulated the expression of inflammation-related genes such as TNF-α, IL-1β, and IL-6, as well as modulated MDA content and CAT activity to attenuate oxidative stress injury, showing promising lung-protective effects. In conclusion, this work developed inhalable ZA-Cur nanogels to decelerate the progression of lesions in ALI by scavenging intracellular ROS and alleviating inflammation simultaneously, which may be a promising strategy for treating ALI.
Collapse
Affiliation(s)
- Jinyun Cai
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Haiyi Zhong
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Jianwei Luo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinghai Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Qiuting Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
5
|
Yamdech R, Terahsongkran V, Terahsongkran V, Cherdchom S, Aramwit P. Development of Antioxidant-Active Sericin-Curcumin-Loaded Sodium Alginate/Polyvinyl Alcohol Films Crosslinked with Calcium Chloride as a Promising Wound Dressing Application. Polymers (Basel) 2024; 16:3197. [PMID: 39599288 PMCID: PMC11598768 DOI: 10.3390/polym16223197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Silk sericin (SS) and curcumin (Cur) possess significant antioxidant properties, making them highly beneficial for wound healing applications. This study aimed to develop SS-Cur-loaded sodium alginate/polyvinyl alcohol (SA/PVA) films crosslinked with calcium chloride, creating a biomaterial with enhanced stability and antioxidant properties. Wound dressings containing SS-Cur were fabricated by mixing SA and PVA at different ratios of 1:1, 1:2, 1:4, and 1:6. The resulting films were then crosslinked with calcium chloride in an ethanol solution to enhance film integrity. These films were characterized using several techniques, revealing that the presence of ethanol in calcium chloride affected film properties, including the gel fraction, swelling, film thickness, and FTIR analysis. The presence of ethanol in calcium chloride revealed the highest drug content in the SA/PVA films. In vitro release studies demonstrated sustained release of SS-Cur from all formulations. Cytotoxicity and antioxidant activity tests showed that SS-Cur-loaded SA/PVA films with ethanol in calcium chloride increased cell viability and enhanced antioxidant effects in L929 cells. In conclusion, this study demonstrates that the presence of ethanol in the crosslinking solution improved the functionality of SS-Cur-loaded SA/PVA films, making them promising candidates for wound healing and soft tissue regeneration.
Collapse
Affiliation(s)
- Rungnapha Yamdech
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Vareesa Terahsongkran
- Mater Dei School, 534 Phloen Chit Rd., Lumphini, Pathum Wan, Bangkok 10330, Thailand;
| | - Varis Terahsongkran
- Patumwan Demonstration School, Srinakharinwirot University, Henri Dunant Rd., Pathum Wan, Bangkok 10330, Thailand;
| | - Sarocha Cherdchom
- Department of Preventive and Social Medicine and Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand;
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10330, Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
6
|
Nguyen NHK, Bach GL, Tran TT. Effects of film-forming components on the viability of probiotics and the application of synbiotic pectin film in preserving Da Xanh pomelo and Thai jackfruit fresh-cut. Food Sci Biotechnol 2024; 33:3093-3104. [PMID: 39220308 PMCID: PMC11364831 DOI: 10.1007/s10068-024-01561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 09/04/2024] Open
Abstract
Minimally processed products are highly convenient, and fresh-cut fruits coated with the synbiotic film have many advantages. This study investigated the film-forming components and preservation ability of Da Xanh pomelo and Thai jackfruit fresh-cut by synbiotic pectin film. The results showed that PA70 film combined with 1.5% FOS (fructooligosaccharides) had the highest number of viable cells of L. plantarum after 30 days of storage at 5 °C. The number of probiotic cells existing on fresh-cut products of Da Xanh pomelo and Thai jackfruit was always high (> 8 log CFU/g) and stable during 10 days of storage. In addition, jackfruit and pomelo fresh-cut preserved with probiotic film also showed probiotic activity in simulated stomach and small intestine medium with the number of probiotic cells (> 6 log CFU/g) and survival cell ratio after 4 h in small intestine medium reached 81.20 ± 0.92% (pomelo) and 82.16 ± 0.94% (Thai jackfruit).
Collapse
Affiliation(s)
- Nguyen Hong Khoi Nguyen
- Institute of Food & Biotechnology, Can Tho University, Can Tho, 900000 Vietnam
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 700000 Vietnam
| | - Giang Long Bach
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 700000 Vietnam
| | - Truc Thanh Tran
- Institute of Food & Biotechnology, Can Tho University, Can Tho, 900000 Vietnam
- School of Graduate, Can Tho University, Can Tho, 900000 Vietnam
| |
Collapse
|
7
|
Nocchetti M, Pietrella D, Antognelli C, Di Michele A, Russo C, Giulivi E, Ambrogi V. Alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites. Int J Pharm 2024; 661:124393. [PMID: 38942183 DOI: 10.1016/j.ijpharm.2024.124393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This paper focuses on the preparation and characterization of antibacterial alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites for tissue engineering. Microparticles were prepared by cross-linking a silver@composite sodium alginate dispersion with CaCl2. This method showed a very good silver efficiency loading and the presence of silver chloride nanoparticles was detected. Silver free microparticles, containing hydroxyapatite functionalized calcium carbonates and neat alginate microparticles were prepared as well. All microparticles were characterized for water absorption and for in vitro bioactivity by immersion in simulated body fluid (SBF). Finally, antimicrobial and antibiofilm activities as well as cytotoxicity were evaluated. Microparticles containing silver@composites exhibited good antimicrobial and antibiofilm activities against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Candida albicans, but exerted a certain cytotoxicity against the tested cell models (fibroblasts and osteoblasts). Microparticles containing hydroxyapatite functionalized calcium carbonates were found to be always less cytotoxic, also in comparison to neat alginate microparticles, proving that the presence of the inorganic matrices exerts a protective effect on microparticle cytotoxicity.
Collapse
Affiliation(s)
- Morena Nocchetti
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06123, Italy
| | - Donatella Pietrella
- Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia 06129, Italy
| | - Cinzia Antognelli
- Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia 06129, Italy
| | | | - Carla Russo
- Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia 06129, Italy
| | - Elisa Giulivi
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06123, Italy
| | - Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06123, Italy.
| |
Collapse
|
8
|
Lin JT, Chiang YC, Li PH, Chiang PY. Structural and Release Properties of Combined Curcumin Controlled-Release Tablets Formulated with Chitosan/Sodium Alginate/HPMC. Foods 2024; 13:2022. [PMID: 38998528 PMCID: PMC11241607 DOI: 10.3390/foods13132022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Controlled-release tablets offer several benefits, such as controlled release, odor masking, ease of use, stability, extended shelf life, and reduced production costs. This study developed combined curcumin controlled-release tablets (CCCTs) to increase the bioavailability of curcumin with hydroxypropyl methylcellulose (HPMC), chitosan, and sodium alginate. The hardness of the CCCTs was 5.63-1.98 kgf, friability was 0.00-1.22%, and disintegration time was 0.00-401.25 min. Differential scanning calorimetry and Fourier-transform infrared spectroscopy indicated a high compatibility between the excipients and curcumin. CCCTs with chitosan formed a gel structure, impeded disintegration, and reduced the release rate to 72.5% in simulated gastric fluid. In simulated intestinal fluid, CCCT with the HPMC-sodium alginate group formed a polyelectrolyte membrane hydrogel to prolong release from 6 to 12 h. This study developed various CCCT formulations that can be delivered through the gastric or intestinal tracts, using chitosan and HPMC-sodium alginate as excipients, respectively. CCCT can be used as a reference strategy for controlled-release curcumin delivery in the functional and healthcare supplement development.
Collapse
Affiliation(s)
- Jing-Ting Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Chan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Po-Yuan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
9
|
Mergulhão NLON, Bulhões LCG, Silva VC, Duarte IFB, Basílio-Júnior ID, Freitas JD, Oliveira AJ, Goulart MOF, Barbosa CV, Araújo-Júnior JX. Insights from Syzygium aromaticum Essential Oil: Encapsulation, Characterization, and Antioxidant Activity. Pharmaceuticals (Basel) 2024; 17:599. [PMID: 38794169 PMCID: PMC11124181 DOI: 10.3390/ph17050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Alginate encapsulates loaded with clove essential oil (CEO) were prepared by ionic gelation, with subsequent freeze-drying. The objective of the present work was to develop a product with the ability to protect CEO against its easy volatility and oxidation. The following techniques were used to characterize the formulations: eugenol release, degree of swelling, GC/MS, TGA/DSC, and SEM. The alginate solution (1.0%) containing different concentrations of CEO (LF1: 1.0%; LF2: 0.5%; LF3: 0.1%) was dropped into a 3.0% CaCl2 solution. After lyophilization, the encapsulated samples were wrinkled and rigid, with high encapsulation power (LF3: 76.9% ± 0.5). Three chemical components were identified: eugenol (the major one), caryophyllene, and humulene. The antioxidant power (LF1: DPPH IC50 18.1 µg mL-1) was consistent with the phenol content (LF1: 172.2 mg GAE g-1). The encapsulated ones were thermally stable, as shown by analysis of FTIR peaks, eugenol molecular structure was kept unaltered. The degree of swelling was 19.2% (PBS). The release of eugenol (92.5%) in the PBS solution was faster than in the acidic medium. It was concluded that the low-cost technology used allows the maintenance of the content and characteristics of CEO in the three concentrations tested, offering a basis for further research with essential oil encapsulates.
Collapse
Affiliation(s)
- Naianny L. O. N. Mergulhão
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Laisa C. G. Bulhões
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Valdemir C. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
- Estácio de Alagoas Faculty, Maceió 57035-225, Brazil
| | - Ilza F. B. Duarte
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Irinaldo D. Basílio-Júnior
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
| | - Johnnatan D. Freitas
- Department of Food Chemistry, Federal Institute of Alagoas, Maceió 57020-600, Brazil;
| | - Adeildo J. Oliveira
- Department of Exact Sciences, Federal University of Alagoas, Arapiraca 57309-005, Brazil;
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Círia V. Barbosa
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
| | - João X. Araújo-Júnior
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| |
Collapse
|
10
|
Yu K, Yang L, Zhang S, Zhang N, Xie M, Yu M. Stretchable, antifatigue, and intelligent nanocellulose hydrogel colorimetric film for real-time visual detection of beef freshness. Int J Biol Macromol 2024; 268:131602. [PMID: 38626836 DOI: 10.1016/j.ijbiomac.2024.131602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The use of biopolymers as matrices and anthocyanins as pH-sensing indicators has generated increasing interest in freshness detection. Nevertheless, the weak mechanical properties and color stability of biopolymer-based smart packaging systems restrict their practicality. In this study, a nanocellulose hydrogel colorimetric film with enhanced stretchability, antifatigue properties, and color stability was prepared using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), sodium alginate (SA), and anthocyanin (Anth) as raw materials. This hydrogel colorimetric film was used to detect beef freshness. The structure and properties (e.g., mechanical, thermal stability and hydrophobicity) of these hydrogel colorimetric films were characterized using different techniques. Fourier-transform infrared spectroscopy revealed the presence of hydrogen and ester bonds in the hydrogel colorimetric films, whereas scanning electron microscopy revealed the fish scale-like and honeycomb network structure of the hydrogel colorimetric films. Mechanical testing demonstrated that the SHNC/PVA/SA/Anth-2 hydrogel colorimetric film exhibited excellent tensile properties (elongation = 261 %), viscoelasticity (storage modulus of 11.25 kPa), and mechanical strength (tensile strength = 154 kPa), and the hydrogel colorimetric film exhibited excellent mechanical properties after repeated tensile tests. Moreover, the hydrogel colorimetric film had high transparency, excellent anti-UV linearity, thermal stability and hydrophobicity, and had displayed visually discernible color response to pH buffer solution and volatile NH3 by naked eyes, which was highly correlated with the TVB-N and pH values. Notably, the release of anthocyanin in distilled water decreased from 81.23 % to 19.87 %. The designed SHNC/PVA/SA/Anth hydrogel colorimetric films exhibited potential application as smart packaging film or gas-sensing labels in monitoring the freshness of meat products.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Siyu Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ning Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Mengxi Xie
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Miao Yu
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| |
Collapse
|
11
|
Yu K, Yang L, Zhang S, Zhang N. Strong, tough, high-release, and antibacterial nanocellulose hydrogel for refrigerated chicken preservation. Int J Biol Macromol 2024; 264:130727. [PMID: 38460645 DOI: 10.1016/j.ijbiomac.2024.130727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Enormous amounts of food resources are annually wasted because of microbial contamination, highlighting the critical role of effective food packaging in preventing such losses. However, traditional food packaging faces several limitations, such as low mechanical strength, poor fatigue resistance, and low water retention. In this study, we aimed to prepare nanocellulose hydrogels with enhanced stretchability, fatigue resistance, high water retention, and antibacterial properties using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), sodium alginate (SA), and tannic acid (TA) as raw materials. These hydrogels were applied in food packaging to extend the shelf life of refrigerated chicken. The structure and properties (e.g., mechanical, antibacterial, and barrier properties) of these hydrogels were characterized using different techniques. Fourier-transform infrared spectroscopy revealed the presence of hydrogen and ester bonds in the hydrogels, whereas scanning electron microscopy revealed the three-dimensional network structure of the hydrogels. Mechanical testing demonstrated that the SHNC/PVA/SA/TA-2 hydrogel exhibited excellent tensile properties (elongation = 160 %), viscoelasticity (storage modulus of 1000 Pa), and mechanical strength (compressive strength = 10 kPa; tensile strength = 0.35 MPa). Moreover, under weak acidic and alkaline conditions, the ester bonds of the hydrogel broke down with an increase in pH, improving its swelling and release properties. The SHNC/PVA/SA/TA-2 hydrogel displayed an equilibrium swelling ratio exceeding 300 %, with a release rate of >80 % for the bioactive substance TA. Notably, antibacterial testing showed that the SHNC/PVA/SA/TA-2 hydrogel effectively deactivated Staphylococcus aureus and Escherichia coli, prolonging the shelf life of refrigerated chicken to 10 d. Therefore, the SHNC/PVA/SA/TA hydrogels can be used in food packaging to extend the shelf life of refrigerated meat products. Their cost-effectiveness and simple preparation make them suitable for various applications in the food industry.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Siyu Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ning Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| |
Collapse
|
12
|
Zhang Y, Pu Y, Jiang H, Chen L, Shen C, Zhang W, Cao J, Jiang W. Improved sustained-release properties of ginger essential oil in a Pickering emulsion system incorporated in sodium alginate film and delayed postharvest senescence of mango fruits. Food Chem 2024; 435:137534. [PMID: 37769562 DOI: 10.1016/j.foodchem.2023.137534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
The insufficient water vapor barrier and mechanical capacity of sodium alginate (SA) film limited its application in fruit preservation. Herein, cellulose nanocrystals (CNCs) were used to stabilize Pickering emulsion. Then, we prepared SA composite films. Ginger essential oil (GEO) was loaded as antimicrobials and antioxidants. Finally, the application on mangos were investigated. Compared to coarse emulsion, Pickering emulsion and its film-formation-solution showed more stable system and larger droplet size. The emulsion significantly changed the properties of SA film. Specifically, CNCs improved the thermal, tensile, and barrier properties of the film and GEO enhanced the ultraviolet-visible light barrier capacity. Additionally, the SA/CNC film possessed a homogeneous micromorphology which had a sustained-release effect on GEO, thus maintaining high postharvest quality and long-term bioavailability for mangos. In conclusion, the film prepared via Pickering emulsion showed satisfactory properties which had great potential in fruit preservation.
Collapse
Affiliation(s)
- Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Chaoyu Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
13
|
Ying X, Yu C, Yang W, Ye L, Sun R, Gu T, Fan S, Yao S. The transformation of multifunctional bio-patch to hydrogel on skin wounds for efficient scarless wound healing. Mater Today Bio 2024; 24:100901. [PMID: 38188643 PMCID: PMC10770564 DOI: 10.1016/j.mtbio.2023.100901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024] Open
Abstract
Hydrogels have been widely used in various biomedical applications, including skin regeneration and tissue repair. However, the capability of certain hydrogels to absorb exudate or blood from surrounding wounds, coupled with the challenge in their long-term storage to prevent bacterial growth, can pose limitations to their efficacy in biological applications. To address these challenges, the development of a multifunctional aloin-arginine-alginate (short for 3A) bio-patch capable of transforming into a hydrogel upon absorbing exudate or blood from neighboring wounds for cutaneous regeneration is proposed. The 3A bio-patch exhibits outstanding features, including an excellent porous structure, swelling properties, and biodegradability. These characteristics allow for the rapid absorption of wound exudates and subsequent transformation into a hydrogel that is suitable for treating skin wounds. Furthermore, the 3A bio-patch exhibits remarkable antibacterial and anti-inflammatory properties, leading to accelerated wound healing and scarless repair in vivo. This study presents a novel approach to the development of cutaneous wound dressing materials.
Collapse
Affiliation(s)
- Xiaozhang Ying
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, 310003, China
| | - Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| |
Collapse
|
14
|
Chen X, Li L, Chen L, Shao W, Chen Y, Fan X, Liu Y, Tang C, Ding S, Xu X, Zhou G, Feng X. Tea polyphenols coated sodium alginate-gelatin 3D edible scaffold for cultured meat. Food Res Int 2023; 173:113267. [PMID: 37803580 DOI: 10.1016/j.foodres.2023.113267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
This study aimed to use edible scaffolds as a platform for animal stem cell expansion, thus constructing block-shaped cell culture meat. The tea polyphenols (TP)-coated 3D scaffolds were constructed of sodium alginate (SA) and gelatin (Gel) with good biocompatibility and mechanical support. Initially, the physicochemical properties and mechanical properties of SA-Gel-TP scaffolds were measured, and the biocompatibility of the scaffolds was evaluated by C2C12 cells. SEM results showed that the scaffold had a porous laminar structure with TP particles attached to the surface, while FT-IR results also demonstrated the encapsulation of TP coating on the scaffold. In addition, the porosity of all scaffolds was higher than 40% and the degradation rate during the incubation cycle was less than 40% and the S2-G1-TP0.1-3 h scaffold has excellent cell adhesion and extension. Subsequently, we inoculated rabbit skeletal muscle myoblasts (RbSkMC) on the scaffold and induced differentiation. The results showed good adhesion and extension behavior of RbSkMC on S2-G1-TP0.1-3 h scaffolds with high expression of myogenic differentiation proteins and genes, and SEM results confirmed the formation of myotubes. Additionally, the adhesion rate of cells on scaffolds with TP coating was 1.5 times higher than that on scaffolds without coating, which significantly improved the cell proliferation rate and the morphology of cells with extension on the scaffolds. Furthermore, rabbit-derived cultured meat had similar appearance and textural characteristics to fresh meat. These conclusions indicate the high potential of the scaffolds with TP coating as a platform for the production of cultured meat products.
Collapse
Affiliation(s)
- Xiaohong Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Linzi Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Wei Shao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yan Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xiaojing Fan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yaping Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Changbo Tang
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shijie Ding
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xinglian Xu
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanghong Zhou
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Yu H, Huang X, Zhou L, Wang Y. Incorporation of cinnamaldehyde, carvacrol, and eugenol into zein films for active food packaging: enhanced mechanical properties, antimicrobial activity, and controlled release. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2846-2857. [PMID: 37711567 PMCID: PMC10497491 DOI: 10.1007/s13197-023-05802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 09/16/2023]
Abstract
Active packaging with antimicrobial functions to improve the quality and extend the shelf life of food products has gained great interest. Because commercial plastic packaging materials are not biodegradable and cause great environmental problems, plant-derived natural materials have been widely studied for the application of biodegradable packaging materials. Herein, we reported a study of essential oils (EOs)-loaded zein film. Cinnamaldehyde (CIN), carvacrol, and eugenol were added to equip the films with antimicrobial effects, while polyethylene glycol (PEG) and oleic acid (OA) were selected for the improvements of mechanical properties. The results showed that PEG efficiently improves the tensile strength and elongation (%E) of zein films compared to OA, although PEG induced weaker water barrier properties of the films than OA. FTIR spectra confirmed the formation of the hydrogen bonds between zein and PEG/OA. The EO-embedded zein film showed better antimicrobial effects than EO themselves. CIN-embedded films showed the highest antimicrobial effect among the three EOs. The sizes of the inhibition zones against Staphylococcus aureus of PEG-added zein films with 1%, 3%, and 5% CIN were 5.67, 12.67, and 16.67 mm, which were larger than that of pure CIN, with the sizes of 0.00, 3.00, and 4.67 mm, respectively. The developed films demonstrate a gradual release of EOs and show antimicrobial effects up to 96 h, indicating their high potential for the applications as active food packaging.
Collapse
Affiliation(s)
- Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - Xueying Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - Liping Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| |
Collapse
|
16
|
Iqbal DN, Ashraf A, Nazir A, Alshawwa SZ, Iqbal M, Ahmad N. Fabrication, Properties, and Stability of Oregano Essential Oil and Sodium Alginate-Based Wound-Healing Hydrogels. Dose Response 2023; 21:15593258231204186. [PMID: 37822999 PMCID: PMC10563497 DOI: 10.1177/15593258231204186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
The wound dressings fabricated by polymers and oregano essential oil (OEO) can be very effective as a hydrogel. The current study has been focused on fabricating the hydrogel membranes of oregano oil encapsulated as an antibacterial agent into sodium alginate (SA) solution by solvent casting method and then evaluated the antibacterial, antioxidant activity, and physicochemical performance of SA/OEO-based polymeric membranes. The polymeric interactions, surface morphology, water absorption capability, thermal stability, and encapsulation efficiency were investigated by FT-IR, SEM, swelling ratio, DSC, and encapsulation efficiency. The percentage encapsulation efficiency of essential oil was 40.5%. FTIR validated the presence of molecular interaction between individual components. SEM images showed a rough and porous appearance for hydrogel membranes. Moreover, DSC showed that the fabricated membranes were thermally stable. The inclusion of more content OEO decreased swelling ratios. The antioxidant test was carried out by DPPH assay and antibacterial test through disc diffusion method against microbes. The results revealed that membranes containing the highest content of OEO had more excellent antioxidant and antibacterial efficacy. Therefore, the polymeric membranes of sodium alginate loaded with oregano essential oil can be employed as an effective wound-healing candidate.
Collapse
Affiliation(s)
- Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Asia Ashraf
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Naveed Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
17
|
Janik W, Nowotarski M, Ledniowska K, Shyntum DY, Krukiewicz K, Turczyn R, Sabura E, Furgoł S, Kudła S, Dudek G. Modulation of physicochemical properties and antimicrobial activity of sodium alginate films through the use of chestnut extract and plasticizers. Sci Rep 2023; 13:11530. [PMID: 37460643 DOI: 10.1038/s41598-023-38794-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023] Open
Abstract
Due to the growing demand for robust and environmentally friendly antimicrobial packaging materials, biopolymers have recently become extensively investigated. Although biodegradable biopolymers usually lack mechanical properties, which makes it inevitable to blend them with plasticizers. The purpose of this study was to investigate plasticization efficiency of bio-based plasticizers introduced into sodium alginate compositions containing chestnut extract and their effect on selected film properties, including primarily mechanical and antibacterial properties. The films were prepared by the casting method and sodium alginate was cross-linked with calcium chloride. Six different plasticizers, including three commercially available ones (glycerol, epoxidized soybean oil and palm oil) and three synthesized plasticizers that are mixtures of bio-based plasticizers, were used to compare their influence on the film properties. Interactions between the polymer matrix and the plasticizers were investigated using Fourier transform infrared spectroscopy. The morphological characteristics of the films were characterized by scanning electron microscopy. Thermal properties, tensile strength, elongation at break, hydrophilic, and barrier properties of the obtained films were also determined. To confirm the obtaining of active films through the use of chestnut extract and to study the effect of the proposed plasticizers on the antibacterial activity of the extract, the obtained films were tested against bacteria cultures. The final results showed that all of the obtained films exhibit a hydrophilic character and high barrier effect to oxygen, carbon dioxide and water vapor. In addition, sodium alginate films prepared with chestnut extract and the plasticizer proposed by us, showed better mechanical and antimicrobial properties than the films obtained with chestnut extract and the commercially available plasticizers.
Collapse
Affiliation(s)
- Weronika Janik
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", 47-225, Kędzierzyn-Koźle, Poland.
- Department of Physical Chemistry and Technology of Polymers, PhD School, Silesian University of Technology, 44-100, Gliwice, Poland.
| | - Michał Nowotarski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Kerstin Ledniowska
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", 47-225, Kędzierzyn-Koźle, Poland
- Department of Physical Chemistry and Technology of Polymers, PhD School, Silesian University of Technology, 44-100, Gliwice, Poland
| | | | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Ewa Sabura
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", 47-225, Kędzierzyn-Koźle, Poland
| | - Simona Furgoł
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", 47-225, Kędzierzyn-Koźle, Poland
| | - Stanisław Kudła
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", 47-225, Kędzierzyn-Koźle, Poland
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland
| |
Collapse
|
18
|
Yang H, Liu Q, Shu X, Yu H, Rong H, Qu F, Liang H. Simultaneous ammonium and water recovery from landfill leachate using an integrated two-stage membrane distillation. WATER RESEARCH 2023; 240:120080. [PMID: 37257292 DOI: 10.1016/j.watres.2023.120080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Resources recovery from landfill leachate (LFL) has been attracting growing attention instead of merely purifying the wastewater. An integrated two-stage membrane distillation (ITMD) was proposed to simultaneously purify LFL and recover ammonia in this study. The results showed that organics could be always effectively rejected by the ITMD regardless of varying feed pH, with COD removal higher than 99%. With feed pH increased from 8.64 to 12, the ammonia migration (50-100%) and capture (36-75%) in LFL were considerably enhanced, boosting the separated ammonia enrichment to 1.3-1.7 times due to the improved ammonium diffusion. However, the corresponding membrane flux of the first MD stage decreased from 13.7 to 10.5 L/m2·h. Elevating feed pH caused the deprotonation of NOM and its binding with inorganic ions, constituting a complex fouling layer on the membrane surface in the first MD stage. In contrast, the membrane permeability and fouling of the second MD were not affected by feed pH adjustment because only volatiles passed through the first MD. More importantly, it was estimated that ITMD could obtain high-quality water and recover high-purity ammonium from LFL with relatively low ammonium concentration at an input cost of $ 2-3/m3, which was very competitive with existing techniques. These results demonstrated that the ITMD can be a valuable candidate strategy for simultaneous water purification and nutrient recovery from landfill leachate.
Collapse
Affiliation(s)
- Haiyang Yang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qinsen Liu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xinying Shu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huarong Yu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
19
|
Study of Hydroxypropyl β-Cyclodextrin and Puerarin Inclusion Complexes Encapsulated in Sodium Alginate-Grafted 2-Acrylamido-2-Methyl-1-Propane Sulfonic Acid Hydrogels for Oral Controlled Drug Delivery. Gels 2023; 9:gels9030246. [PMID: 36975695 PMCID: PMC10048200 DOI: 10.3390/gels9030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Puerarin has been reported to have anti-inflammatory, antioxidant, immunity enhancement, neuroprotective, cardioprotective, antitumor, and antimicrobial effects. However, due to its poor pharmacokinetic profile (low oral bioavailability, rapid systemic clearance, and short half-life) and physicochemical properties (e.g., low aqueous solubility and poor stability) its therapeutic efficacy is limited. The hydrophobic nature of puerarin makes it difficult to load into hydrogels. Hence, hydroxypropyl-β-cyclodextrin (HP-βCD)-puerarin inclusion complexes (PIC) were first prepared to enhance solubility and stability; then, they were incorporated into sodium alginate-grafted 2-acrylamido-2-methyl-1-propane sulfonic acid (SA-g-AMPS) hydrogels for controlled drug release in order to increase bioavailability. The puerarin inclusion complexes and hydrogels were evaluated via FTIR, TGA, SEM, XRD, and DSC. Swelling ratio and drug release were both highest at pH 1.2 (36.38% swelling ratio and 86.17% drug release) versus pH 7.4 (27.50% swelling ratio and 73.25% drug release) after 48 h. The hydrogels exhibited high porosity (85%) and biodegradability (10% in 1 week in phosphate buffer saline). In addition, the in vitro antioxidative activity (DPPH (71%), ABTS (75%), and antibacterial activity (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) indicated the puerarin inclusion complex-loaded hydrogels had antioxidative and antibacterial capabilities. This study provides a basis for the successful encapsulation of hydrophobic drugs inside hydrogels for controlled drug release and other purposes.
Collapse
|
20
|
Flávia Rezende Silva A, Almeida Ribeiro L, Cristina Santos Amaral M. Efficiency of nutrients recovery from sugarcane vinasse treatment by different electrodialysis configurations and in sequential-batch operation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Jin F, Liao S, Li W, Jiang C, Wei Q, Xia X, Wang Q. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range. Carbohydr Polym 2023; 299:120195. [PMID: 36876766 DOI: 10.1016/j.carbpol.2022.120195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Bacterial infection is a major pathological factor leading to persistent wounds. With the aging of population, wound infection has gradually become a global health-issue. The wound site environment is complicated, and the pH changes dynamically during healing. Therefore, there is an urgent need for new antibacterial materials that can adapt to a wide pH range. To achieve this goal, we developed a thymol-oligomeric tannic acid/amphiphilic sodium alginate-polylysine hydrogel film, which exhibited excellent antibacterial efficacy in the pH range from 4 to 9, achieving the highest achievable 99.993 % (4.2 log units) and 99.62 % (2.4 log units) against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively. The hydrogel films exhibited excellent cytocompatibility, suggesting that the materials are promising as a novel wound healing material without the concern of biosafety.
Collapse
Affiliation(s)
- Fangyu Jin
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China.
| |
Collapse
|
22
|
Shi M, Duan H, Feng L, Xiao M, He Q, Yan S. Sustainable ammonia recovery from anaerobic digestion effluent through pretreating the feed by biomass ash. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Antezana PE, Municoy S, Orive G, Desimone MF. Design of a New 3D Gelatin-Alginate Scaffold Loaded with Cannabis sativa Oil. Polymers (Basel) 2022; 14:4506. [PMID: 36365500 PMCID: PMC9658303 DOI: 10.3390/polym14214506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 09/20/2023] Open
Abstract
There is an increasing medical need for the development of new materials that could replace damaged organs, improve healing of critical wounds or provide the environment required for the formation of a new healthy tissue. The three-dimensional (3D) printing approach has emerged to overcome several of the major deficiencies of tissue engineering. The use of Cannabis sativa as a therapy for some diseases has spread throughout the world thanks to its benefits for patients. In this work, we developed a bioink made with gelatin and alginate that was able to be printed using an extrusion 3D bioprinter. The scaffolds obtained were lyophilized, characterized and the swelling was assessed. In addition, the scaffolds were loaded with Cannabis sativa oil extract. The presence of the extract provided antimicrobial and antioxidant activity to the 3D scaffolds. Altogether, our results suggest that the new biocompatible material printed with 3D technology and with the addition of Cannabis sativa oil could become an attractive alternative to common treatments of soft-tissue infections and wound repair.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Sofía Municoy
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Martín Federico Desimone
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| |
Collapse
|
24
|
Ricardo PC, Serudo RL, Ţălu Ş, Lamarão CV, da Fonseca Filho HD, de Araújo Bezerra J, Sanches EA, Campelo PH. Encapsulation of Bromelain in Combined Sodium Alginate and Amino Acid Carriers: Experimental Design of Simplex-Centroid Mixtures for Digestibility Evaluation. Molecules 2022; 27:6364. [PMID: 36234901 PMCID: PMC9570880 DOI: 10.3390/molecules27196364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bromelain has potential as an analgesic, an anti-inflammatory, and in cancer treatments. Despite its therapeutic effects, this protein undergoes denaturation when administered orally. Microencapsulation processes have shown potential in protein protection and as controlled release systems. Thus, this paper aimed to develop encapsulating systems using sodium alginate as a carrier material and positively charged amino acids as stabilizing agents for the controlled release of bromelain in in vitro tests. The systems were produced from the experimental design of centroid simplex mixtures. Characterizations were performed by FTIR showing that bromelain was encapsulated in all systems. XRD analyses showed that the systems are semi-crystalline solids and through SEM analysis the morphology of the formed systems followed a pattern of rough microparticles. The application of statistical analysis showed that the systems presented behavior that can be evaluated by quadratic and special cubic models, with a p-value < 0.05. The interaction between amino acids and bromelain/alginate was evaluated, and free bromelain showed a reduction of 74.0% in protein content and 23.6% in enzymatic activity at the end of gastric digestion. Furthermore, a reduction of 91.6% of protein content and 65.9% of enzymatic activity was observed at the end of intestinal digestion. The Lis system showed better interaction due to the increased stability of bromelain in terms of the amount of proteins (above 63% until the end of the intestinal phase) and the enzymatic activity of 89.3%. Thus, this study proposes the development of pH-controlled release systems aiming at increasing the stability and bioavailability of bromelain in intestinal systems.
Collapse
Affiliation(s)
- Philipi Cavalcante Ricardo
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Ricardo Lima Serudo
- Higher School of Technology (EST), State University of Amazonas (UEA), Av. Djalma Batista 2470, Manaus 69050-300, AM, Brazil
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, 15 Constantin Daicoviciu St., 400020 Cluj-Napoca, Romania
| | - Carlos Victor Lamarão
- School of Agrarian Science, Federal University of Amazonas, Manaus 69067-005, AM, Brazil
| | - Henrique Duarte da Fonseca Filho
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Laboratory of Synthesis of Nanomaterials and Nanoscopy (LSNN), Department of Physics, Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Jaqueline de Araújo Bezerra
- Federal Institute of Education, Science and Technology of Amazonas (IFAM), IFAM Analytical Center, Manaus Centro Campus, Manaus 69067-005, AM, Brazil
| | - Edgar Aparecido Sanches
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Pedro Henrique Campelo
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| |
Collapse
|
25
|
Composite inclusion complexes containing sodium alginate composite nanogels for pH-responsive valnemulin hydrochloride release. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Sustainable functionalization for cotton fabrics by printing with a mixture of chestnut shell extract and alginate. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Zhao C, Wang Y, Shi B, Li M, Yan W, Yang H. Domination of H-Bond Interactions in the Solvent-Triggering Gelation Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7965-7975. [PMID: 35731623 DOI: 10.1021/acs.langmuir.2c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gels prepared with the solvent-triggering method are attractive for their easy and fast preparation; however, the role of solvents in this process remains unclear, which hinders the efficient and accurate control of desired gel properties. In this study, the role of solvents in the solvent-triggering gelation process is studied using 9-fluorenylmethoxycarbonyl (Fmoc)-protected diphenylalanine (Fmoc-FF) as the gelator. Density functional theory (DFT)-based calculations and corresponding wavefunction analyses are conducted to identify the H-bonding interaction sites between the molecules. The calculation results clearly annotate the activating role of DMF and the triggering role of H2O in the gelation process. The solvation of Fmoc-FF by DMF can activate the H-bonding sites on the peptide chain, showing a conformation reversal and higher electrostatic potentials. Then, the H-bonding between Fmoc-FF and H2O is facilitated to trigger gelation. The physical Fmoc-FF/DMF/H2O gels show easily tuned mechanical strengths (G' of 102-105 Pa), injectable potentials (general yield strain < 100%), and stable recoverability (80-98% within 100 s). The regulation of these properties depends on not only the gelator concentration but also the H-bonding interactions with solvent molecules, which have seldom been studied in detail before. By understanding the effect of solvents, low-molecular-weight gelator-based gels can be designed, prepared, and tuned efficiently for potential applications.
Collapse
Affiliation(s)
- Chengcheng Zhao
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanyao Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bofang Shi
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingtao Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Yan
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Honghui Yang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
28
|
Nanofiltration membranes fabricated through ultra-thin α-Co(OH)2 nanosheets with high chlorine resistance and long-term stability for efficient dye removal. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Norouzi MR, Ghasemi-Mobarakeh L, Itel F, Schoeller J, Fashandi H, Borzi A, Neels A, Fortunato G, Rossi RM. Emulsion electrospinning of sodium alginate/poly(ε-caprolactone) core/shell nanofibers for biomedical applications. NANOSCALE ADVANCES 2022; 4:2929-2941. [PMID: 36131996 PMCID: PMC9416811 DOI: 10.1039/d2na00201a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 06/01/2023]
Abstract
Electrospun nanofibers have shown great potential as drug vehicles and tissue engineering scaffolds. However, the successful encapsulation of multiple hydrophilic/hydrophobic therapeutic compounds is still challenging. Herein, sodium alginate/poly(ε-caprolactone) core/shell nanofibers were fabricated via water-in-oil emulsion electrospinning. The sodium alginate concentration, water-to-oil ratio, and surfactant concentration were optimized for the maximum stability of the emulsion. The results demonstrated that an increasing water-to-oil ratio results in more deviation from Newtonian fluid and leads to a broader distribution of the fibers' diameters. Moreover, increasing poly(ε-caprolactone) concentration increases loss and storage moduli and increases the diameter of the resulting fibers. The nanofibers' characteristics were investigated by scanning electron microscopy, transmission electron microscopy, confocal laser scanning microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and water contact angle measurements. It was observed that using an emulsion composition of 10% (w/v) PCL and a water-to-oil ratio of 0.1 results in smooth, cylindrical, and uniform core/shell nanofibers with PCL in the shell and ALG in the core. The in vitro cell culture study demonstrated the favorable biocompatibility of nanofibers. Overall, this study provides a promising and trustworthy material for biomedical applications.
Collapse
Affiliation(s)
- Mohammad-Reza Norouzi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland
- Department of Textile Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland
| | - Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland
- ETH Zürich, Department of Health Science and Technology 8092 Zürich Switzerland
| | - Hossein Fashandi
- Department of Textile Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Aurelio Borzi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics CH-8600 Dübendorf Switzerland
| | - Antonia Neels
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics CH-8600 Dübendorf Switzerland
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland
- ETH Zürich, Department of Health Science and Technology 8092 Zürich Switzerland
| |
Collapse
|
30
|
Zeng Y, Wang Y, Tang J, Zhang H, Dai J, Li S, Yan J, Qin W, Liu Y. Preparation of sodium alginate/konjac glucomannan active films containing lycopene microcapsules and the effects of these films on sweet cherry preservation. Int J Biol Macromol 2022; 215:67-78. [PMID: 35716791 DOI: 10.1016/j.ijbiomac.2022.06.085] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 11/05/2022]
Abstract
In this study, lycopene microcapsules (LMs) were prepared using chitosan (CS) and carboxymethyl CS (CMCS) as the wall materials. Sodium alginate (SA) and konjac glucomannan (KGM) were used as substrates to fabricate LM/SA/KGM composite films. Results showed that when 2.0 % CMCS was employed, the resulting LMs had the maximum embedding rate of 83.17 %, smallest particle sizes, and stable zeta potentials. The LMs still had a high retention rate after 10 days of storage at 4 and 25 °C. When 2.0 % LMs were used, the corresponding composite film exhibited the best antibacterial properties, oxidation resistance, a high transparency (82.3 %), and a strong water vapor barrier (2.39 × 10-10 g/m·s·Pa). Finally, the effects of the as-prepared composite films on the preservation of sweet cherries stored at 0 °C for 15 days were investigated. The results indicated that the LM/SA/KGM composite film effectively prolonged the shelf lives of sweet cherries and efficiently delayed the decline in the decay rate, pH, contents of soluble solids, and other indicators. The application of LM/SA/KGM composite films in fruit and vegetable preservation has development prospects and provides a reference for expanding the application range of lycopene and enhancing fruit and vegetable preservation.
Collapse
Affiliation(s)
- Yuanbo Zeng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yue Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jinhui Tang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Haitian Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jing Yan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
31
|
Chen YB, Zhang YB, Wang YL, Kaur P, Yang BG, Zhu Y, Ye L, Cui YL. A novel inhalable quercetin-alginate nanogel as a promising therapy for acute lung injury. J Nanobiotechnology 2022; 20:272. [PMID: 35690763 PMCID: PMC9187928 DOI: 10.1186/s12951-022-01452-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023] Open
Abstract
Background Acute lung injury (ALI), a severe health-threatening disease, has a risk of causing chronic pulmonary fibrosis. Informative and powerful evidence suggests that inflammation and oxidative stress play a central role in the pathogenesis of ALI. Quercetin is well recognized for its excellent antioxidant and anti-inflammatory properties, which showed great potential for ALI treatment. However, the application of quercetin is often hindered by its low solubility and bioavailability. Therefore, to overcome these challenges, an inhalable quercetin-alginate nanogel (QU-Nanogel) was fabricated, and by this special “material-drug” structure, the solubility and bioavailability of quercetin were significantly enhanced, which could further increase the activity of quercetin and provide a promising therapy for ALI. Results QU-Nanogel is a novel alginate and quercetin based “material-drug” structural inhalable nanogel, in which quercetin was stabilized by hydrogen bonding to obtain a “co-construct” water-soluble nanogel system, showing antioxidant and anti-inflammatory properties. QU-Nanogel has an even distribution in size of less than 100 nm and good biocompatibility, which shows a stronger protective and antioxidant effect in vitro. Tissue distribution results provided evidence that the QU-Nanogel by ultrasonic aerosol inhalation is a feasible approach to targeted pulmonary drug delivery. Moreover, QU-Nanogel was remarkably reversed ALI rats by relieving oxidative stress damage and acting the down-regulation effects of mRNA and protein expression of inflammation cytokines via ultrasonic aerosol inhalation administration. Conclusions In the ALI rat model, this novel nanogel showed an excellent therapeutic effect by ultrasonic aerosol inhalation administration by protecting and reducing pulmonary inflammation, thereby preventing subsequent pulmonary fibrosis. This work demonstrates that this inhalable QU-Nanogel may function as a promising drug delivery strategy in treating ALI. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01452-3. Quercetin (QU)-Nanogel shows a significant therapeutic effect on acute lung injury. Quercetin as an active substance, was also involved in the nanogel construction. The novel nanogel increase the bioavailability of quercetin. Inhalation of QU-Nanogel allows the drug to reach the lungs directly.
Collapse
Affiliation(s)
- Yi-Bing Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West District of Tuanbo New Town, Jinghai District, Tianjin, 301617, China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 300381, Tianjin, China
| | - Ya-Bin Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 250022, Jinan, China
| | - Yu-Le Wang
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, TEDA, 300457, Tianjin, China.,Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Prabhleen Kaur
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Bo-Guang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West District of Tuanbo New Town, Jinghai District, Tianjin, 301617, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, TEDA, 300457, Tianjin, China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West District of Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
32
|
Membrane distillation treatment of landfill leachate: Characteristics and mechanism of membrane fouling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Effects of anthocyanin-rich Kadsura coccinea extract on the physical, antioxidant, and pH-sensitive properties of biodegradable film. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09727-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Tran TT, McCullum R, Vuong Q. Incorporation of fruit by-products on edible seaweed based films: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2042556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Thuy T.B. Tran
- College of Engineering, Science and Environment, School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, Australia
- Faculty of Food Technology, Nha Trang University, Khanh Hoa, Vietnam
| | - Rebecca McCullum
- College of Engineering, Science and Environment, School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, Australia
| | - Quan Vuong
- College of Engineering, Science and Environment, School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, Australia
| |
Collapse
|
35
|
Characterization of Sodium Alginate-Locust Bean Gum Films Reinforced with Daphnetin Emulsions for the Development of Active Packaging. Polymers (Basel) 2022; 14:polym14040731. [PMID: 35215643 PMCID: PMC8876320 DOI: 10.3390/polym14040731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we characterized an active film made of sodium alginate (SA)—locust bean gum (LBG) containing daphnetin-based film. Physicochemical characteristics, as well as antioxidant and antibacterial properties, were investigated. The results showed that the addition of a low concentration of daphnetin increased the flexibility of SA–LBG cling film, leading to an improvement in elongation at break and tensile strength. As the daphnetin content increased, solubility, brightness and transparency of the cling film decreased, and the moisture permeability increased. The antioxidant capacity and antibacterial activity of films with daphnetin were improved compared to those of the basal film. In addition, the cling film formed by adsorption had higher bacterial (Shewanella putrefaciens and Pseudomonas fluorescens) inhibition and antioxidant activity rates than direct film formation. The results indicate that the combination of daphnetin in SA–LBG film provides an active film with antioxidant and antibacterial properties, with potential for the development of food-grade packaging material.
Collapse
|
36
|
Li P, Zhang S, Xu C, Zhang L, Liu Q, Chu S, Li S, Mao G, Wang H. Coating Fe 3O 4 quantum dots with sodium alginate showing enhanced catalysis for capillary array-based rapid analysis of H 2O 2 in milk. Food Chem 2022; 380:132188. [PMID: 35077990 DOI: 10.1016/j.foodchem.2022.132188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/23/2021] [Accepted: 01/16/2022] [Indexed: 12/28/2022]
Abstract
A simple and high-throughput colorimetric analysis array has been constructed for quantifying H2O2 in milk using Fe3O4 quantum dots (QDs), which were coated with sodium alginate (SA) and chromogenic substrate onto the arrayed capillary tubes. It was discovered that the Fe3O4 QDs could present larger peroxidase-like catalysis than Fe3O4 nanoparticles (NPs). Particularly, dramatically enhanced catalysis activity could be achieved for Fe3O4 QDs if coated with SA films. Moreover, the use of SA could protect Fe3O4 QDs to expect the improved environmental stability. A capillary arrays-based high-throughput colorimetric platform was thereby developed for the detection of H2O2 in milk, with levels linearly ranging from 10 to 400 μM. Importantly, the developed colorimetric platform with the capillarity power for automatic fetching of multiple samples may promise the practical applications for extensive monitoring of multiple H2O2 samples for food safety.
Collapse
Affiliation(s)
- Pan Li
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Sheng Zhang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Chenchen Xu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Lixiang Zhang
- School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Qingqing Liu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Su Chu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Shuai Li
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China.
| |
Collapse
|
37
|
Denktaş C, Yilmaz Baysoy D, Bozdoğan A, Bozkurt HS, Bozkurt K, Özdemir O, Yilmaz M. Development and characterization of sodium alginate/
bifidobacterium probiotic
biohybrid material used in tissue engineering. J Appl Polym Sci 2021. [DOI: 10.1002/app.52086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cenk Denktaş
- Faculty of Arts and Sciences, Physics Department Yildiz Technical University Istanbul Turkey
| | | | - Altan Bozdoğan
- Faculty of Arts and Sciences, Physics Department Yildiz Technical University Istanbul Turkey
| | - Hüseyin Sancar Bozkurt
- Maltepe University Medicine Faculty Internal Medicine, Clinic of Gastroenterology Istanbul Turkey
| | - Kutsal Bozkurt
- Faculty of Arts and Sciences, Physics Department Yildiz Technical University Istanbul Turkey
| | - Orhan Özdemir
- Faculty of Arts and Sciences, Physics Department Yildiz Technical University Istanbul Turkey
| | - Mehmet Yilmaz
- Faculty of Arts and Sciences, Physics Department Yildiz Technical University Istanbul Turkey
| |
Collapse
|
38
|
Zhang J, Xie M, Yang D, Tong X, Qu D, Feng L, Zhang L. The design of multi-stage open-loop hollow fiber membrane contactor and its application in ammonia capture from hydrolyzed human urine. WATER RESEARCH 2021; 207:117811. [PMID: 34763277 DOI: 10.1016/j.watres.2021.117811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Hollow fiber membrane contactor (HFMC) is a promising technology for removing or recovering wastewaters' volatile components. Developing a rational design method is very important for guiding its further application. In this study, we proposed a method to design the multi-stage open-loop hollow fiber membrane contactor (HFMC) employing shell-side influent. In addition, a three-stage HFMC was designed to capture ammonia from real hydrolyzed human urine. A continuous 1344 h performance was conducted. The results showed that the experimental effluent total ammonium nitrogen (TAN) concentration and ammonia mass transfer coefficient matched the predicted results well, which indicated that the design method was feasible and accurate. The three-stage HFMC showed excellent ammonia capture capacity with a TAN recovery efficiency of 93.29%, and the final effluent TAN concentration was 30.98±14.70 mg/L which met our design requirement (lower than 50 mg/L). More than 98.92% of the inorganic ions and 96.85% of the organic matter were retained in the effluent. The stripping solution after ammonia capture was the high-purity ammonium sulfate solution with low concentration of small molecular weight hydrophilic organic substances. The inorganic and organic membrane fouling was mild and randomly distributed. The inorganic membrane fouling was attributed to the deposition of calcium-, magnesium-, phosphate-related inorganic compounds, while the organic membrane fouling was mainly protein and carbohydrate. After the ammonia capture process, the surface hydrophobicity and pore properties of the membranes had no significant changes. These results demonstrated that the multi-stage open-loop HFMC could be a potential alternative for ammonia recovery from the high concentration of ammonium nitrogen wastewater.
Collapse
Affiliation(s)
- Junhui Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Mengfei Xie
- Jinan Environmental Research Academy, 25th Floor, Xinsheng Building, 1299 Xinluo Street, Lixia District, Jinan, Shandong, 250014, China
| | - Dandan Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Xin Tong
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30308, United States
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
39
|
Tran TTB, Vu QL, Pristijono P, Kirkman T, Nguyen MH, Vuong QV. Optimizing conditions for the development of a composite film from seaweed hydrocolloids and pectin derived from a fruit waste, gac pulp. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thuy Thi Bich Tran
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
- Faculty of Food Technology Nha Trang University Nha Trang Vietnam
| | - Quyen Le Vu
- Faculty of Food Technology Nha Trang University Nha Trang Vietnam
| | - Penta Pristijono
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
| | - Tim Kirkman
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
| | - Minh Huu Nguyen
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
- School of Science and Health Western Sydney University Penrith New South Wales Australia
| | - Quan Van Vuong
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
| |
Collapse
|
40
|
Charfi A, Kim S, Yoon Y, Cho J. Optimal cleaning strategy to alleviate fouling in membrane distillation process to treat anaerobic digestate. CHEMOSPHERE 2021; 279:130524. [PMID: 34134401 DOI: 10.1016/j.chemosphere.2021.130524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
This paper deals with the membrane fouling issue in the Direct Contact Membrane Distillation (DCMD) process treating a wasted sludge from an anaerobic digestion process. The main objective is to define an optimal cleaning strategy to alleviate fouling. Using a lab scale DCMD process, a cleaning strategy based on DI water flushing followed by 0.2% sodium hypochlorite (NaOCl) and 3% citric acid (C6H8O7) cleaning was tested with different cleaning frequencies and various chemical cleaning durations at different cross-flow velocities. To avoid severe fouling, the optimal cross-flow velocity was found at 0.18 m/s (0.8 L/min). Moreover, even if higher cross-flow velocity allows higher flux, it could increase fouling risks. For a better membrane regeneration and process productivity, a cleaning of 60 min duration for each chemical cleaning applied every two days was defined as the optimal cleaning strategy. Such conditions allowed the preservation of 75.5% of the initial flux after 96 h of operation. Furthermore, the effect on membrane flux regeneration of DI water flushing, sodium hypochlorite, and citric acid cleaning registered were, 31.52%, 11.95% and 20.65%, respectively. This study revealed that in the MD process treating real wastewater both external and internal fouling are responsible of permeate flux decline due to the accumulation of organic and inorganic matter on the membrane surface as well as within the pores.
Collapse
Affiliation(s)
- Amine Charfi
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Jinwoo Cho
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
41
|
Abstract
Nanocrystalline nickel manganite (NiMn2O4) powder with a pure cubic spinel phase structure was synthesized via sol-gel combustion and characterized with XRD, FT-IR, XPS and SEM. The powder was mixed with sodium alginate gel to form a nano-biocomposite gel, dried at room temperature to form a thick film and characterized with FT-IR and SEM. DC resistance and AC impedance of sensor test structures obtained by drop casting the nano-biocomposite gel onto test interdigitated PdAg electrodes on an alumina substrate were measured in the temperature range of 20–50 °C at a constant relative humidity (RH) of 50% and at room temperature (25 °C) in the RH range of 40–90%. The material constant obtained from the measured decrease in resistance with temperature was determined to be 4523 K, while the temperature sensitivity at room temperature (25 °C) was −5.09%/K. Analysis of the complex impedance plots showed a dominant influence of grains. The decrease in complex impedance with increase in temperature confirmed the negative temperature coefficient effect. The grain resistance and grain relaxation frequency were determined using an equivalent circuit. The activation energy for conduction was determined as 0.45 eV from the temperature dependence of the grain resistance according to the small polaron hopping model, while the activation energy for relaxation was 0.43 eV determined from the Arrhenius dependence of the grain relaxation frequency on temperature.
Collapse
|
42
|
Voicu (Mihai) AI, Gȃrea SA, Vasile E, Ghebaur A, Iovu H. Hybrid Hosts Based on Sodium Alginate and Porous Clay Heterostructures for Drug Encapsulation. Polymers (Basel) 2021; 13:polym13162803. [PMID: 34451338 PMCID: PMC8400238 DOI: 10.3390/polym13162803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, some hybrid materials based on sodium alginate (NaAlg) and porous clay heterostructures (PCHs) were investigated as new hosts for 5-Fluorouracil (5-FU) encapsulation. The hybrid hosts were prepared by ionotropic gelation technique using different concentrations of PCHs (1, 3, and 10 wt%) in order to identify the optimal parameters for encapsulation and drug release. The obtained hybrid materials were characterized using FTIR Spectrometry, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and UV-Vis spectrometry to investigate the interactions of the raw materials involved in the preparation of hybrid hosts, the influence of PCHs concentrations on drug encapsulation efficiency and drug release profile. All the results show that the synthesized hybrid materials were able to load a high amount of 5-FU, the encapsulation efficiency and the release profile being influenced by the concentrations of PCHs.
Collapse
Affiliation(s)
- Anda Ionelia Voicu (Mihai)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.I.V.); (A.G.); (H.I.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Sorina Alexandra Gȃrea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.I.V.); (A.G.); (H.I.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Correspondence:
| | - Eugeniu Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Polizu, 011061 Bucharest, Romania;
| | - Adi Ghebaur
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.I.V.); (A.G.); (H.I.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Horia Iovu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.I.V.); (A.G.); (H.I.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
43
|
Yu LP, Xing CY, Fan ST, Liu F, Li BJ, Zhang S. β-Cyclodextrin-Modified Polyacrylonitrile Nanofibrous Scaffolds with Breathability, Moisture-Wicking, and Antistatic Performance. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lu-Ping Yu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Cheng-Yuan Xing
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Shu-Ting Fan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Fan Liu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
44
|
Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers. Int J Biol Macromol 2021; 183:423-434. [PMID: 33932415 DOI: 10.1016/j.ijbiomac.2021.04.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
In this study, Lactobacillus reuteri B2 was isolated from the feces of C57BL/6 mice and assessed on probiotic activity. L. reuteri B2 was identified by 16S rDNA sequencing, which the cell viability in acidic conditions at pH 2.0 was 64% after 2 h, and in the presents of 0.30% of the bile salts, after 6 h, was 37%. Antimicrobial assay with L. reuteri B2 showed maximum diameters against Klebsiela oxytoca J7 (12.5 ± 0.71 mm). We further hypothesized if L. reuteri B2 strain in the free form can survive all conditions in the gastrointestinal tract (GIT) then the utilization of the appropriate biomaterials would ameliorate its stability and viability in GIT. L. reuteri B2 was microencapsulated into sodium alginate-(Na-alg) and different content of Na-alg and sodium maleate (SM) beads. Characterization materials enveloped their thermal characteristics (TGA/DTA analysis) and structure using: scanning electron microscopy (SEM), FTIR, and particle size distribution. The high survival rate of L. reuteri B2 at low pH from 2.0 to 4.0 and in the presence of the bile salts, at concentrations up to 0.30%, was obtained. L. reuteri B2 showed strong antimicrobial activity and the best protection microencapsulated with Na-alg + SM in simulated gastric juices (SGJ).
Collapse
|
45
|
Jeoh T, Wong DE, Strobel SA, Hudnall K, Pereira NR, Williams KA, Arbaugh BM, Cunniffe JC, Scher HB. How alginate properties influence in situ internal gelation in crosslinked alginate microcapsules (CLAMs) formed by spray drying. PLoS One 2021; 16:e0247171. [PMID: 33630897 PMCID: PMC7906420 DOI: 10.1371/journal.pone.0247171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
Alginates gel rapidly under ambient conditions and have widely documented potential to form protective matrices for sensitive bioactive cargo. Most commonly, alginate gelation occurs via calcium mediated electrostatic crosslinks between the linear polyuronic acid polymers. A recent breakthrough to form crosslinked alginate microcapsules (CLAMs) by in situ gelation during spray drying ("CLAMs process") has demonstrated applications in protection and controlled delivery of bioactives in food, cosmetics, and agriculture. The extent of crosslinking of alginates in CLAMs impacts the effectiveness of its barrier properties. For example, higher crosslinking extents can improve oxidative stability and limit diffusion of the encapsulated cargo. Crosslinking in CLAMs can be controlled by varying the calcium to alginate ratio; however, the choice of alginates used in the process also influences the ultimate extent of crosslinking. To understand how to select alginates to target crosslinking in CLAMs, we examined the roles of alginate molecular properties. A surprise finding was the formation of alginic acid gelling in the CLAMs that is a consequence of simultaneous and rapid pH reduction and moisture removal that occurs during spray drying. Thus, spray dried CLAMs gelation is due to calcium crosslinking and alginic acid formation, and unlike external gelation methods, is insensitive to the molecular composition of the alginates. The 'extent of gelation' of spray dried CLAMs is influenced by the molecular weights of the alginates at saturating calcium concentrations. Alginate viscosity correlates with molecular weight; thus, viscosity is a convenient criterion for selecting commercial alginates to target gelation extent in CLAMs.
Collapse
Affiliation(s)
- Tina Jeoh
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| | - Dana E. Wong
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| | - Scott A. Strobel
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| | - Kevin Hudnall
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| | - Nadia R. Pereira
- Laboratory of Food Technology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | | | - Benjamin M. Arbaugh
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| | - Julia C. Cunniffe
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| | - Herbert B. Scher
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| |
Collapse
|
46
|
El-Naggar M, El-Sherif E, Maree R, Mekhamer H. Batch and fixed bed column investigations of the sorptive removal of cesium ions from aqueous solutions using modified graphene-alginate nanocompositebeads. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2021. [DOI: 10.1080/16878507.2021.1888242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- M.R. El-Naggar
- Hot Labs and Waste Management Center, Atomic Energy Authority, Cairo Egypt
| | - E.A. El-Sherif
- Hot Labs and Waste Management Center, Atomic Energy Authority, Cairo Egypt
| | - R.M. Maree
- Hot Labs and Waste Management Center, Atomic Energy Authority, Cairo Egypt
| | - H.S. Mekhamer
- Hot Labs and Waste Management Center, Atomic Energy Authority, Cairo Egypt
| |
Collapse
|
47
|
Mobika J, Rajkumar M, Linto Sibi SP, Nithya Priya V. Investigation on hydrogen bonds and conformational changes in protein/polysaccharide/ceramic based tri-component system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118836. [PMID: 32858448 DOI: 10.1016/j.saa.2020.118836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/18/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The main attention of present work is to study the molecular level interactions in the interface of biocomposite to increase their applicability. A specific kind of molecular interaction namely, hydrogen bonds play a vital role in deciding composite property. In this study, we construct a tri-component system based on silk fibroin/sodium alginate/hydroxyapatite by varying protein and polysaccharide proportions using in-situ co-precipitation method. The Fourier Transfer Infrared (FTIR) prediction state that prepared composite exhibit inter-(OH⋯N, OH⋯O, OH⋯π) and intra-(OH⋯OH) molecular hydrogen bonds and their strength are varied in accordance with composition of composite. During composite preparation, conformational changes from the random coil to β-sheet structure through intermediate β-turns exist within the protein molecule that is confirmed by vibrational spectra. The crystallographic profile and morphology of HAP were greatly influenced by virtue of polymer matrix. Simulated body fluid (SBF) immersion study shows that biodegradation and swelling ratio are correlated with type of hydrogen bond and secondary structure of protein. Moreover, the in-vitro biomineralization, cytotoxicity and antibacterial activity of composite were analysed in detail.
Collapse
Affiliation(s)
- J Mobika
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamilnadu 641014, India
| | - M Rajkumar
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamilnadu 641014, India.
| | - S P Linto Sibi
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamilnadu 641014, India
| | - V Nithya Priya
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamilnadu 641014, India
| |
Collapse
|
48
|
Coating and Film-Forming Properties. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Li Y, Wen M, Wang Y, Tian G, Wang C, Zhao J. Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light‐Driven Catalytic CO
2
Reduction on Bi
2
O
3−
x. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yingxuan Li
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Miaomiao Wen
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Guang Tian
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Chuanyi Wang
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Jincai Zhao
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
50
|
Li Y, Wen M, Wang Y, Tian G, Wang C, Zhao J. Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light‐Driven Catalytic CO
2
Reduction on Bi
2
O
3−
x. Angew Chem Int Ed Engl 2020; 60:910-916. [DOI: 10.1002/anie.202010156] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Yingxuan Li
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Miaomiao Wen
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Guang Tian
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Chuanyi Wang
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Jincai Zhao
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|