1
|
Yang C, Li X, Deng Y, Qiu W, Chen L, Li L, Wang AL, Feng Y, Jin Y, Tao N, Li F, Jin Y. Effects of high voltage pulsed electric field on structural properties and immune reactivity of arginine kinase in Fenneropenaeus chinensis. Food Chem 2024; 449:139304. [PMID: 38608611 DOI: 10.1016/j.foodchem.2024.139304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
To evaluate the effect of high voltage pulsed electric field (PEF) treatment (10-20 kV/cm, 5-15 min) on the structural characteristics and sensitization of crude extracts of arginine kinase from Fenneropenaeus chinensis. By simulated in vitro gastric juice digestion (SGF), intestinal juice digestion (SIF) and enzyme-linked immunosorbent assay (ELISA), AK sensitization was reduced by 42.5% when treated for 10 min at an electric field intensity of 15 kV/cm. After PEF treatment, the α-helix content decreased, and the α-helix content gradually changed to β-sheet and β-turn. Compared to the untreated group, the surface hydrophobicity increased and the sulfhydryl content decreased. SEM and AFM analyses showed that the treated sample surface formed a dense porous structure and increased roughness. The protein content, dielectric properties, and amino acid content of sample also changed significantly with the changes in the treatment conditions. Non-thermal PEF has potential applications in the development of hypoallergenic foods.
Collapse
Affiliation(s)
- Chenyu Yang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Xiaomin Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Yun Deng
- Department of Food Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weiqiang Qiu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Lanming Chen
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Ashily Liang Wang
- ADM (Shanghai) Management Co. Ltd., Room 220, 2nd Floor, Juyang Building, 1200 Pudong 17 Avenue, China (Shanghai) Pilot Free Trade Zone, Shanghai 200135, China
| | - Yuhui Feng
- Jilin Tobacco Industry Co., Ltd., Changbai Dong Road 2099, Yanji City, Jilin 133000, China
| | - Yingshan Jin
- College of Bioscience and Technology, Yangzhou University, Wenhui Dong Road 48, Yangzhou City, Jiangsu 277600, China
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Feng Li
- School of Electrical Engineering, Shanghai University of Electric Power, 1851 Hucheng Ring Road, Shanghai 200090, China
| | - Yinzhe Jin
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China.
| |
Collapse
|
2
|
Hadidi M, Aghababaei F, Gonzalez-Serrano DJ, Goksen G, Trif M, McClements DJ, Moreno A. Plant-based proteins from agro-industrial waste and by-products: Towards a more circular economy. Int J Biol Macromol 2024; 261:129576. [PMID: 38253140 DOI: 10.1016/j.ijbiomac.2024.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| | | | - Diego J Gonzalez-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany; CENCIRA Agrofood Research and Innovation Centre, Ion Mester 6, 400650 Cluj-Napoca, Romania
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, United States
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
3
|
Majid I, Khan S, Aladel A, Dar AH, Adnan M, Khan MI, Mahgoub Awadelkareem A, Ashraf SA. Recent insights into green extraction techniques as efficient methods for the extraction of bioactive components and essential oils from foods. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2022.2157492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ishrat Majid
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Shafat Khan
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Alanoud Aladel
- Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Arras, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
4
|
Bioactive Compounds in Extracts from the Agro-Industrial Waste of Mango. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010458. [PMID: 36615647 PMCID: PMC9823791 DOI: 10.3390/molecules28010458] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Mango by-products are important sources of bioactive compounds generated by agro-industrial process. During mango processing, 35-60% of the fruit is discarded, in many cases without treatment, generating environmental problems and economic losses. These wastes are constituted by peels and seeds (tegument and kernel). The aim of this review was to describe the extraction, identification, and quantification of bioactive compounds, as well as their potential applications, published in the last ten years. The main bioactive compounds in mango by-products are polyphenols and carotenoids, among others. Polyphenols are known for their high antioxidant and antimicrobial activities. Carotenoids show provitamin A and antioxidant activity. Among the mango by-products, the kernel has been studied more than tegument and peels because of the proportion and composition. The kernel represents 45-85% of the seed. The main bioactive components reported for the kernel are gallic, caffeic, cinnamic, tannic, and chlorogenic acids; methyl and ethyl gallates; mangiferin, rutin, hesperidin, and gallotannins; and penta-O-galloyl-glucoside and rhamnetin-3-[6-2-butenoil-hexoside]. Meanwhile, gallic acid, ferulic acid, and catechin are reported for mango peel. Although most of the reports are at the laboratory level, they include potential applications in the fields of food, active packaging, oil and fat, and pharmaceutics. At the market level, two trends will stimulate the industrial production of bioactive compounds from mango by-products: the increasing demand for industrialized fruit products (that will increase the by-products) and the increase in the consumption of bioactive ingredients.
Collapse
|
5
|
Wang Y, Luo X, Chen L, Mustapha AT, Yu X, Zhou C, Okonkwo CE. Natural and low-caloric rebaudioside A as a substitute for dietary sugars: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:615-642. [PMID: 36524621 DOI: 10.1111/1541-4337.13084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
For health and safety concerns, traditional high-calorie sweeteners and artificial sweeteners are gradually replaced in food industries by natural and low-calorie sweeteners. As a natural and high-quality sugar substitute, steviol glycosides (SvGls) are continually scrutinized regarding their safety and application. Recently, the cultivation of organic stevia has been increasing in many parts of Europe and Asia, and it is obvious that there is a vast market for sugar substitutes in the future. Rebaudioside A, the main component of SvGls, is gradually accepted by consumers due to its safe, zero calories, clear, and sweet taste with no significant undesirable characteristics. Hence, it can be used in various foods or dietary supplements as a sweetener. In addition, rebaudioside A has been demonstrated to have many physiological functions, such as antihypertension, anti-diabetes, and anticaries. But so far, there are few comprehensive reviews of rebaudioside A. In this review article, we discuss the physicochemical properties, metabolic process, safety, regulatory, health benefits, and biosynthetic pathway of rebaudioside A and summarize the modification methods and state-of-the-art production and purification techniques of rebaudioside A. Furthermore, the current problems hindering the future production and application of rebaudioside A are analyzed, and suggestions are provided.
Collapse
Affiliation(s)
- Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | | | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates.,Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
6
|
Moderate electric field-assisted hydro-distillation of thyme essential oil: Characterization of microstructural changes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Wei R, Hu L, Wang L, Yan P, Lin T, Wang N, Sun H, Zheng B, Guo C. High-voltage pulse-assisted extraction of flavonoids from kapok using deep eutectic solvent aqueous solutions. RSC Adv 2022; 12:25025-25034. [PMID: 36199877 PMCID: PMC9437896 DOI: 10.1039/d2ra03969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, deep eutectic solvents coupled with a pulsed electric field (PEF-DES) were first applied to the extraction of traditional Chinese medicine plants. This study uses the PEF-DES extraction technique to extract TG-KF (Kapok flavonoid solution extracted with DES-TG). PEF-DES is a simple, effective and environmentally-friendly technology and can be used in industrial-scale production. For the optimal extraction conditions of TG-KF, DES-TG was used as a solvent, the DES-TG concentration was 50%, the solid-liquid ratio was 1 : 30, the electric field intensity was 0.55 kV cm-1, the number of pulses was 100, and the yield of flavonoids was 14.36 ± 0.35%. TG-KF has very good stability and there is no precipitation or discoloration within 6 months. The results of chicken embryo experiments and human patch tests show that 10% TG-KF aqueous solution has no irritation. DPPH experiments show that TG-KF has excellent efficacy as an antioxidant. Overall, TG-KF is expected to become a potential antioxidant raw material.
Collapse
Affiliation(s)
- Ruijing Wei
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
- School of Food Science and Engineering, South China University of Technology 381 Wushan Road Guangzhou 510640 Guangdong China
| | - Lu Hu
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| | - Lihua Wang
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| | - Peng Yan
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| | - Tao Lin
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| | - Ning Wang
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| | - Huaiqing Sun
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology 381 Wushan Road Guangzhou 510640 Guangdong China
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd. 510530 Guangdong China
| |
Collapse
|
8
|
Li Q, Li YL, Wang XY, He XD, Qian JY. Safety Assessment of Canola Oil Extracted by Aid of Pulsed Electric Field: Genetic, Acute and Subacute Toxicity. J Oleo Sci 2022; 71:959-974. [PMID: 35691838 DOI: 10.5650/jos.ess21445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulsed electric field (PEF) is a nonthermal technology resulting in the rupture of cell membranes and increasing the electrical conductivity and the permeability of intracellular material. There was little work about the safety of food treated by PEF. The acute, subacute oral, and genetic toxicities were investigated to explore the safety of canola oil extracted by aid of PEF treatment (PTCO). The results showed that no negative consequences were caused by PEF. PTCO was regarded as practically non-toxic with a LD50 higher than 40 g/kg bw. No oil intake-related mortality, clinical, weight gain and organ coefficient abnormalities were observed. The histopathological symptoms indicated a mild load but not obvious toxicities on liver and kidney. The 28-day subacute toxicity test confirmed that less than 10 g/kg·d bw of oil intake did not exhibit any intake-related changes in physical, physiological, biochemical, hematological, and histopathological signs. The less than 4 of atherosclerosis index suggested that no risk of cardiovascular disease caused by PTCO intake. It was speculated that the PEF treatment would not cause any safety issues to food products.
Collapse
Affiliation(s)
- Qian Li
- School of Food Science and Engineering, Yangzhou University
| | - Yong-Lian Li
- School of Food Science and Engineering, Yangzhou University
| | - Xin-Ying Wang
- School of Food Science and Engineering, Yangzhou University
| | - Xu-Dong He
- Yangzhou Center for Food and Drug Control
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University
| |
Collapse
|
9
|
Cokgezme OF, Icier F. Frequency and wave type effects on extractability of oleuropein from olive leaves by moderate electric field assisted extraction. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Patra A, Abdullah S, Pradhan RC. Review on the extraction of bioactive compounds and characterization of fruit industry by-products. BIORESOUR BIOPROCESS 2022; 9:14. [PMID: 38647620 PMCID: PMC10992780 DOI: 10.1186/s40643-022-00498-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
The by-products produced from fruit processing industries could be a potential hazard to environmental pollution. However, these by-products contain several biologically active molecules (essential fatty acid, phenolic compounds, flavonoids, coloring pigments, pectin, proteins, dietary fibers, and vitamins), which can be utilized for various applications in the food, pharmaceutical, cosmetic and textile industries. Nevertheless, during extraction, these bioactive compounds' recovery must be maximized using proper extraction technologies, keeping both economy and environment under consideration. In addition, the characteristics of the extract obtained from those by-products depend mainly on the parameters considered during the extraction process. In this review, an overview of different technologies used to extract bioactive compounds from fruit industry by-products such as seeds and peels has been briefly discussed, along with their mechanisms, process, advantages, disadvantages, and process parameters. In addition, the characteristics of the extracted bioactive compounds have also been briefly discussed in this review.
Collapse
Affiliation(s)
- Abhipriya Patra
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - S Abdullah
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Rama Chandra Pradhan
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
11
|
Environmentally Friendly Techniques for the Recovery of Polyphenols from Food By-Products and Their Impact on Polyphenol Oxidase: A Critical Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041923] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Even though food by-products have many negative financial and environmental impacts, they contain a considerable quantity of precious bioactive compounds such as polyphenols. The recovery of these compounds from food wastes could diminish their adverse effects in different aspects. For doing this, various nonthermal and conventional methods are used. Since conventional extraction methods may cause plenty of problems, due to their heat production and extreme need for energy and solvent, many novel technologies such as microwave, ultrasound, cold plasma, pulsed electric field, pressurized liquid, and ohmic heating technology have been regarded as alternatives assisting the extraction process. This paper highlights the competence of mild technologies in the recovery of polyphenols from food by-products, the effect of these technologies on polyphenol oxidase, and the application of the recovered polyphenols in the food industry.
Collapse
|
12
|
Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Carpentieri S, Režek Jambrak A, Ferrari G, Pataro G. Pulsed Electric Field-Assisted Extraction of Aroma and Bioactive Compounds From Aromatic Plants and Food By-Products. Front Nutr 2022; 8:792203. [PMID: 35155517 PMCID: PMC8829011 DOI: 10.3389/fnut.2021.792203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
In this work, the effect of pulsed electric field (PEF) pre-treatment on the extractability in green solvents (i. e., ethanol–water mixture and propylene glycol) of target aroma and bioactive compounds, such as vanillin from vanilla pods, theobromine and caffeine from cocoa bean shells, linalool from vermouth mixture, and limonene from orange peels, was investigated. The effectiveness of PEF as a cell disintegration technique in a wide range of field strength (1–5 kV/cm) and energy input (1–40 kJ/kg) was confirmed using impedance measurements, and results were used to define the optimal PEF conditions for the pre-treatment of each plant tissue before the subsequent solid–liquid extraction process. The extracted compounds from untreated and PEF-treated samples were analyzed via GC-MS and HPLC-PDA analysis. Results revealed that the maximum cell disintegration index was detected for cocoa bean shells and vanilla pods (Zp = 0.82), followed by vermouth mixture (Zp = 0.77), and orange peels (Zp = 0.55). As a result, PEF pre-treatment significantly enhanced the extraction yield of the target compounds in both solvents, but especially in ethanolic extracts of vanillin (+14%), theobromine (+25%), caffeine (+34%), linalool (+114%), and limonene (+33%), as compared with untreated samples. Moreover, GC-MS and HPLC-PDA analyses revealed no evidence of degradation of individual compounds due to PEF application. The results obtained in this work suggest that the application of PEF treatment before solid–liquid extraction with green solvents could represent a sustainable approach for the recovery of clean labels and natural compounds from aromatic plants and food by-products.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- ProdAl Scarl, University of Salerno, Fisciano, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- *Correspondence: Gianpiero Pataro
| |
Collapse
|
14
|
Kaur B, Panesar PS, Anal AK, Ky SC. Recent Trends in the Management of Mango By-products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2021935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Brahmeet Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Parmjit S. Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Anil K. Anal
- Department of Food, Agriculture, and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Son C. Ky
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
15
|
Qin D, Xiang B, Zhou X, Qiu S, Xi J. Microemulsion as solvent for naphthoquinones extraction from walnut (Juglans mandshurica Maxim) green husk using high voltage electrical discharge. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Santos TRJ, Santana LCLDA. Conventional and emerging techniques for extraction of bioactive compounds from fruit waste. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Jha AK, Sit N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Cano-Lamadrid M, Artés-Hernández F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2021; 11:59. [PMID: 35010186 PMCID: PMC8750753 DOI: 10.3390/foods11010059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to provide comprehensive information about non-thermal technologies applied in fruit and vegetables (F&V) by-products to enhance their phytochemicals and to obtain pectin. Moreover, the potential use of such compounds for food supplementation will also be of particular interest as a relevant and sustainable strategy to increase functional properties. The thermal instability of bioactive compounds, which induces a reduction of the content, has led to research and development during recent decades of non-thermal innovative technologies to preserve such nutraceuticals. Therefore, ultrasounds, light stresses, enzyme assisted treatment, fermentation, electro-technologies and high pressure, among others, have been developed and improved. Scientific evidence of F&V by-products application in food, pharmacologic and cosmetic products, and packaging materials were also found. Among food applications, it could be mentioned as enriched minimally processed fruits, beverages and purees fortification, healthier and "clean label" bakery and confectionary products, intelligent food packaging, and edible coatings. Future investigations should be focused on the optimization of 'green' non-thermal and sustainable-technologies on the F&V by-products' key compounds for the full-utilization of raw material in the food industry.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Food Quality and Safety Group, Department of Agrofood Technology, Universidad Miguel Hernández, Ctra. Beniel, Km 3.2, Orihuela, 03312 Alicante, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
19
|
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem 2021; 378:131918. [PMID: 35085901 DOI: 10.1016/j.foodchem.2021.131918] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g. natural antioxidant activity) as part of nutraceutical, cosmetological and biomedical formulations. In "bench-to-bedside" achievements, sample extraction is essential because valorization benefits from matrix desorption and solubilization of targeted phytocompounds. Specifically, the composition and polarity of the extractant, the optimal sample particle size and sample:solvent ratio, as well as pH, pressure and temperature are strategic for the release and stability of mobilized species. On the other hand, current green chemistry environmental rules require extraction approaches that eliminate polluting consumables and reduce energy needs. Thus, the following pages provide an update on advanced technologies for the sustainable and efficient recovery of phenolics from plant matrices.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | - Tamara Forbes-Hernández
- Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-product Processing, Jiangsu University, Zhenjiang, China; Research group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
20
|
Qin D, Wang Y, Wu Y, Kong X, Liu L, Li Z, Xi J. Optimization of protein extraction from watermelon seeds by liquid-phase pulsed discharge based on energy input for scale-up application. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants (Basel) 2021; 10:antiox10091417. [PMID: 34573049 PMCID: PMC8471374 DOI: 10.3390/antiox10091417] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nowadays, the food industry is heavily involved in searching for green sources of valuable compounds, to be employed as potential food ingredients, to cater to the evolving consumers’ requirements for health-beneficial food ingredients. In this frame, agri-food by-products represent a low-cost source of natural bioactive compounds, including antioxidants. However, to effectively recover these intracellular compounds, it is necessary to reduce the mass transfer resistances represented by the cellular envelope, within which they are localized, to enhance their extractability. To this purpose, emerging extraction technologies, have been proposed, including Supercritical Fluid Extraction, Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, High-Pressure Homogenization, Pulsed Electric Fields, High Voltage Electrical Discharges. These technologies demonstrated to be a sustainable alternative to conventional extraction, showing the potential to increase the extraction yield, decrease the extraction time and solvent consumption. Additionally, in green extraction processes, also the contribution of solvent selection, as well as environmental and economic aspects, represent a key factor. Therefore, this review focused on critically analyzing the main findings on the synergistic effect of low environmental impact technologies and green solvents towards the green extraction of antioxidants from food by-products, by discussing the main associated advantages and drawbacks, and the criteria of selection for process sustainability.
Collapse
|
22
|
Rifna EJ, Misra NN, Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit Rev Food Sci Nutr 2021; 63:719-752. [PMID: 34309440 DOI: 10.1080/10408398.2021.1952923] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables are the most important commodities of trade value among horticultural produce. They are utilized as raw or processed, owing to the presence of health-promoting components. Significant quantities of waste are produced during fruits and vegetables processing that are majorly accounted by waste peels (∼90-92%). These wastes, however, are usually exceptionally abundant in bioactive molecules. Retrieving these valuable compounds is a core objective for the valorization of waste peel, besides making them a prevailing source of beneficial additives in food and pharmaceutical industry. The current review is focused on extraction of bioactive compounds derived from fruit and vegetable waste peels and highlights the supreme attractive conventional and non-conventional extraction techniques, such as microwave-assisted, ultrasound assisted, pulsed electric fields, pulsed ohmic heating, pressurized liquid extraction, supercritical fluid extraction, pressurized hot water, high hydrostatic pressure, dielectric barrier discharge plasma extraction, enzyme-assisted extraction and the application of "green" solvents say as well as their synergistic effects that have been applied to recover bioactive from waste peels. Superior yields achieved with non-conventional technologies were identified to be of chief interest, considering direct positive economic consequences. This review also emphasizes leveraging efficient, modern extraction technologies for valorizing abundantly available low-cost waste peel, to achieve economical substitutes, whilst safeguarding the environment and building a circular economy. It is supposed that the findings discussed though this review might be a valuable tool for fruit and vegetable processing industry to imply an economical and effectual sustainable extraction methods, converting waste peel by-product to a high added value functional product.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
23
|
Yadav A, Kumar N, Upadhyay A, Pratibha, Anurag RK. Edible Packaging from Fruit Processing Waste: A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1940198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ajay Yadav
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, Madhya Pradesh, India
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat- 131028, Haryana, India
| | - Nishant Kumar
- Department of Agricultural and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat- 131028, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat- 131028, Haryana, India
| | - Pratibha
- Department of Food Business Management and Entrepreneurship Development, National Institute of Food Technology Entrepreneurship and Management, Sonipat- 131028, India
| | - Rahul Kumar Anurag
- Agricultural Structures and Environmental Control Division, ICAR-Central Institute of Post Harvest Engineering and Technology, PAU Campus-141004 Ludhiana, Punjab, India
| |
Collapse
|
24
|
Utilization of ultrasound and pulse electric field for the extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta) peel. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
|
26
|
Moro KIB, Bender ABB, da Silva LP, Penna NG. Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02665-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Arshad RN, Abdul-Malek Z, Roobab U, Munir MA, Naderipour A, Qureshi MI, El-Din Bekhit A, Liu ZW, Aadil RM. Pulsed electric field: A potential alternative towards a sustainable food processing. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Arshad RN, Abdul‐Malek Z, Roobab U, Qureshi MI, Khan N, Ahmad MH, Liu Z, Aadil RM. Effective valorization of food wastes and by‐products through pulsed electric field: A systematic review. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13629] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rai Naveed Arshad
- Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia Skudai Malaysia
| | - Zulkurnain Abdul‐Malek
- Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia Skudai Malaysia
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology Guangzhou China
| | - Muhammad Imran Qureshi
- Faculty of Technology Management and Technopreneurship Technical University of Malaysia Malacca Malaysia
| | - Nohman Khan
- UNIKL Business School, University of Kuala Lumpur Kuala Lumpur Malaysia
| | - Mohammad Hafizi Ahmad
- Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia Skudai Malaysia
| | - Zhi‐Wei Liu
- College of Food Science and Technology, Hunan Agricultural University Changsha China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| |
Collapse
|
29
|
Coelho M, Pereira R, Rodrigues A, Teixeira J, Pintado M. The use of emergent technologies to extract added value compounds from grape by-products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
31
|
Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Res Int 2020; 140:109854. [PMID: 33648172 DOI: 10.1016/j.foodres.2020.109854] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Current awareness about the benefits of a balanced diet supports ongoing trends in humans towards a healthier diet. This review provides an overview of fruits and fruit-by products as sources of bioactive compounds and their extraction techniques, and the use of lactic acid fermentation of fruit juices to increase their functionality. Fruit matrices emerge as a technological alternative to be fermented by autochthonous or allochthonous lactic acid bacteria (LAB such as Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and other Lactobacillus species), and also as probiotic vehicles. During fermentation, microbial enzymes act on several fruit phytochemicals producing new derived compounds with impact on the aroma and the functionality of the fermented drinks. Moreover, fermentation significantly reduces the sugar content improving their nutritional value and extending the shelf-life of fruit-based beverages. The generation of new probiotic beverages as alternatives to consumers with intolerance to lactose or with vegan or vegetarian diets is promising for the worldwide functional food market. An updated overview on the current knowledge of the use of fruit matrices to be fermented by LAB and the interaction between strains and the fruit phytochemical compounds to generate new functional foods as well as their future perspectives in association with the application of nanotechnology techniques are presented in this review.
Collapse
|
32
|
Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. ScientificWorldJournal 2020; 2020:6792069. [PMID: 32908461 PMCID: PMC7474796 DOI: 10.1155/2020/6792069] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/20/2020] [Accepted: 07/27/2020] [Indexed: 01/27/2023] Open
Abstract
The flavonoids are compounds synthesized by plants, and they have properties such as antioxidant, anticancer, anti-inflammatory, and antibacterial, among others. One of the most important bioactive properties of flavonoids is their antioxidant effect. Synthetic antioxidants have side toxic effects whilst natural antioxidants, such as flavonoids from natural sources, have relatively low toxicity. Therefore, it is important to incorporate flavonoids derived from natural sources in several products such as foods, cosmetics, and drugs. For this reason, there is currently a need to extract flavonoids from plant resources. In this review are described the most important parameters involved in the extraction of flavonoids by unconventional methods such as ultrasound, pressurized liquid extraction, mechanochemical, high hydrostatic pressure, supercritical fluid, negative pressure cavitation, intensification of vaporization by decompression to the vacuum, microwave, infrared, pulsed electric field, high-voltage electrical discharges, and enzyme-assisted extraction. There are no unified operation conditions to achieve high yields and purity. Notwithstanding, progress has been achieved in the development of more advanced and environmentally friendly methods of extraction. Although in literature are found important advances, a complete understanding of the extraction process in each of the unconventional techniques is needed to determine the thermodynamic and kinetic mechanisms that govern each of the techniques.
Collapse
|
33
|
Olivares-Galván S, Marina ML, García MC. Extraction and Characterization of Antioxidant Peptides from Fruit Residues. Foods 2020; 9:foods9081018. [PMID: 32751284 PMCID: PMC7466205 DOI: 10.3390/foods9081018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fruit residues with high protein contents are generated during the processing of some fruits. These sustainable sources of proteins are usually discarded and, in all cases, underused. In addition to proteins, these residues can also be sources of peptides with protective effects against oxidative damage. The revalorization of these residues, as sources of antioxidant peptides, requires the development of suitable methodologies for their extraction and the application of analytical techniques for their characterization. The exploitation of these residues involves two main steps: the extraction and purification of proteins and their hydrolysis to release peptides. The extraction of proteins is mainly carried out under alkaline conditions and, in some cases, denaturing reagents are also employed to improve protein solubilization. Alternatively, more sustainable strategies based on the use of high-intensity focused ultrasounds, microwaves, pressurized liquids, electric fields, or discharges, as well as deep eutectic solvents, are being implemented for the extraction of proteins. The scarce selectivity of these extraction methods usually makes the subsequent purification of proteins necessary. The purification of proteins based on their precipitation or the use of ultrafiltration has been the usual procedure, but new strategies based on nanomaterials are also being explored. The release of potential antioxidant peptides from proteins is the next step. Microbial fermentation and, especially, digestion with enzymes such as Alcalase, thermolysin, or flavourzyme have been the most common. Released peptides are next characterized by the evaluation of their antioxidant properties and the application of proteomic tools to identify their sequences.
Collapse
|
34
|
Rajha HN, Koubaa M, Boussetta N, Maroun RG, Louka N, Lebovka N, Vorobiev E. Selective ultrasound‐assisted aqueous extraction of polyphenols from pomegranate peels and seeds. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hiba N. Rajha
- Laboratoire de Transformations Intégrées de la MatièreRenouvelable EA 4297 Centre de Recherches de Royallieu Université de Technologie de CompiègneSorbonne Universités Compiègne France
- Centre d'Analyses et de Recherche Unité de Recherche Technologies et Valorisation Agro‐alimentaire Faculté des Sciences Université Saint‐Joseph Beirut Lebanon
| | | | - Nadia Boussetta
- Laboratoire de Transformations Intégrées de la MatièreRenouvelable EA 4297 Centre de Recherches de Royallieu Université de Technologie de CompiègneSorbonne Universités Compiègne France
| | - Richard G. Maroun
- Centre d'Analyses et de Recherche Unité de Recherche Technologies et Valorisation Agro‐alimentaire Faculté des Sciences Université Saint‐Joseph Beirut Lebanon
| | - Nicolas Louka
- Centre d'Analyses et de Recherche Unité de Recherche Technologies et Valorisation Agro‐alimentaire Faculté des Sciences Université Saint‐Joseph Beirut Lebanon
| | - Nikolaï Lebovka
- Laboratoire de Transformations Intégrées de la MatièreRenouvelable EA 4297 Centre de Recherches de Royallieu Université de Technologie de CompiègneSorbonne Universités Compiègne France
- Institute of Biocolloidal Chemistry named after F. D. Ovcharenko NAS of Ukraine Kyiv Ukraine
| | - Eugène Vorobiev
- Laboratoire de Transformations Intégrées de la MatièreRenouvelable EA 4297 Centre de Recherches de Royallieu Université de Technologie de CompiègneSorbonne Universités Compiègne France
| |
Collapse
|
35
|
Cell disintegration of apple peels induced by pulsed electric field and efficiency of bio-compound extraction. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Li Z, Liu L, Fan Y, Xi J. Kinetic modeling for high voltage electrical discharge extraction based on discharge energy input. Food Chem 2020; 314:126168. [DOI: 10.1016/j.foodchem.2020.126168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 11/27/2022]
|
37
|
Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr 2020; 7:60. [PMID: 32457916 PMCID: PMC7221145 DOI: 10.3389/fnut.2020.00060] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
38
|
Chaiwarit T, Masavang S, Mahe J, Sommano S, Ruksiriwanich W, Brachais CH, Chambin O, Jantrawut P. Mango (cv. Nam Dokmai) peel as a source of pectin and its potential use as a film-forming polymer. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105611] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Zuin VG, Segatto ML, Zanotti K. Towards a green and sustainable fruit waste valorisation model in Brazil: optimisation of homogenizer-assisted extraction of bioactive compounds from mango waste using a response surface methodology. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractFood waste valorisation is currently at the core of discussions and development of future economic models which, allied to the application of green and sustainable technologies, offers a viable alternative to shift industrial practices towards a circular bioeconomy. The feasibility and technological possibilities based on an integrated mango waste biorefinery concept, focusing on the extraction of bioactive compounds, are discussed in this paper. Additionally, a statistically robust methodology is presented as a green approach to optimise the variables of a sustainable, low time and energy consumption extraction technique (homogenizer-assisted extraction). Maximum concentrations of the bioactive compounds were obtained in similar values of parameters ethanol/water concentration (67.73 and 70.11 %), sample/solvent ratio (29.33 and 28.17 %) and time (4.47 and 5.00 min) for mangiferin (354.4 mg/kg DW) and hyperoside (258.7 mg/kg DW), respectively. These results demonstrated the efficiency of the proposed green and sustainable method to obtain bioactive compounds from a very common and significant tropical fruit waste in Brazil, based on an integrated mango biorefinery concept.
Collapse
Affiliation(s)
- Vânia G. Zuin
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís (SP-310), km 235, 13565-905, São Carlos, SP, Brazil
- Green Chemistry Centre of Excellence, University of York, Heslington, York, YO10 5DD, UK, Tel.: +55 16 33518206, e-mail:
| | - Mateus L. Segatto
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís (SP-310), km 235, 13565-905, São Carlos, SP, Brazil
| | - Karine Zanotti
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís (SP-310), km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
40
|
Fierascu RC, Sieniawska E, Ortan A, Fierascu I, Xiao J. Fruits By-Products - A Source of Valuable Active Principles. A Short Review. Front Bioeng Biotechnol 2020; 8:319. [PMID: 32351951 PMCID: PMC7174504 DOI: 10.3389/fbioe.2020.00319] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023] Open
Abstract
The growing demand for more sustainable, alternative processes leading to production of plant-derived preparations imposes the use of plants waste generated mainly by agri-food and pharmaceutical industries. These mostly unexploited but large quantities of plants waste also increase the interest in developing alternative approaches for sustainable production of therapeutic molecules. In order to reduce the amount of plant waste by further processing, different novel extraction techniques can be applied. Fruits and their industrial by-products are rich sources of different classes of compounds with therapeutic properties. The processed fruits waste can be reused and lead to novel pharmaceuticals, food supplements or functional foods. This review intends to briefly summarize recent aspects regarding the production of different active compounds from fruit by-products, and their therapeutic properties. The potential use of fruits by-products in different industries will be also discussed.
Collapse
Affiliation(s)
- Radu C. Fierascu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
- The National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Emerging Nanotechnologies Group, Bucharest, Romania
| | - Elwira Sieniawska
- Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
| | - Alina Ortan
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Irina Fierascu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
- The National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Emerging Nanotechnologies Group, Bucharest, Romania
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
41
|
Lončarić A, Jozinović A, Kovač T, Kojić N, Babić J, Šubarić D. High Voltage Electrical Discharges and Ultrasound-Assisted Extraction of Phenolics from Indigenous Fungus-Resistant Grape By-Product. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/117716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
42
|
Villacís-Chiriboga J, Elst K, Van Camp J, Vera E, Ruales J. Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications). Compr Rev Food Sci Food Saf 2020; 19:405-447. [PMID: 33325169 DOI: 10.1111/1541-4337.12542] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
Tropical fruits represent one of the most important crops in the world. The continuously growing global market for the main tropical fruits is currently estimated at 84 million tons, of which approximately half is lost or wasted throughout the whole processing chain. Developing novel processes for the conversion of these byproducts into value-added products could provide a viable way to manage this waste problem, aiming at the same time to create a sustainable economic growth within a bio-economy perspective. Given the ever-increasing concern about sustainability, complete valorization through a bio-refinery approach, that is, zero waste concept, as well as the use of green techniques is therefore of utmost importance. This paper aims to report the status on the valorization of tropical fruit byproducts within a bio-refinery frame, via the application of traditional methodologies, and with specific attention to the extraction of phenolics and carotenoids as bioactive compounds. The different types of byproducts, and their content of bioactives is reviewed, with a special emphasis on the lesser-known tropical fruits. Moreover, the bioactivity of the different types of extracts and their possible application as a resource for different sectors (food, pharmaceutical, and environmental sciences) is discussed. Consequently, this review presents the concepts of tropical fruit biorefineries, and the potential applications of the isolated fractions.
Collapse
Affiliation(s)
- José Villacís-Chiriboga
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400, Mol, Belgium.,Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| | - Kathy Elst
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400, Mol, Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Edwin Vera
- Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| |
Collapse
|
43
|
Dimou C, Karantonis HC, Skalkos D, Koutelidakis AE. Valorization of Fruits by-products to Unconventional Sources of Additives, Oil, Biomolecules and Innovative Functional Foods. Curr Pharm Biotechnol 2020; 20:776-786. [PMID: 30961483 DOI: 10.2174/1389201020666190405181537] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 01/15/2019] [Accepted: 03/21/2019] [Indexed: 02/05/2023]
Abstract
Owning to the increase in the world population as well as the consumer's awareness on the health benefits of consumption of fruits, the demand for both fresh and processed fruits has been increased. The by-product and waste streams generated from fruit processing industries are extremely diverse, owning mainly to different fruits varieties and the wide range of the processes employed towards the production of the end fruit-based products. Due to the increasing production and processing of fruits, disposal of waste and by-product streams has become a serious issue, since these materials are prone to microbial spoilage. Also, the inappropriate waste management practices pose severe environmental issues. Furthermore, the costs of drying and storage of fruit processing residues are economically limiting factors hindering their further exploitation. Therefore, fruit processing by-products such as peels, seeds and unused flesh are often utilized as fertilizers. On the other hand, plant residues contain biomolecules such as vitamins, proteins, minerals, antioxidants and aromatic oil. Recovery of bioactive compounds holds a great potential for their usage in food industry as functional ingredients and nutraceuticals or in pharmaceutical and in cosmetic applications. So, valorization of plant fruit processing by-products to high-value added compounds, constitute a promising alternative not only for addressing fruit residues management issues but also leading to the production of functional food products of high nutritional value, with several potential beneficial health effects. The aim of this paper is to highlight current trends in addressing environmental issues caused by the production of high volumes of specific categories of fruit processing waste streams by investigating their potential usage as natural raw materials for the recovery of valuable bioactive compounds (such as polyphenols, dietary fibers or aromatic oil). The extracted nutrients may be used in the industrial food sector for the production of functional foods, nutraceuticals or even as health promoting natural pharmaceutical ingredients or additives for the production of innovative enriched foods. Highlights: • Fruit processing by product streams are rich in bioactive compounds. • Integration of fruit by-products and waste streams to value added products such as additives, unconventional oil, bioactive compounds and novel functional products is a very interesting approach regarding fruit processing residues exploitation. • Recovering of biomolecules from fruit residues by non-thermal processes could lead to the efficient production of highly purified functional ingredients. • Negative-valued fruit processing residues could be recycled for the production of health promoting value added products.
Collapse
Affiliation(s)
- Charalampia Dimou
- Department of Food Science and Nutrition, University of the Aegean, Mitropoliti Ioakim 2, Myrina, Lemnos, 81400, Greece
| | - Haralabos C Karantonis
- Department of Food Science and Nutrition, University of the Aegean, Mitropoliti Ioakim 2, Myrina, Lemnos, 81400, Greece
| | - Dimitrios Skalkos
- Department of Food Science and Nutrition, University of the Aegean, Mitropoliti Ioakim 2, Myrina, Lemnos, 81400, Greece
| | - Antonios E Koutelidakis
- Department of Food Science and Nutrition, University of the Aegean, Mitropoliti Ioakim 2, Myrina, Lemnos, 81400, Greece
| |
Collapse
|
44
|
Gençdağ E, Görgüç A, Yılmaz FM. Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2019.1709203] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Esra Gençdağ
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Ahmet Görgüç
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Fatih Mehmet Yılmaz
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
45
|
Fierascu RC, Fierascu I, Avramescu SM, Sieniawska E. Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules 2019; 24:E4212. [PMID: 31757027 PMCID: PMC6930540 DOI: 10.3390/molecules24234212] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023] Open
Abstract
Large amounts of agro-industrial waste are being generated each year, leading to pollution and economic loss. At the same time, these side streams are rich source of active compounds including antioxidants. Recovered compounds can be re-utilized as food additives, functional foods, nutra-/pharmaceuticals, cosmeceuticals, beauty products, and bio-packaging. Advanced extraction techniques are promising tools to recover target compounds such as antioxidants from agro-industrial side streams. Due to the disadvantages of classical extraction techniques (such as large amounts of solvents, increased time of extraction, large amounts of remaining waste after the extraction procedure, etc.), and advanced techniques emerged, in order to obtain more efficient and sustainable processes. In this review paper aspects regarding different modern extraction techniques related to recovery of antioxidant compounds from wastes generated in different industries and their applications are briefly discussed.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Sorin Marius Avramescu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 36-46 Mihail Kogalniceanu Blvd., 050107 Bucharest, Romania
| | - Elwira Sieniawska
- Department of Pharmacognosy, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland
| |
Collapse
|
46
|
Stübler AS, Lesmes U, Heinz V, Rauh C, Shpigelman A, Aganovic K. Digestibility, antioxidative activity and stability of plant protein-rich products after processing and formulation with polyphenol-rich juices: kale and kale–strawberry as a model. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03362-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Optimization of Pulsed Electric Fields-Assisted Extraction of Polyphenols from Potato Peels Using Response Surface Methodology. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02320-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Barišić V, Flanjak I, Križić I, Jozinović A, Šubarić D, Babić J, Miličević B, Ačkar Đ. Impact of high‐voltage electric discharge treatment on cocoa shell phenolic components and methylxanthines. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Veronika Barišić
- Faculty of Food Technology OsijekJosip Juraj Strossmayer University of Osijek Osijek Croatia
| | - Ivana Flanjak
- Faculty of Food Technology OsijekJosip Juraj Strossmayer University of Osijek Osijek Croatia
| | - Ivana Križić
- Faculty of Food Technology OsijekJosip Juraj Strossmayer University of Osijek Osijek Croatia
| | - Antun Jozinović
- Faculty of Food Technology OsijekJosip Juraj Strossmayer University of Osijek Osijek Croatia
| | - Drago Šubarić
- Faculty of Food Technology OsijekJosip Juraj Strossmayer University of Osijek Osijek Croatia
| | - Jurislav Babić
- Faculty of Food Technology OsijekJosip Juraj Strossmayer University of Osijek Osijek Croatia
| | - Borislav Miličević
- Faculty of Food Technology OsijekJosip Juraj Strossmayer University of Osijek Osijek Croatia
| | - Đurđica Ačkar
- Faculty of Food Technology OsijekJosip Juraj Strossmayer University of Osijek Osijek Croatia
| |
Collapse
|
49
|
Recent advances in high voltage electric discharge extraction of bioactive ingredients from plant materials. Food Chem 2019; 277:246-260. [DOI: 10.1016/j.foodchem.2018.10.119] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
|
50
|
da Silva Sauthier MC, da Silva EGP, da Silva Santos BR, Silva EFR, da Cruz Caldas J, Cavalcante Minho LA, dos Santos AMP, dos Santos WNL. Screening of Mangifera indica L. functional content using PCA and neural networks (ANN). Food Chem 2019; 273:115-123. [DOI: 10.1016/j.foodchem.2018.01.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/11/2017] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
|