1
|
Li Y, Li C, Pan F, Wang K, Weng S, Zhao M, Li Q, Wang D, Zhao L, Liu X, Hu Z. High hydrostatic pressure reduces inflammation induced by litchi thaumatin-like protein via altering active domain. Food Chem 2024; 461:140858. [PMID: 39173258 DOI: 10.1016/j.foodchem.2024.140858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Thaumatin-like proteins (TLP), existing in various fruits, have allergenic and pro-inflammatory activities. The current research attempts to reduce the pro-inflammatory activity of litchi TLP (LcTLP) through high hydrostatic pressure (HHP). This study demonstrated that HHP (250-500 MPa, 5-10 min) was a potential technique to reduce the pro-inflammatory activity of LcTLP, which was attributed to the irreversible destruction of the active domain, ie., V-cleft. SDS-PAGE showed no change in the protein profile. Continuous HHP treatment promoted LcTLP unfolding and then reassembling (400 MPa was the transition pressure), and the content of β-sheets decreased from 35.4% to 31.1%. HHP treatment could mitigate inflammatory responses of LcTLP, as confirmed by ELISA and western blot. Molecular dynamics simulations showed significant changes in the residue network under HHP, thereby affecting the V-cleft. These findings provide a theoretical explanation and structural insights into the HHP-induced reduction of pro-inflammatory activity of LcTLP.
Collapse
Affiliation(s)
- Yun Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuyuan Li
- Guangzhou Pharmaceutical Holding Limited, Guangzhou 510130, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Shaoquan Weng
- Guangzhou Wanglaoji Great Health Industry Co., Ltd., Guangzhou 510623, China
| | - Min Zhao
- Guangzhou Wanglaoji Great Health Industry Co., Ltd., Guangzhou 510623, China
| | - Qian Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Dongwei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Liu H, Yang K, Gao Y, Lin J, Zhao G, Lv C. Comparison of recombinant protein Z with natural protein Z derived from malt: From structure to functional properties. Food Chem 2024; 460:140482. [PMID: 39032296 DOI: 10.1016/j.foodchem.2024.140482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Protein Z (PZ) is a prominent albumin found in the endosperm of barley seeds with a molecular weight of approximately 40 kDa. Its multifaceted functional attributes, including trypsin- and thrombin-inhibiting bioactivities and superior foaming properties, have garnered significant attention in research. Considering the post-translational modifications of PZ natural in barley malt, we tried to express recombinant protein Z (rPZ) in E. coli. The present study aims to undertake a comparative analysis between natural PZ and rPZ in order to elucidate their respective characteristics. After spectral analysis, there are significant differences in their secondary and tertiary structures. In addition, rPZ showed superior foamability and foam stability. As for the serpin-like activity, the inhibition rate of rPZ is much higher than that of PZ. In contrast with the inhibition activity, the digestability of rPZ is much lower than that of PZ. As for the cargo carrier properties, rPZ showed an excellent ability to stabilize astaxanthin at 37 °C. These results suggest that rPZ is more suitable as protein carrier, due to the high foamability, serpin-like activity and low digestive stability, which not only give a brief view of recombinant protein, but also give a direction for PZ in cargo delivery.
Collapse
Affiliation(s)
- Hanhan Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Kailin Yang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Yang Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Junyu Lin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China..
| |
Collapse
|
3
|
Han Y, Yang X, Fu S, Wang X, Zhang H, Wei X, Li B, Yang X. Self-assembled Abietic acid encapsulated nanoparticles to improve the stability of Proanthocyanin B2. Food Chem 2024; 458:140287. [PMID: 38991240 DOI: 10.1016/j.foodchem.2024.140287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Procyanidin B2 (Pac B2) has attracted much attention due to its strong antioxidant activity, but poor in vivo stability limits its wide application in food and medicine. In this paper, composite nanoparticles (NPs) were constructed using abietic acid (AA) as a carrier, which significantly enhanced Pac B2 stability. A spherical morphology and average diameter of 396.05 nm were observed in AA-Pac B2 NPs synthesized by solvent co-precipitation. Pac B2 encapsulation was 11.28 %, and thermal stability is improved. Infrared, Ultraviolet spectrum, and MD (molecular dynamics) spectroscopy revealed hydrogen bonding and hydrophobic interaction between AA and Pac B2. For up to 2 h at 37 °C, Pac B2 can be sustainably released in simulated gastric and intestinal fluids. In vitro, AA-Pac B2 NPs at the same concentration exhibited higher bioavailability and uptake efficiency than free Pac B2. The data demonstrate the potential of AA NPs for improving polyphenol thermal stability and bioavailability.
Collapse
Affiliation(s)
- Ying Han
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xuening Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoting Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaojie Wei
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Bin Li
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Shandong Benefit Mankind Glycobiology Co., Ltd, China.
| |
Collapse
|
4
|
Li X, Jiang K, Jin Y, Liu J. Comparative Study on Protein Composition and Foam Characteristics of Barley and Wheat Beer. Foods 2024; 13:3400. [PMID: 39517183 PMCID: PMC11545182 DOI: 10.3390/foods13213400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Protein is an important component of beer, and its type, content and molecular weight directly affect the quality of beer, especially the foam quality of beer. Different brands of wheat beer and barley beer available in the market were used for this analysis. The differences in protein composition and foam performance between multi-sample barley and wheat beer were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-pressure size exclusion chromatography. Protein significantly influences beer quality, particularly its foam properties. Wheat beer (WB) has 9.52-84.10% more total protein content than barley beer (BB). The primary proteins in both beers are 6.9-20.1 kDa, with WB having 1.04 g/L more of this protein, 60.11% higher than that of BB. It is one of the main different proteins between WB and BB. WB also contains 66.67% more 20.1-32.4 kDa protein compared to BB. This is one of the main differences between WB and BB proteins. Both 6.9-20.1 kDa and 20.1-32.4 kDa proteins enhance beer viscosity and foam properties. Additionally, WB's > 32.4 kDa protein content is 246.67% higher than BB's, significantly improving beer hydrophobicity and foam performance. These protein differences are key factors in the superior foam quality of WB.
Collapse
Affiliation(s)
- Xiu Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Kai Jiang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yuhong Jin
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Junhan Liu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liége, Passage des déportés 2, B-5030 Gembloux, Belgium
| |
Collapse
|
5
|
Wang T, He J, Xiao T, He J, Fu X, Liu Q. Insight into the mechanism of alkali-thermal pretreatment of food-waste solid residue through fluorescence spectroscopy coupled with parallel factor analysis. CHEMOSPHERE 2024; 366:143414. [PMID: 39341395 DOI: 10.1016/j.chemosphere.2024.143414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Food-waste solid residue is the remaining solid after food waste treatment, with high yield, high solid content, high protein and fiber content. Effective pretreatment is necessary to improve the efficiency of hydrolysis and acidification for anaerobic digestion of food-waste solid residue. In this study, fluorescence spectroscopy coupled with parallel factor analysis were used to insight into the mechanism of food-waste solid residue during three pretreatments (alkali, thermal and alkali-thermal). Pretreatments increased the solubility of lignocellulosic substrate and destroyed structure of starch, while lignocellulosic analogs were effectively cracked, changing the composition and improving the degradability. Soluble chemical oxygen demand, soluble protein and soluble polysaccharide concentrations were increased by 144.60%, 350.57% and 138.72% after pretreatment under the condition of 120 °C + 2% CaO, respectively. Three-dimensional fluorescence spectra showed the region of maximum fluorescence intensity under alkali-thermal pretreatments, indicating chemical bonds (such as OC-C) were easier broken and the solubility of organic substances were increased. Three main fluorescence components were obtained by parallel factor analysis, which were humic acid-like, lignocellulose-like and protein-like, respectively, while the lignocellulose-like had the maximum Fmax value. The fluorescence intensity of samples under alkali-thermal pretreatment varied in the range from 59.48 × 105 to 13.18 × 106, which was an increase of 174.27%-507.74% over the control (21.68 × 105), indicating that alkali-thermal pretreatment observably accelerated the breaking of chemical bonds, and thus promoted the dissolution of organic matter. This study deeply revealed the mechanism of alkali-thermal pretreatment of food-waste solid residue, which is of great significance for efficient resource utilization of food waste and food-waste solid residue.
Collapse
Affiliation(s)
- Tianru Wang
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jing He
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Tisen Xiao
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Junwei He
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiangjing Fu
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qing Liu
- Mianyang Zhongke Miantou Environmental Service Co., Ltd., Mianyang, 621010, China
| |
Collapse
|
6
|
Yu J, Xie S, Yang D. The changes induced by hydrodynamic cavitation treatment in wheat gliadin and celiac-toxic peptides. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1976-1985. [PMID: 39285999 PMCID: PMC11401822 DOI: 10.1007/s13197-024-05973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Hydrodynamic cavitation (HC) is thought weaken the allergenicity of beer gluten proteins. However, the mechanism of action has not been thoroughly studied. In this study, an HC device was used to treat wheat gliadin and two specific celiac-toxic peptides, P1 and P2. FT-IR, MFS, HPLC, and CD were used to monitor the structural characteristics of gliadin and the two peptides. HC reduced the abundance of the coeliac toxic peptides P1 and P2 in solution and the contents of secondary structure β-turns and PPII, which are related to reduced allergen immunoreactivity. This meant that both the primary and secondary structures of P1 and P2 were affected by HC, leading to fewer allergic reactions. This study was focused on the impact of HC on the secondary structures of allergens produced from gluten raw materials, and it has positive implications for reducing product allergenicity. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05973-7.
Collapse
Affiliation(s)
- Junyu Yu
- Department of Bioengineering, College of Life Sciences, Hainan University, Renmin Avenue NO: 160, Haikou, 570228 China
| | - Shida Xie
- Department of Bioengineering, College of Life Sciences, Hainan University, Renmin Avenue NO: 160, Haikou, 570228 China
| | - Dongsheng Yang
- Department of Bioengineering, College of Life Sciences, Hainan University, Renmin Avenue NO: 160, Haikou, 570228 China
| |
Collapse
|
7
|
Sun QF, Xia F, Li MS, Zhang HL, Liao YN, Liu QM, Liu M, Chen GX, Luo LZ, Liu GM. Effects of Glycosylation Combined with Phosphate Treatment on the Allergenicity and Structure of Tropomyosin in Litopenaeus vannamei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18181-18191. [PMID: 39087403 DOI: 10.1021/acs.jafc.4c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Tropomyosin (TM) is the main allergen in shrimp (Litopenaeus vannamei). In this study, the effects of allergenicity and structure of TM by glycosylation (GOS-TM), phosphate treatment (SP-TM), and glycosylation combined with phosphate treatment (GOS-SP-TM) were investigated. Compared to GOS-TM and SP-TM, the IgG/IgE binding capacity of GOS-SP-TM was significantly decreased with 63.9 ± 2.0 and 49.7 ± 2.7%, respectively. Meanwhile, the α-helix content reduced, surface hydrophobicity increased, and 10 specific amino acids (K30, K38, S39, K48, K66, K74, K128, K161, S210, and K251) were modified by glycosylation on six IgE linear epitopes of GOS-SP-TM. In the BALB/c mice allergy model, GOS-SP-TM could significantly reduce the levels of specific IgE, IgG1, and CD4+IL-4+, while the levels of IgG2a, CD4+CD25+Foxp3+, and CD4+IFN-γ+ were increased, which equilibrated Th1 and Th2 cells, thus alleviating allergic symptoms. These results indicated that glycosylation combined with phosphate treatment can provide a new insight into developing hypoallergenic shrimp food.
Collapse
Affiliation(s)
- Qi-Fei Sun
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Xia
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Meng-Si Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Hui-Lin Zhang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yu-Ni Liao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Meng Liu
- Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | | | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
- Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| |
Collapse
|
8
|
Wang Y, Ji M, Xing M, Bao A, Wang D, Li L, Song G, Yuan T, Gong J. Effects of ultrasound and thermal treatment on the interaction between hyaluronic acid and lactoferrin: Preparation, structures and functionalities. Int J Biol Macromol 2024; 272:132812. [PMID: 38825275 DOI: 10.1016/j.ijbiomac.2024.132812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Complexes of polysaccharides and proteins have superior physicochemical and functional properties compared to single proteins or polysaccharides. In this study, lactoferrin-hyaluronic acid (LF-HA) complexes were prepared by both ultrasonic and thermal treatment. Appropriate preparation conditions, including ultrasonic and thermal treatment conditions, have been established. The complexes formed by different methods were structurally characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis, fourier transform infrared spectroscopy, and circular dichroism spectroscopy. Ultrasound formed non-covalent binding, while thermal treatment generated covalent bonding, altering the structure of LF. The LF-HA complexes showed improved heat stability, foaming stability, emulsifying activity and antioxidant capacity, but deceased foaming ability. Iron binding ability could only be improved by HA through thermal treatment. Moreover, the in vitro digestibility of LF-HA complexes decreased to below 80 % compared to LF.
Collapse
Affiliation(s)
- Yushi Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Miao Ji
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Mengjiao Xing
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Anxiu Bao
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| |
Collapse
|
9
|
Han C, Zheng Y, Huang S, Xu L, Zhou C, Sun Y, Wu Z, Wang Z, Pan D, Cao J, Xia Q. Exploring the binding mechanisms of thermally and ultrasonically induced molten globule-like β-lactoglobulin with heptanal as revealed by multi-spectroscopic techniques and molecular simulation. Int J Biol Macromol 2024; 263:130300. [PMID: 38395276 DOI: 10.1016/j.ijbiomac.2024.130300] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
This work employed the model protein β-lactoglobulin (BLG) to investigate the contribution of microstructural changes to regulating the interaction patterns between protein and flavor compounds through employing computer simulation and multi-spectroscopic techniques. The formation of molten globule (MG) state-like protein during the conformational evolution of BLG, in response to ultrasonic (UC) and heat (HT) treatments, was revealed through multi-spectroscopic characterization. Differential MG structures were distinguished by variations in surface hydrophobicity and the microenvironment of tryptophan residues. Fluorescence quenching measurements indicated that the formation of MG enhanced the binding affinity of heptanal to protein. LC-MS/MS and NMR revealed the covalent bonding between heptanal and BLG formed by Michael addition and Schiff-base reactions, and MG-like BLG exhibited fewer chemical shift residues. Molecular docking and molecular dynamics simulation confirmed the synergistic involvement of hydrophobic interactions and hydrogen bonds in shaping BLG-heptanal complexes thus promoting the stability of BLG structures. These findings indicated that the production of BLG-heptanal complexes was driven synergistically by non-covalent and covalent bonds, and their interaction processes were influenced by processes-induced formation of MG potentially tuning the release and retention behaviors of flavor compounds.
Collapse
Affiliation(s)
- Chuanhu Han
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Siqiang Huang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Le Xu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Zhen Wu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Zhaoshan Wang
- Shandong Zhongke Food Co., LtD, Tai'an City 271229, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Han Y, Zhang H, Zhao H, Fu S, Li R, Wang Z, Wang Y, Lu W, Yang X. Nanoparticle encapsulation using self-assembly abietic acid to improve oral bioavailability of curcumin. Food Chem 2024; 436:137676. [PMID: 37832417 DOI: 10.1016/j.foodchem.2023.137676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
This research constructed composite nanoparticles (NPs) using abietic acid (AA) as a carrier for significantly enhancing the bioavailability of curcumin (CCM). CCM-loaded AA NPs were synthesized using a low-energy microemulsification method, and the obtained nanoparticles had a spherical morphology with an average diameter of 458.66 nm, a narrow size distribution and a negative surface charge of -19.13 mV. The encapsulation efficiency of CCM was 17.98 %, while its solubility was 20-fold that of free curcumin. FITR, UV, and MD revealed hydrogen bonds and hydrophobic forces between AA and CCM. Thein-vitrorelease profile showed sustainable release of CCM in simulated gastric and intestinal fluids up to 2 h at 37 °C. In cellular studies, CCM-loaded AA NPs with the same CCM concentration exhibited greater bioaccessibility and bioavailability than free CCM. These data suggested a possible utilization of AA NPs in improving water solubility, bioavailability and activity of lipophilic bioactive food factors.
Collapse
Affiliation(s)
- Ying Han
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Haitian Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China
| | - Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruiling Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Zhili Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Yangxin Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Weihong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China.
| |
Collapse
|
11
|
Xu C, Zhang X, Sun M, Liu H, Lv C. Interactions between humulinone derived from aged hops and protein Z enhance the foamability and foam stability. Food Chem 2024; 434:137449. [PMID: 37716140 DOI: 10.1016/j.foodchem.2023.137449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Foam is one of the important characteristics of beer, including foamability, foam stability and foam texture. Protein Z (PZ) is considered to be an important component of beer foam. In this study, the interaction between PZ and humulinone, a widespread compound in aged hops, and the effect on foam properties of PZ were investigated. The fluorescence spectra showed that the stoichiometric ratio of humulinone to PZ was 4.25 ± 0.48: 1, and the binding constant was (1.64 ± 0.17) × 105 M-1. MD and FTIR results showed that the main force of interaction between PZ and humulinone was hydrogen bond, and the possible sites were Asn-37, Ser-292, Lys-290 and Pro-395. Moreover, the addition of humulinone greatly reduced the surface tension of PZ solution, and changed the secondary structure of PZ, which is beneficial for the foam stability. Under the influence of humulinone, the foamability, foam stability and foam texture of PZ all increased.
Collapse
Affiliation(s)
- Chen Xu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xuanqi Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mingyang Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hanhan Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
12
|
Zhao J, Liu Y, Xu L, Sun L, Chen G, Wang H, Zhang Z, Lin H, Li Z. Influence of linoleic acid on the immunodetection of shrimp (Litopenaeus vannamei) tropomyosin and the mechanism investigation via multi-spectroscopic and molecular modeling techniques. Food Chem 2024; 434:137339. [PMID: 37699311 DOI: 10.1016/j.foodchem.2023.137339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/25/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
The effect of linoleic acid (LA) on the IgG/IgE recognition, in vitro digestibility and immunodetection of shrimp tropomyosin (TM) was investigated. Subsequently, the simultaneous binding of LA-TM was explored using multi-spectroscopic and molecular modeling techniques. Our findings reveled that the addition of LA significantly reduced TM's IgG/IgE immunoreactivity, digestibility, and immunodetection. Further analysis using multi-spectroscopic and molecular modeling techniques indicated that while TM's secondary structure remained largely unchanged, its 3-D structure showed significant alterations such as increased particle size and hydrophobic surface area, and a higher number of buried hydrophobic residues exposed due to the binding of LA to TM. These structural changes rendered it difficult for target antibodies and digestive enzymes to interact with related epitopes and cleavage sites buried inside the molecule. The results obtained in this study provide valuable insights into the molecular mechanism of poor immunodetection caused by food matrix interference.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Nanjing, Jiangsu Province, 210009, China
| | - Yuhai Liu
- Dawning International Information Industry Co., Ltd., No.169, Songling Road, Qingdao City, Shandong Province, 266101, PR China
| | - Lili Xu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, No.202 Gongye North Road, Jinan 250100, China
| | - Lirui Sun
- School of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Qingdao City, Shandong Province 266003, China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China.
| |
Collapse
|
13
|
Jiang Z, Xu C, Gan J, Sun M, Zhang X, Zhao G, Lv C. Chicoric acid inserted in protein Z cavity exhibits higher stability and better wound healing effect under oxidative stress. Int J Biol Macromol 2024; 258:128823. [PMID: 38114015 DOI: 10.1016/j.ijbiomac.2023.128823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Oxidative stress is one of the limiting factors that inhibit wound healing. Phytochemicals especially chicoric acid have the potential to act as an antioxidant and scavenge reactive oxygen species, thereby promoting wound healing. However, most of the phytochemicals were easy to be degraded during storage or using due to the oxidative status in wound site. Herein, we introduce a high stable protein Z that can encapsulate chicoric acid during foaming. TEM results showed that the size of protein Z-chicoric acid is in the range of nanoscale (named PZ-CA nanocomposite), and protein Z encapsulation can significantly improve the stability of chicoric acid under oxidative stress. Moreover, PZ-CA nanocomposite exhibited favorable antioxidant properties, biocompatibility, and the ability to promote cell migration in vitro. The role of PZ-CA nanocomposite in skin regeneration was explored by a mice model. Results in vivo suggest that the PZ-CA nanocomposite promotes wound healing with a faster rate as compared with a commercial spray solution, mostly through attenuating the oxidative stress, promoting cell proliferation and collagen deposition. This work not only provides a delivery vector for bioactive molecules, but also develops a kind of nanocomposite with the property of promoting wound healing.
Collapse
Affiliation(s)
- Zhenghui Jiang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chen Xu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai, Shandong Province, China
| | - Mingyang Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xuanqi Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
14
|
Yang B, Zhang Z, Liu L, Li Z, Lin H. Investigation of the allergenicity alterations of shrimp tropomyosin as glycated by glucose and maltotriose containing advanced glycation end products. Food Funct 2023; 14:10941-10954. [PMID: 38009324 DOI: 10.1039/d3fo04440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Tropomyosin (TM) is the major allergen in shrimp that is known to be the primary trigger for shrimp-induced food allergy. Our previous reports suggest that glycation could reduce the allergenicity of TM and the reduction of allergenicity is largely dependent on the sources of saccharides. This investigation aimed to investigate the glycation of TM by glucose and maltotriose as well as the effects of glycation on the allergenicity of TM. Compared to TM, the IgG-binding capacity and IgE-binding capacity of tropomyosin glycated by glucose (TM-G) was greatly reduced with a longer glycation time, the release of allergic mediators from RBL-2H3 mast cells was reduced in a time-dependent manner, and weaker allergic reactions were induced in BALB/c mice. Conversely, tropomyosin glycated by maltotriose (TM-MTS) exhibited a stronger allergenicity after 48 hours of glycation due to the generation of neoallergens that were derived from the advanced glycation end products (AGEs). In conclusion, glucose could be used to desensitize the shrimp TM-induced food allergy via glycation, which could significantly reduce the allergenicity and alleviate allergic symptoms. This work could provide a novel approach to reduce the allergenicity of shrimp tropomyosin and prevent the shrimp tropomyosin-induced food allergy.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Ziye Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Lichun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Zhenxing Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
15
|
Jiang L, Song J, Qi M, Suo W, Deng Y, Liu Y, Li L, Zhang D, Wang C, Li H. Modification mechanism of protein in rice adjuncts upon extrusion and its effects on nitrogen conversion during mashing. Food Chem 2023; 407:135150. [PMID: 36493491 DOI: 10.1016/j.foodchem.2022.135150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
The traditional production of wort with adjunct-introduced was achieved by double mashing procedure, which hindered the utilization of proteins in adjunct and led to a deficiency of nitrogen in wort. In this study, the modification mechanism of the extrusion pretreatment on the structure characterization of rice flour protein was investigated. The decoction mashing procedure was performed to enhance the nitrogen conversion of the extruded rice adjunct. Decreased solubility along with disrupted secondary and tertiary structures of rice protein were observed after extrusion. As a result, the total nitrogen, free amino nitrogen, and free amino acids content of wort with extruded rice adjunct-introduced were improved by 23.28 %, 34.67 %, and 7.33 %, respectively, which could be verified by the electrophoretic patterns of the wort protein. The application of extrusion as a pretreatment of adjuncts can promote the protein availability of adjuncts in the decoction mashing stage.
Collapse
Affiliation(s)
- Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Jialin Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Mingming Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Wenjing Suo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yuxin Deng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yao Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Luxia Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China.
| |
Collapse
|
16
|
Zhao Y, Zhang Z, Li Z, Li XM, Wang H, Lin H. Insight into the conformational and allergenicity alterations of shrimp tropomyosin induced by Sargassum fusiforme polyphenol. Food Res Int 2023; 165:112521. [PMID: 36869521 DOI: 10.1016/j.foodres.2023.112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Tropomyosin (TM) is the main allergen in shrimp food. Algae polyphenol reportedly could affect the structures and allergenicity of shrimp TM. In this study, the alterations of conformational structures and allergenicity of TM induced by Sargassum fusiforme polyphenol (SFP) were investigated. Compared to TM, the conjugation of SFP to TM induced conformational structure instability, the IgG-binding capacity and IgE-binding capacity of TM gradually decreased with more conjugation of SFP to TM, and the conjugation of SFP to TM could significantly reduce degranulation, histamine secretion and release of IL-4 and IL-13 from RBL-2H3 mast cells. Therefore, the conjugation of SFP to TM led to conformational instability, significantly decreased the IgG-binding capacity and IgE-binding capacity, weakened the allergic responses of TM-stimulated mast cell, and performed in vivo anti-allergic properties in BALB/c mouse model. Therefore, SFP could serve as candidate natural anti-allergic substances to reduce shrimp TM-induced food allergy.
Collapse
Affiliation(s)
- Yiming Zhao
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Hao Wang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
17
|
Soybean protein isolate treated with transglutaminase (TGase) enhances the heat tolerance of selected lactic acid bacteria strains to spray drying. Food Chem 2023; 404:134676. [DOI: 10.1016/j.foodchem.2022.134676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/17/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022]
|
18
|
Zheng J, Cheng Y, Bao M, Li Z, Lü X, Shan Y. Ultrasound improves the thermal stability and binding capacity of ovomucin by promoting the dissociation of insoluble ovomucin aggregates. Int J Biol Macromol 2023; 228:478-486. [PMID: 36577472 DOI: 10.1016/j.ijbiomac.2022.12.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
Ovomucin (OVM) is a natural glycoprotein with various biological activities but poor solubility. This study aimed to enhance the solubility of OVM by using an ultrasonic-assisted method. The effect of ultrasound (US) on the structure, thermal stability and biological functions of OVM aggregates was evaluated. It was found that insoluble OVM aggregates were dissociated and the solubility increased significantly to 90.0 % after US under 400 W for 45 min. US also improved the onset temperature (To) and denaturation temperature (Td) of OVM. More importantly, the cholesterol binding capacity of both OVM and its digestion products were significantly improved after US (p < 0.05). The gastrointestinal digestion products of US-OVM also showed higher α-amylase and α-glucosidase inhibition than native OVM aggregates. US-induced dissociation of OVM aggregates and the conversion of β-sheet and β-turn to random coil, resulting in the exposure of hydrophobic binding sites may be an important reason for the enhanced stability and adsorption capacity. These findings suggested that US was an effective method for preparing soluble OVM and improved its adsorption capacity, which can further facilitate the application of OVM in the food industry.
Collapse
Affiliation(s)
- Jiaqi Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Yujia Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Miaomiao Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Zhirong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China.
| |
Collapse
|
19
|
Sun M, Liu H, Xu C, Jiang Z, Lv C. Inhibition of Iron Release from Donkey Spleen Ferritin through Malt-Derived Protein Z-Ferulic Acid Interactions. Foods 2023; 12:foods12020234. [PMID: 36673326 PMCID: PMC9857996 DOI: 10.3390/foods12020234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Protein-small molecule interactions naturally occur in foodstuffs, which could improve the properties of protein and small molecules. Meanwhile, they might affect the bioavailability and nutritional value of proteins. Ferritin, as an iron-storage protein, has been a focus of research. However, the complexity of foodstuffs enables the interaction between ferritin and food components, especially polyphenols, which can induce iron release from ferritin. Thus, the application of ferritin in food is limited. Inspired by the natural-occurring, strong protein-polyphenol interactions in beer, to inhibit the iron release of ferritin, the malt-derived protein Z (PZ) was chosen to interact with ferulic acid (FA), an abundant reductant in malt, beer, and other foodstuffs. The analysis of the interaction between PZ and FA was carried out using fluorescence spectroscopy, the results of which suggest that one PZ molecule can bind with 22.11 ± 2.13 of FA, and the binding constant is (4.99 ± 2.13) × 105 M-1. In a molecular dynamics (MD) simulation, FA was found to be embedded in the internal hydrophobic pocket of PZ, where it formed hydrogen bonds with Val-389 and Tyr-234. As expected, compared to iron release induced by FA, the iron release from donkey spleen ferritin (DSF) induced by FA decreased by 86.20% in the presence of PZ. Meanwhile, based on the PZ-FA interaction, adding PZ in beer reduced iron release from DSF by 40.5% when DSF:PZ was 1:40 (molar ratio). This work will provide a novel method of inhibiting iron release from ferritin.
Collapse
|
20
|
Jiang Z, Gan J, Wang L, Lv C. Binding of curcumin to barley protein Z improves its solubility, stability and bioavailability. Food Chem 2023; 399:133952. [DOI: 10.1016/j.foodchem.2022.133952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
|
21
|
Huang H, Yi J, Fan Y. Influence of peroxyl radical-induced oxidation on structural characteristics, emulsifying, and foaming properties of α-lactalbumin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Characterization of Peanut Protein Hydrolysate and Structural Identification of Umami-Enhancing Peptides. Molecules 2022; 27:molecules27092853. [PMID: 35566204 PMCID: PMC9102854 DOI: 10.3390/molecules27092853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Umami peptides are naturally found in various foods and have been proven to be essential components contributing to food taste. Defatted peanut powder hydrolysate produced by a multiprotease (Flavorzyme, Alcalase, and Protamex) was found to elicit an umami taste and umami-enhancing effect. The taste profiles, hydrolysis efficiency, amino acids, molecular weight distribution, Fourier transform infrared spectroscopy (FT-IR), and separation fractions obtained by ultrafiltration were evaluated. The results showed that peanut protein was extensively hydrolyzed to give mainly (up to 96.84%) free amino acids and peptides with low molecular weights (<1000 Da). Furthermore, β-sheets were the major secondary structure. Fractions of 1−3000 Da and <1000 Da prominently contributed to the umami taste and umami enhancement. To obtain umami-enhancing peptides, these two fractions were further purified by gel filtration chromatography, followed by sensory evaluation. These peptides were identified as ADSYRLP, DPLKY, EAFRVL, EFHNR, and SDLYVR by ultra-performance liquid chromatography (UPLC), and had estimated thresholds of 0.107, 0.164, 0.134, 0.148, and 0.132 mmol/L, respectively. According to the results of this work, defatted peanut powder hydrolysate had an umami taste and umami-enhancing effect, and is a potential excellent umami peptide precursor material for the food industry.
Collapse
|
23
|
Li B, Zhao Y, Wang M, Guan W, Liu J, Zhao H, Brennan CS. Microencapsulation of Roselle Anthocyanins with β‐cyclodextrin and Proteins Enhances the Thermal Stability of Anthocyanins. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Li
- Tianjin University of Commerce Tianjin China
| | | | - Meiyan Wang
- Tianjin University of Commerce Tianjin China
| | | | - Jianfu Liu
- Tianjin University of Commerce Tianjin China
| | - Hui Zhao
- Tianjin University of Commerce Tianjin China
| | - Charles S. Brennan
- Tianjin University of Commerce Tianjin China
- Royal Melbourne Institute of Technology University Melbourne Australia
| |
Collapse
|
24
|
Insights into the composition, structure-function relationship, and molecular organization of surfactants from spent coffee grounds. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Hu S, Lin S, Liu Y, He X, Zhang S, Sun N. Exploration of Iron-Binding Mode, Digestion Kinetics, and Iron Absorption Behavior of Antarctic Krill–Derived Heptapeptide–Iron Complex. Food Res Int 2022; 154:110996. [DOI: 10.1016/j.foodres.2022.110996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 01/20/2023]
|
26
|
Zhao J, Li Y, Xu L, Ji Y, Zeng J, Timira V, Zhang Z, Chen G, Lin H, Li Z. Insight into IgG/IgE binding ability, in vitro digestibility and structural changes of shrimp (Litopenaeus vannamei) soluble extracts with thermal processing. Food Chem 2022; 381:132177. [PMID: 35121318 DOI: 10.1016/j.foodchem.2022.132177] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/27/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
Abstract
The effects of six kinds of thermal processing on soluble protein recovery, potential allergenicity, in vitro digestibility and structural characteristics of shrimp soluble proteins were evaluated. Obtained results confirmed soluble protein recovery and IgG/IgE reactivity of shrimp soluble extracts were markedly suppressed by various thermal treatments with enhanced digestibility depended on the extent and type of heating applied, which correlated well with the structural alterations and modification. The maximum reduction of IgG/IgE-binding capacity and digestive stability were observed in the autoclaved shrimps because of unfolding of protein and hydrophobic residues exposed. Notably, tropomyosin (TM) and sarcoplasmic calcium-binding protein (SCP) were still IgG/IgE-reactive in various heat-processed shrimps, even higher IgG reactivity were found in heat-treated shrimps TM according to TM antiserum western-blotting and indirect ELISA results. Shrimp TM and SCP maintains its IgE/IgG-binding capacity after various cooking methods, thus most probably initiating allergic sensitization to both raw and cooked shrimps.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yonghong Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China; HOB Biotech Group Corp., Ltd., No. 218, Xinghu Road, Suzhou City, Jiangsu Province 215000, PR China
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yu Ji
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, No.16, Jiangsu Road, Qingdao City, Shandong Province 266071, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
27
|
Li M, Li X, McClements DJ, Shi M, Shang Q, Liu X, Liu F. Physicochemical and functional properties of lactoferrin-hyaluronic acid complexes: Effect of non-covalent and covalent interactions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Effect of processing technologies on the digestibility of egg proteins. Compr Rev Food Sci Food Saf 2021; 20:4703-4738. [PMID: 34355496 DOI: 10.1111/1541-4337.12805] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Egg and egg products are a rich source of highly bioavailable animal proteins. Several processing technologies can affect the structural and functional properties of these proteins differently and can influence their fate inside the gastrointestinal tract. The present review examines some of the processing technologies for improving egg protein digestibility and discusses how different processing conditions affect the digestibility of egg proteins under gastrointestinal digestion environments. To provide up-to-date information, most of the studies included in this review have been published in the last 5 years on different aspects of egg protein digestibility. Digestibility of egg proteins can be improved by employing some processing technologies that are able to improve the susceptibility of egg proteins to gastrointestinal proteases. Processing technologies, such as pulsed electric field, high-pressure, and ultrasound, can induce conformational and microstructural changes that lead to unfolding of the polypeptides and expose active sites for further interactions. These changes can enhance the accessibility of digestive proteases to cleavage sites. Some of these technologies may inactivate some egg proteins that are enzyme inhibitors, such as trypsin inhibitors. The underlying mechanisms of how different technologies mediate the egg protein digestibility have been discussed in detail. The proteolysis patterns and digestibility of the processed egg proteins are not always predictable and depends on the processing conditions. Empirical input is required to tailor the optimization of processing conditions for favorable effects on protein digestibility.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
29
|
Zhuang M, Ren D, Guo H, Wang Z, Zhang S, Zhang X, Gong X. Degradation of 2,4-dichlorophenol contaminated soil by ultrasound-enhanced laccase. ENVIRONMENTAL TECHNOLOGY 2021; 42:1428-1437. [PMID: 31530251 DOI: 10.1080/09593330.2019.1669723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
In this paper, ultrasound was used to enhance the degradation effect of laccase for 2,4-dichlorophenol (2,4-DCP) in soil. The degradation effect and mechanism of the ultrasound-enhanced laccase were investigated. From the results, the degradation rate of 2,4-DCP can reach as high as 51.7% under the following conditions: reaction period was 21 h, pH = 5.5, ultrasound power was 240 W, duty cycle was 50%, and moisture content was 50%. Using the ultrasound-enhanced laccase, the degradation rate of 2,4-DCP was significantly higher than that using only laccase or only ultrasound. In addition, when ultrasound was used, the optimum pH for the degradation of 2,4-DCP using laccase was increased, making the degradation technology more practical. The analysis results from high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) revealed the degradation pathway of 2,4-DCP in soil: first, 2,4-DCP gradually became phenol through dechlorination, then the small molecular organic matter was generated from the hydroxyl radical or laccase reaction.
Collapse
Affiliation(s)
- Mengjuan Zhuang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Dajun Ren
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Huiwen Guo
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Zhaobo Wang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Shuqin Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Xiaoqing Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Xiangyi Gong
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| |
Collapse
|
30
|
Meng C, Wang K, Zhang X, Zhu X. Purification, secondary structure and antioxidant activity of metallothionein zinc-binding proteins from Arca subcrenata. Protein Expr Purif 2021; 182:105838. [PMID: 33561519 DOI: 10.1016/j.pep.2021.105838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/13/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
Zinc-binding proteins named MT-M-I and MT-M-II were obtained after purification from metal-exposed hairy clams (Arca subcrenata) using gel permeation and ion-exchange chromatography. MT-M-I and MT-M-II were resolved by ion-exchange chromatography, and they were found to have similar molecular weights. MT-M-I and MT-M-II can bind 6 and 7 equivalents of Zn2+ in vitro, and they showed unusual migration behaviors in Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (Tricine-SDS-PAGE). Such migration behaviors may be due to themetal thiolate clusters in these proteins. In terms of amino acid composition, the proportion of cysteine in MT-M-I and MT-M-II was approximately 30%, and glycine accounted for approximately 15%, where as aromatic amino acids were absent. Considering the performance in Tricine-SDS-PAGE and the amino acid compositions, MT-M-I and MT-M-II conform to the molecular characteristics of the metallothionein proteins. The structures were explored using circular dichroism (CD) and Fourier-transform infrared spectroscopy (FTIR). Also determined the antioxidant activities in terms of DPPH radical scavenging ability, hydroxyl radical (·OH) scavenging ability, and ferric-reducing/antioxidant power. The antioxidant activities of MT-M-I were found to be stronger than those of MT-M-II.
Collapse
Affiliation(s)
- Chunying Meng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China; Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316100, PR China
| | - Kuiwu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Xiaojun Zhang
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316100, PR China
| | - Xinyue Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| |
Collapse
|
31
|
Yang S, Dong Y, Aweya JJ, Xie T, Zeng B, Zhang Y, Liu GM. Antimicrobial activity and acting mechanism of Tegillarca granosa hemoglobin-derived peptide (TGH1) against Vibrio parahaemolyticus. Microb Pathog 2020; 147:104302. [DOI: 10.1016/j.micpath.2020.104302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/12/2023]
|
32
|
Xu D, Sun N, Xuan S, Wang C, Huang T, Li C, Zhang J, Yang W. Effect of different drying methods on the physicochemical properties and phycobiliprotein structure of Porphyra haitanensis. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2020-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This study explored the effects of four drying methods, namely vacuum freeze-drying (VFD), hot-air drying (HD), microwave drying (MD) and shade drying (SD) on the sensory quality, amino acids composition, phycobiliproteins structure and rehydration rate of Porphyra haitanensis. It showed that VFD dried P. haitanensis had the highest protein (35.44 ± 0.87%), polysaccharide (18.91 ± 0.64%), umami amino acids (484.67 ± 5.03 mg/100 g, dry weight) and essential amino acids (9.89 ± 0.27 g/100 g, dry weight) than another three dried products. Drying affected secondary structure of phycobiliproteins, and the phycobiliproteins from VFD laver contained the most α-helix structure and the least random coil. In addition, VFD processed laver was rich in water-soluble polysaccharides and hydrophilic amino acids, which resulted in its quick rehydration and high-water absorption capacity. The results showed that VFD was suitable for producing high-quality P. haitanensis with excellent flavor and high contents of nutritional compounds.
Collapse
Affiliation(s)
- Dalun Xu
- College of Food and Pharmaceutical Sciences, Ningbo University , Ningbo , 315211 , PR China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University , Ningbo , 315211 , PR China
| | - Nan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University , Ningbo , 315211 , PR China
| | - Shifen Xuan
- College of Food and Pharmaceutical Sciences, Ningbo University , Ningbo , 315211 , PR China
| | - Chen Wang
- College of Food and Pharmaceutical Sciences, Ningbo University , Ningbo , 315211 , PR China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University , Ningbo , 315211 , PR China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University , Ningbo , 315211 , PR China
| | - Chao Li
- College of Food and Pharmaceutical Sciences, Ningbo University , Ningbo , 315211 , PR China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University , Ningbo , 315211 , PR China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University , Ningbo , 315211 , PR China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University , Ningbo , 315211 , PR China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University , Ningbo , 315211 , PR China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University , Ningbo , 315211 , PR China
| |
Collapse
|
33
|
Lu Y, Osmark P, Bergenståhl B, Nilsson L. Vesicular structures formed from barley wort proteins and iso-humulone. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Impact of ultra high pressure on microbial characteristics of rose pomace beverage: A comparative study against conventional heat pasteurization. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Lu Y, Bergenståhl B, Nilsson L. Interfacial properties and interaction between beer wort protein fractions and iso-humulone. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Wei S, Yang Y, Feng X, Li S, Zhou L, Wang J, Tang X. Structures and properties of chicken myofibrillar protein gel induced by microwave heating. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sumeng Wei
- College of Food Science and Engineering Collaborative Innovation Centre for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing210023China
| | - Yuling Yang
- College of Food Science and Engineering Collaborative Innovation Centre for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing210023China
| | - Xiao Feng
- College of Food Science and Engineering Collaborative Innovation Centre for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing210023China
| | - Shanshan Li
- College of Food Science and Engineering Collaborative Innovation Centre for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing210023China
| | - Lei Zhou
- College of Food Science and Engineering Collaborative Innovation Centre for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing210023China
| | - Jingyu Wang
- Fuyang Normal University Fuyang 236037 China
| | - Xiaozhi Tang
- College of Food Science and Engineering Collaborative Innovation Centre for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing210023China
| |
Collapse
|
37
|
Effect of Soybean Soluble Polysaccharide on the Formation of Glucono-δ-Lactone-Induced Soybean Protein Isolate Gel. Polymers (Basel) 2019; 11:polym11121997. [PMID: 31816852 PMCID: PMC6960500 DOI: 10.3390/polym11121997] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/29/2023] Open
Abstract
The effect of soybean soluble polysaccharide (SSPS) on the formation of glucono-δ-lactone (GDL)-induced soybean protein isolate (SPI) gel was investigated. Electrophoretic analysis showed the SSPS did not change the electrophoretic behavior of SPI during the formation of SPI gel. However, infrared analysis indicated the β-sheet content increased, and the contents of random coil and α-helix decreased in both cooked SPI and SPI gel. The SSPS and SPI might conjugate via the Maillard reaction according to the results of grafting degree, color change, and infrared analyses. The main interactions during the formation of SPI gel changed from non-covalent to electrostatic interaction after adding SSPS. Sulfhydryl group content also increased in both cooked SPI and SPI gel. The water-holding capacity and gel strength of SPI gel decreased as the SSPS concentration increased. Larger aggregate holes were observed in the microstructure of SPI gel at higher SSPS concentration. Thus, SSPS could covalently conjugate with SPI and influence the formation of hydrogen bonds, disulfide bonds, and electrostatic interaction among SPI molecules to eventually form a loose gel network.
Collapse
|
38
|
Cai L, Brennan CS, Yang H, Li W, Zhao H. Evolution of oxidative and structural characteristics of proteins, especially lipid transfer protein 1 (LTP1) in beer during forced‐ageing. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linfei Cai
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Charles S. Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln7464Canterbury New Zealand
| | - Huirong Yang
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Wanying Li
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Haifeng Zhao
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
39
|
Effects of high hydrostatic pressure and microbial transglutaminase treatment on structure and gelation properties of sweet potato protein. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Shi F, Zhao H, Wang L, Cui X, Guo W, Zhang W, Song H, Li S. Inactivation mechanisms of electron beam irradiation on
Listeria innocua
through the integrity of cell membrane, genomic
DNA
and protein structures. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Feifei Shi
- Department of Food and Biological Engineering Beijing Vocational College of Agriculture Beijing 102442 China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Hongwei Zhao
- Qingdao University of Science and Technology Qingdao Shangdong 266042 China
- Shandong Provincial Key Laboratory of Biochemical Engineering Qingdao Shangdong 266042 China
| | - Li Wang
- Department of Food and Biological Engineering Beijing Vocational College of Agriculture Beijing 102442 China
| | - Xiaorui Cui
- Department of Food and Biological Engineering Beijing Vocational College of Agriculture Beijing 102442 China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Weiling Guo
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Weidong Zhang
- China Institute of Atomic Energy Beijing 102413 China
| | - Hongbo Song
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Shurong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering Qingdao Shangdong 266042 China
| |
Collapse
|
41
|
Niu C, Han Y, Wang J, Zheng F, Liu C, Li Y, Li Q. Malt derived proteins: Effect of protein Z on beer foam stability. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
The effect of electron beam irradiation on IgG binding capacity and conformation of tropomyosin in shrimp. Food Chem 2018; 264:250-254. [DOI: 10.1016/j.foodchem.2018.05.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/12/2018] [Accepted: 05/09/2018] [Indexed: 11/18/2022]
|
43
|
Yuan H, Lv J, Gong J, Xiao G, Zhu R, Li L, Qiu J. Secondary structures and their effects on antioxidant capacity of antioxidant peptides in yogurt. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1501700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- HaiNa Yuan
- School of Biological and Chemical Engineering/School of Light Industry, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang Provincial Key Lab for Chem&Bio Processing Technology of Farm Produces, Zhejiang University of Science and Technology, Hangzhou, P. R. China
| | - JianMin Lv
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - JinYan Gong
- School of Biological and Chemical Engineering/School of Light Industry, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang Provincial Key Lab for Chem&Bio Processing Technology of Farm Produces, Zhejiang University of Science and Technology, Hangzhou, P. R. China
| | - GongNian Xiao
- School of Biological and Chemical Engineering/School of Light Industry, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang Provincial Key Lab for Chem&Bio Processing Technology of Farm Produces, Zhejiang University of Science and Technology, Hangzhou, P. R. China
| | - RuiYu Zhu
- School of Biological and Chemical Engineering/School of Light Industry, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang Provincial Key Lab for Chem&Bio Processing Technology of Farm Produces, Zhejiang University of Science and Technology, Hangzhou, P. R. China
| | - Ling Li
- School of Biological and Chemical Engineering/School of Light Industry, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang Provincial Key Lab for Chem&Bio Processing Technology of Farm Produces, Zhejiang University of Science and Technology, Hangzhou, P. R. China
| | - JiangNan Qiu
- School of Biological and Chemical Engineering/School of Light Industry, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang Provincial Key Lab for Chem&Bio Processing Technology of Farm Produces, Zhejiang University of Science and Technology, Hangzhou, P. R. China
| |
Collapse
|
44
|
Effects of Ultrasonic and Microwave Processing on Avidin Assay and Secondary Structures of Egg White Protein. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2158-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Chemical Forces, Structure, and Gelation Properties of Sweet Potato Protein as Affected by pH and High Hydrostatic Pressure. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2137-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
46
|
Han Y, Wang J, Li Y, Li H. Purification and Structural Characterization of Protein Z4 from Malt. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2016-2537-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yupeng Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongxian Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hao Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
47
|
Sun J, Wang M, Liu H, Xie J, Pan Y, Xu C, Zhao Y. Acidic electrolysed water delays browning by destroying conformation of polyphenoloxidase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:147-153. [PMID: 28547775 DOI: 10.1002/jsfa.8449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Browning frequently occurs at fruits, vegetables and aquatic products during storage, and it drastically reduces the consumer's acceptability, with considerable financial loss. The objective of this paper was to investigate the effects of acidic electrolysed water (AEW) technology on polyphenoloxidase (PPO), which is an essential enzyme for browning. RESULTS AEW ice exhibited a good ability in delaying browning in shrimp. Kinetic study revealed that AEW exhibited the mixed type inhibition of PPO with a Ki value of 1.96 mmol L-1 . Moreover, both the circular dichroism spectrum and Fourier transform infrared spectroscopy analyses revealed that the α-helix in PPO decreased whereas random coil increased which indicates that PPO conformation was destroyed. CONCLUSION Thus, this paper may provide a deeper understanding of the application of AEW technology for preventing browning in the food industry. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiangping Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Meng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai, China
| |
Collapse
|
48
|
Wang K, Sun DW, Pu H, Wei Q. Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: A review. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Niu C, Han Y, Wang J, Zheng F, Liu C, Li Y, Li Q. Comparative analysis of the effect of protein Z 4 from barley malt and recombinant Pichia pastoris on beer foam stability: Role of N-glycosylation and glycation. Int J Biol Macromol 2017; 106:241-247. [PMID: 28823701 DOI: 10.1016/j.ijbiomac.2017.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
This study aimed to elaborate the effect of N-glycosylation and glycation of protein Z4 from barley malt and recombinant Pichia pastoris on beer foam stability. The malt protein Z4 and recombinant protein Z4 showed similar N-glycosylation patterns while recombinant protein Z4 was glycosylated at a higher degree. In the simulated mashing and boiling, malt protein Z4 and deglycosylated malt protein Z4 preferred to glycate with glucose and maltose while recombinant protein Z4 and deglycosylated recombinant protein Z4 showed preference towards fructose. The addition of protein Z4 and protein Z4-saccharide complexes in finished beer showed that the addition of glycosylated protein Z4 only slightly enhanced the beer foam stability while the addition of glycated protein Z4 and protein Z4 with both glycation and glycosylation could significantly increase the beer foam stability. Therefore, glycation instead of N-glycosylation of protein Z4 played important roles in maintaining beer foam stability.
Collapse
Affiliation(s)
- Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yupeng Han
- Wanbang Biopharmaceuticals, Shanghai Fosun Pharmaceutical (Group) Co., Ltd, Xuzhou 221001, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongxian Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
50
|
Antioxidant activity improvement of identified pine nut peptides by pulsed electric field (PEF) and the mechanism exploration. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|