1
|
Beheshti-Marnani A, Rohani T, Kermani MA, Mohammadi SZ. A sensitive chalcogenide-based electrochemical sensor for ultra-level detection of Mospilan residues in real samples. Sci Rep 2025; 15:5966. [PMID: 39966467 DOI: 10.1038/s41598-025-89256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Addressed herein, the synthetic bismuthinite and bismuthinite@copper sulphide as two metal chalcogenides have been applied for modifying a glassy carbon electrode(GCE). The as-prepared nanomaterials were characterized using X-ray diffraction (XRD), scanning electron microscopy(SEM) and Energy-dispersive X-ray spectroscopy(EDX). By comparing the results, bismuthinite @copper sulphide hybridized with graphene oxide (GO) modified electrode exhibited superior sensitivity for detection ultra-levels of pesticide Mospilan (acetamiprid) in real samples. The dynamic concentration range of acetamiprid was found to be 80-680nM with a remarkably low detection limit about 4.1nM along with good stability and repeatability. Finally, the fabricated electrochemical sensor, bismuthinite@copper sulphide/GO, was suggested as a suitable alternative to more complex enzyme-based and aptamer-based methods for Mospilan detection.
Collapse
Affiliation(s)
| | - Tahereh Rohani
- Department of Chemistry, Payame Noor University, Tehran, 19395-4697, Iran
| | - Mahdokht Arjmand Kermani
- Agricultural Engineering Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
| | | |
Collapse
|
2
|
Almenhali AZ, Eissa S. Aptamer-based biosensors for the detection of neonicotinoid insecticides in environmental samples: A systematic review. Talanta 2024; 275:126190. [PMID: 38703483 DOI: 10.1016/j.talanta.2024.126190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment. The environmental impact of neonicotinoids, often overlooked, underscores the urgency to develop tools for their detection and understanding of their behavior. Conventional methods for pesticide detection have limitations. Chromatographic techniques are sensitive but expensive, generate waste, and require complex sample preparation. Bioassays lack specificity and accuracy, making them suitable as preliminary tests in conjunction with instrumental methods. Aptamer-based biosensor is recognized as an advantageous tool for neonicotinoids detection due to its rapid response, user-friendly nature, cost-effectiveness, and suitability for on-site detection. This comprehensive review represents the inaugural in-depth analysis of advancements in aptamer-based biosensors targeting neonicotinoids such as imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, nitenpyram, and dinotefuran. Additionally, the review offers valuable insights into the critical challenges requiring prompt attention for the successful transition from research to practical field applications.
Collapse
Affiliation(s)
- Asma Zaid Almenhali
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
3
|
Barton B, Ullah N, Koszelska K, Smarzewska S, Ciesielski W, Guziejewski D. Reviewing neonicotinoid detection with electroanalytical methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37923-37942. [PMID: 38769264 PMCID: PMC11189332 DOI: 10.1007/s11356-024-33676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Neonicotinoids, as the fastest-growing class of insecticides, currently account for over 25% of the global pesticide market. Their effectiveness in controlling a wide range of pests that pose a threat to croplands, home yards/gardens, and golf course greens cannot be denied. However, the extensive use of neonicotinoids has resulted in significant declines in nontarget organisms such as pollinators, insects, and birds. Furthermore, the potential chronic, sublethal effects of these compounds on human health remain largely unknown. To address these pressing issues, it is crucial to explore and understand the capabilities of electrochemical sensors in detecting neonicotinoid residues. Surprisingly, despite the increasing importance of this topic, no comprehensive review article currently exists in the literature. Therefore, our proposed review aims to bridge this gap by providing a thorough analysis of the use of electrochemical methods for neonicotinoid determination. In this review article, we will delve into various aspects of electrochemical analysis, including the influence of electrode materials, employed techniques, and the different types of electrode mechanisms utilized. By synthesizing and analysing the existing research in this field, our review will offer valuable insights and guidance to researchers, scientists, and policymakers alike.
Collapse
Affiliation(s)
- Bartłomiej Barton
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Lodz, Poland.
| | - Nabi Ullah
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Kamila Koszelska
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Sylwia Smarzewska
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Witold Ciesielski
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Dariusz Guziejewski
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| |
Collapse
|
4
|
Ding L, Guo J, Chen S, Wang Y. Electrochemical sensing mechanisms of neonicotinoid pesticides and recent progress in utilizing functional materials for electrochemical detection platforms. Talanta 2024; 273:125937. [PMID: 38503124 DOI: 10.1016/j.talanta.2024.125937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The excessive residue of neonicotinoid pesticides in the environment and food poses a severe threat to human health, necessitating the urgent development of a sensitive and efficient method for detecting trace amounts of these pesticides. Electrochemical sensors, characterized by their simplicity of operation, rapid response, low cost, strong selectivity, and high feasibility, have garnered significant attention for their immense potential in swiftly detecting trace target molecules. The detection capability of electrochemical sensors primarily relies on the catalytic activity of electrode materials towards the target analyte, efficient loading of biomolecular functionalities, and the effective conversion of interactions between the target analyte and its receptor into electrical signals. Electrode materials with superior performance play a crucial role in enhancing the detection capability of electrochemical sensors. With the continuous advancement of nanotechnology, particularly the widespread application of novel functional materials, there is paramount significance in broadening the applicability and expanding the detection range of pesticide sensors. This comprehensive review encapsulates the electrochemical detection mechanisms of neonicotinoid pesticides, providing detailed insights into the outstanding roles, advantages, and limitations of functional materials such as carbon-based materials, metal-organic framework materials, supramolecular materials, metal-based nanomaterials, as well as molecular imprinted materials, antibodies/antigens, and aptamers as molecular recognition elements in the construction of electrochemical sensors for neonicotinoid pesticides. Furthermore, prospects and challenges facing various electrochemical sensors based on functional materials for neonicotinoid pesticides are discussed, providing valuable insights for the future development and application of biosensors for simplified on-site detection of agricultural residues.
Collapse
Affiliation(s)
- Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shu Chen
- School of Bioengineering, Shandong Polytechnic, Jinan, 250104, PR China
| | - Yawen Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
5
|
Zhang C, Li Y, Yang N, You M, Hao J, Wang J, Li J, Zhang M. Electrochemical sensors of neonicotinoid insecticides residues in food samples: From structure to analysis. Talanta 2024; 267:125254. [PMID: 37801927 DOI: 10.1016/j.talanta.2023.125254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Most food samples are detected positive for neonicotinoid insecticides, posing a severe threat to human health. Electrochemical sensors have been proven effective for monitoring the residues to guarantee food safety, but there needs to be more review to conclude the development status comprehensively. On the other hand, various modified materials were emphasized to improve the performance of electrochemical sensors in relevant reviews, rather than the reasons why they were selected. Therefore, this paper reviewed the electrochemical sensors of neonicotinoid insecticides according to bases and strategies. The fundamental basis is the molecular structure of neonicotinoid insecticides, which was disassembled into four functional groups: nitro group, saturated nitrogen ring system, aromatic heterocycle and chlorine substituent. Their relationships were established with strategies including direct sensing, enzyme sensors, aptasensors, immunosensors, and sample pretreatment, respectively. It is hoped to provide a reference for the effective design of electrochemical sensors for small molecule compounds.
Collapse
Affiliation(s)
- Changqiu Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Yanqing Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Ningxia Yang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Minghui You
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Jinhua Hao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Jiacheng Wang
- Medical College, Yangzhou University, No. 11 Huaihai Road, Yangzhou, Jiangsu, 225009, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Huang J, Yang F, Geng L, Chen X, Wang G, Han J, Guo Y, Sun X, Marrazza G. A novel electrochemical aptasensor based on core-shell nanomaterial labeling for simultaneous detection of acetamiprid and malathion. Food Chem 2023; 429:136857. [PMID: 37463538 DOI: 10.1016/j.foodchem.2023.136857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/04/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
At present, due to the coexistence of multiple pesticides in vegetables and the enhanced toxicity, a simultaneous detection method for multiple pesticides is urgently needed. In this work, two types of core-shell nanomaterials, Ag-Au core-shell nanoparticles (Ag@Au NPs) and Cu2O-Au core-shell nanoparticles (Cu2O@Au NPs), were synthesized and labeled with acetamiprid aptamer and malathion aptamer to prepare two novel electroactive signal probes, respectively. The two probes were hybridized on the surface of the electrode by the principle of base complementary pairing between the aptamers and the thiolated DNA oligonucleotide sequences, and a dual-signal electrochemical aptasensor for the simultaneous detection of acetamiprid and malathion was established by modified glassy carbon electrode (GCE). The limits of detection (LOD) were calculated to be 43.7 pg mL-1 for acetamiprid and 63.4 pg mL-1 for malathion. The aptasensor determined acetamiprid and malathion in spinach and rape with the recovery rates of 88.9%-112.5% and 98.0%-114.1%, respectively.
Collapse
Affiliation(s)
- Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| | - Fengzhen Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| | - Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| | - Xiaofeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| | - Guanjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China.
| | - Giovanna Marrazza
- "Ugo Schiff" Chemistry Department, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
7
|
Hassanisaadi M, Saberi Riseh R, Rabiei A, Varma RS, Kennedy JF. Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. Int J Biol Macromol 2023; 246:125763. [PMID: 37429338 DOI: 10.1016/j.ijbiomac.2023.125763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Overusing pesticides, fertilizers, and synthetic dyes has significantly increased their presence in various parts of the environment. The transportation of these pollutants into agricultural soil and water through rivers, soils, and groundwater has seriously threatened human and ecosystem health. Applying techniques and materials to clean up agricultural sources from pesticides, heavy metals (HMs), and synthetic dyes (SDs) is one of the major challenges in this century. The sorption technique offers a viable solution to remediate these chemical pollutants (CHPs). Cellulose-based materials have become popular in nano and micro scales because they are widely available, safe to use, biodegradable, and have a significant ability to absorb substances. Nanoscale cellulose-based materials exhibit greater capacity in absorbing pollutants compared to their microscale counterparts because they possess a larger surface area. Many available hydroxyl groups (-OH) and chemical and physical modifications enable the incorporation of CHPs on to cellulose-based materials. Following this potential, this review aims to comprehensively summarize recent advancements in the field of nano- and micro-cellulose-based materials as effective adsorbents for CHPs, given the abundance of cellulosic waste materials from agricultural residues. The recent developments pertaining to the enhancement of the sorption capacity of cellulose-based materials against pesticides, HMs, and SDs, are deliberated.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom
| |
Collapse
|
8
|
Wang J, Zhang D, Xu K, Hui N, Wang D. Electrochemical assay of acetamiprid in vegetables based on nitrogen-doped graphene/polypyrrole nanocomposites. Mikrochim Acta 2022; 189:395. [PMID: 36169733 DOI: 10.1007/s00604-022-05490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
Abstract
Dual-mode electrochemical aptasensor based on nitrogen-doped graphene (NG) doped with the conducting polymer polypyrrole (PPy) nanocomposite is proposed for the determination of acetamiprid. NG/PPy was electrodeposited onto the glassy carbon electrode (GCE) using cyclic voltammetry technique. NG/PPy/GCE showed outstanding electrocatalytic activity for the oxidation of nitrite due to "active region" induced by the charge redistribution of carbon atoms. The ultrasensitive dual-mode biosensor for acetamiprid could be easily developed by coupling acetamiprid aptamers with the NG/PPy hybrid. The specific binding between acetamiprid and the aptamers resulted in the increase of differential pulse voltammetry (DPV) signal change and the decrease of chronoamperometry (CA) signal, and the concentration of acetamiprid could be measured. The working potentials of DPV and CA were - 0.2 ~ 0.4 V and - 0.4 ~ 0.4 V (vs. SCE), respectively. The dual-mode acetamiprid biosensor showed a wide linear range from 10-12 to 10-7 g mL-1, with low detection limits of 1.15 × 10-13 g mL-1 and 7.32 × 10-13 g mL-1 through DPV and CA modes, respectively. Moreover, owing to high active area and superior conductivity, as well as good electrocatalytic ability, the dual-sensing platform based on NG/PPy nanocomposite supported the quantification of acetamiprid in complex samples. A dual-mode electrochemical aptasensor based on NG/PPy nanocomposite for acetamiprid detection was proposed through both the increase of differential pulse voltammetry (DPV) signal change and the decrease of chronoamperometry (CA) signal of the nitrite oxidation electrocatalyzed by NG/PPyn in sensors and biosensors.
Collapse
Affiliation(s)
- Jiasheng Wang
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Decheng Zhang
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Keke Xu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Ni Hui
- Qingdao Agricultural University, Qingdao, 266109, China.
| | - Dongwei Wang
- Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Dual-Mode electrochemical biosensors based on Chondroitin sulfate functionalized polypyrrole nanowires for ultrafast and ultratrace detection of acetamiprid pesticide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Facile Detection and Quantification of Acetamiprid Using a Portable Raman Spectrometer Combined with Self-Assembled Gold Nanoparticle Array. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rapid and facile determination of pesticides is critically important in food and environmental monitoring. This study developed a self-assembled gold nanoparticle array based SERS method for highly specific and sensitive detection of acetamiprid, a neonicotinoid pesticide that used to be difficult in SERS analysis due to its low affinity with SERS substrates. SERS detection and quantification of acetamiprid was conducted with self-assembled gold nanoparticle arrays at the interface of chloroform and water as the enhancing substrate. Since targets dissolved in chloroform (organic phase) also have access to the hot-spots of Au NP array, the developed method exhibited good sensitivity and specificity for acetamiprid determination. Under the optimal conditions, SERS intensities at Raman shifts of 631 cm−1 and 1109 cm−1 displayed a good linear relationship with the logarithm concentration of acetamiprid in the range of 5.0 × 10−7 to 1.0 × 10−4 mol/L (0.11335 ppm to 22.67 ppm), with correlation coefficients of 0.97972 and 0.97552, respectively. The calculated LOD and LOQ of this method were 1.19 × 10−7 mol/L (0.265 ppb) and 2.63 × 10−7 mol/L (0.586 ppb), respectively, using SERS signal at 631 cm−1, and 2.95 × 10−7 mol/L (0.657 ppb) and 3.86 × 10−7 mol/L (0.860 ppb) using SERS signal at 1109 cm−1, respectively. Furthermore, the developed SERS method was successfully applied in determining acetamiprid on the surface of apple and spinach. This method offers an exciting opportunity for rapid detection of acetamiprid and other organic pesticides considering its advantages of simple preparation process, good specificity and sensitivity, and short detection time (within 1 h).
Collapse
|
11
|
Zhen J, Liang G, Chen R, Jia W. Label-free hairpin-like aptamer and EIS-based practical, biostable sensor for acetamiprid detection. PLoS One 2020; 15:e0244297. [PMID: 33362222 PMCID: PMC7757884 DOI: 10.1371/journal.pone.0244297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/08/2020] [Indexed: 12/25/2022] Open
Abstract
Acetamiprid (ACE) is a kind of broad-spectrum pesticide that has potential health risk to human beings. Aptamers (Ap-DNA (1)) have a great potential as analytical tools for pesticide detection. In this work, a label-free electrochemical sensing assay for ACE determination is presented by electrochemical impedance spectroscopy (EIS). And the specific binding model between ACE and Ap-DNA (1) was further investigated for the first time. Circular dichroism (CD) spectroscopy and EIS demonstrated that the single strand AP-DNA (1) first formed a loosely secondary structure in Tris-HClO4 (20 mM, pH = 7.4), and then transformed into a more stable hairpin-like structure when incubated in binding buffer (B-buffer). The formed stem-loop bulge provides the specific capturing sites for ACE, forming ACE/AP-DNA (1) complex, and induced the RCT (charge transfer resistance) increase between the solution-based redox probe [Fe(CN)6]3−/4− and the electrode surface. The change of ΔRCT (charge transfer resistance change, ΔRCT = RCT(after)-RCT(before)) is positively related to the ACE level. As a result, the AP-DNA (1) biosensor showed a high sensitivity with the ACE concentration range spanning from 5 nM to 200 mM and a detection limit of 1 nM. The impedimetric AP-DNA (1) sensor also showed good selectivity to ACE over other selected pesticides and exhbited excellent performance in environmental water and orange juice samples analysis, with spiked recoveries in the range of 85.8% to 93.4% in lake water and 83.7% to 89.4% in orange juice. With good performance characteristics of practicality, sensitivity and selectivity, the AP-DNA (1) sensor holds a promising application for the on-site ACE detection.
Collapse
Affiliation(s)
- Jianhui Zhen
- Shijiazhuang Customs Technology Center P.R. China, Shijiazhuang, Hebei Province, China
| | - Gang Liang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
- * E-mail:
| | - Ruichun Chen
- Shijiazhuang Customs Technology Center P.R. China, Shijiazhuang, Hebei Province, China
| | - Wenshen Jia
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| |
Collapse
|
12
|
Koçer MB, Aydoğdu Tığ G, Pekyardımcı Ş. Selective determination of non-organophosphorus insecticide using DNA aptamer-based single-use biosensors. Biotechnol Appl Biochem 2020; 68:1174-1184. [PMID: 32969502 DOI: 10.1002/bab.2039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022]
Abstract
In the present study, we developed a disposable aptamer-based biosensor for rapid, sensitive, and reliable detection of acetamiprid (ACE). To improve the sensitivity of the aptasensor, poly-5-amino-2-mercapto-1,3,4-thiadiazole [P(AMT)] and gold nanoparticles (AuNPs) were progressively electrodeposited on the screen-printed electrode (SPE) surface by using cyclic voltammetry (CV) technique. For the determination of ACE, thiol-modified primary aptamer (Apt1) was selected by using the SELEX method and immobilized on the surface of the P(AMT) and AuNPs-modified SPE (SPE/P(AMT)/AuNPs) via AuS bonding. Then, the surface-bound aptamer was incubated with ACE for 45 Min. After that, the biotin-labeled aptamer 2 (Apt2) was interacted with the ACE, then the enzyme-labeled step was performed. In this step, alkaline phosphatase (ALP) was bound to the surface through the interaction between Apt2 labeled with biotin and streptavidin (strep)-ALP conjugate. The determination of ACE was achieved by measuring the oxidation signal of α-naphthol, which is formed on the electrode surface through the interaction of ALP with α-naphthyl phosphate. The working range of the developed aptasensor was determined as 5 × 10-12 -5 × 10-10 mol L-1 with a low limit of detection (1.5 pmol L-1 ). It was also found that the proposed aptasensor possessed great advantages such as low cost, good selectivity, and good reproducibility.
Collapse
Affiliation(s)
- Mustafa Barış Koçer
- Department of Chemistry, Faculty of Science, Selçuk University, Konya, Turkey
| | - Gözde Aydoğdu Tığ
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Şule Pekyardımcı
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Xu Y, Zhang W, Shi J, Li Z, Huang X, Zou X, Tan W, Zhang X, Hu X, Wang X, Liu C. Impedimetric aptasensor based on highly porous gold for sensitive detection of acetamiprid in fruits and vegetables. Food Chem 2020; 322:126762. [PMID: 32283369 DOI: 10.1016/j.foodchem.2020.126762] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/17/2020] [Accepted: 04/05/2020] [Indexed: 12/31/2022]
Abstract
A novel electrochemical aptasensor modified with highly porous gold and aptamer was prepared for the determination of acetamiprid in fruits and vegetables. Highly porous gold was synthesized by electroreduction at -4 V in an electrolyte containing 2.5 mol/L NH4Cl and 10 mmol/L HAuCl4. Acetamiprid-binding aptamer was immobilized on highly porous gold by self-assembly. Acetamiprid could be captured by aptamer on the sensing interface, resulting in an increment of electron transfer resistance. Thanks to the large specific surface area of highly porous gold and the high affinity of aptamer, the aptasensor exhibited a highly sensitive impedance response for acetamiprid. Under optimal condition, the aptasensor displayed a linear response for acetamiprid in the concentration range of 0.5-300 nmol/L, and the detection limit was 0.34 nmol/L. Furthermore, the aptasensor showed high selectivity, good reproducibility and stability. Finally, the aptasensor was applied for the determination of acetamiprid in fruits and vegetables with satisfactory results.
Collapse
Affiliation(s)
- Yiwei Xu
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhihua Li
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowei Huang
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Weilong Tan
- Center for Disease Control and Prevention of Eastern Theater Command, Nanjing 210002, China
| | - Xinai Zhang
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuetao Hu
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Wang
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chao Liu
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
14
|
Shi X, Sun J, Yao Y, Liu H, Huang J, Guo Y, Sun X. Novel electrochemical aptasensor with dual signal amplification strategy for detection of acetamiprid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135905. [PMID: 31838423 DOI: 10.1016/j.scitotenv.2019.135905] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
In this work, a novel dual signal amplification strategy for aptasensor employing reduced graphene with silver nanoparticles and prussian blue-gold nanocomposites was developed for detection of acetamiprid. To improve the sensitivity of aptasensors, reduced graphene oxide-silver nanoparticles (rGo-AgNPs) were modified on a bare glassy carbon electrode surface, which provided a large specific surface area for subsequent material immobilization and amplified current signal. The electrical signal output and sensitivity of the aptasensor was significantly improved after the immobilization of prussian blue-gold nanoparticles (PB-AuNPs) as a catalyst for the redox reaction. The analysis experiment exhibited that it had super-high sensitivity with a detection limit of 0.30 pM (S/N = 3), which met the requirements of the vast majority of daily leaf vegetable testing. Under optimized conditions, the proposed aptasensor showed a wide linear detection range from 1 pM to 1 μM. This aptasensor also had good stability and high selectivity for acetamiprid detection without an interfering effect of some other pesticides. The proposed aptasensor displayed good recovery rates in real samples, which proposed a new method for constructing electrochemical sensors and provided a novel tool for rapid, sensitive analysis of pesticides with low cost.
Collapse
Affiliation(s)
- Xiaojie Shi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12, Zhangzhou Road, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.12 Zhangzhou Road, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.12 Zhangzhou Road, Zibo 255049, China
| | - Jianfei Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12, Zhangzhou Road, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.12 Zhangzhou Road, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.12 Zhangzhou Road, Zibo 255049, China
| | - Yao Yao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12, Zhangzhou Road, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.12 Zhangzhou Road, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.12 Zhangzhou Road, Zibo 255049, China
| | - Huimin Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12, Zhangzhou Road, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.12 Zhangzhou Road, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.12 Zhangzhou Road, Zibo 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12, Zhangzhou Road, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.12 Zhangzhou Road, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.12 Zhangzhou Road, Zibo 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12, Zhangzhou Road, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.12 Zhangzhou Road, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.12 Zhangzhou Road, Zibo 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12, Zhangzhou Road, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.12 Zhangzhou Road, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.12 Zhangzhou Road, Zibo 255049, China
| |
Collapse
|
15
|
Apostolou T, Loizou K, Hadjilouka A, Inglezakis A, Kintzios S. Newly Developed System for Acetamiprid Residue Screening in the Lettuce Samples Based on a Bioelectric Cell Biosensor. BIOSENSORS 2020; 10:E8. [PMID: 31991561 PMCID: PMC7168231 DOI: 10.3390/bios10020008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022]
Abstract
Population growth and increased production demands on fruit and vegetables have driven agricultural production to new heights. Nevertheless, agriculture remains one of the least optimized industries, with laboratory tests that take days to provide a clear result on the chemical level of produce. To address this problem, we developed a tailor-made solution for the industry that can allow multiple field tests on key pesticides, based on a bioelectric cell biosensor and the measurement of the cell membrane potential changes, according to the principle of the Bioelectric Recognition Assay (BERA). We developed a fully functional system that operates using a newly developed hardware for multiple data sources and an Android application to provide results within 3 min. The presence of acetamiprid residues caused a cell membrane hyperpolarization, which was distinguishable from the control samples. A database that classified samples Below or Above Maximum Residue Levels (MRL) was then created, based on a newly developed algorithm. Additionally, lettuce samples were analyzed with the conventional and the newly developed method, in parallel, revealing a high correlation on sample classification. Thus, it was demonstrated that the novel biosensor system could be used in the food supply chain to increase the number of tested products before they reach the market.
Collapse
Affiliation(s)
- Theofylaktos Apostolou
- EMBIO Diagnostics Ltd., Athalassas Ave 8, Strovolos, 2018 Nicosia, Cyprus; (K.L.); (A.H.); (A.I.)
| | - Konstantinos Loizou
- EMBIO Diagnostics Ltd., Athalassas Ave 8, Strovolos, 2018 Nicosia, Cyprus; (K.L.); (A.H.); (A.I.)
| | - Agni Hadjilouka
- EMBIO Diagnostics Ltd., Athalassas Ave 8, Strovolos, 2018 Nicosia, Cyprus; (K.L.); (A.H.); (A.I.)
| | - Antonios Inglezakis
- EMBIO Diagnostics Ltd., Athalassas Ave 8, Strovolos, 2018 Nicosia, Cyprus; (K.L.); (A.H.); (A.I.)
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece;
| |
Collapse
|
16
|
Yaseen T, Pu H, Sun DW. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:762-778. [DOI: 10.1080/19440049.2019.1582806] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tehseen Yaseen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Ireland
| |
Collapse
|
17
|
Feng X, Li C, Liang A, Luo Y, Jiang Z. Doped N/Ag Carbon Dot Catalytic Amplification SERS Strategy for Acetamiprid Coupled Aptamer with 3,3'-Dimethylbiphenyl-4,4'-diamine Oxidizing Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E480. [PMID: 30934552 PMCID: PMC6474095 DOI: 10.3390/nano9030480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
The as-prepared co-doped N/Ag carbon dot (CDNAg) has strong catalysis of H₂O₂ oxidation of 3,3'-dimethylbiphenyl-4,4'-diamine (DBD). It forms an oxidation product (DBDox) with surface-enhanced Raman scattering (SERS) activity at 1605 cm-1 in the silver nanosol substrate, and a CDNAg catalytic amplification with SERS analytical platform can be structured based on aptamer (Apt) with the DBD oxidizing reaction. For example, the aptamer (Apt) of acetamiprid (ACT) can be adsorbed on the surface of CDNAg, resulting in inhibited catalytic activity, the reduced generation of DBDox, and a weakened SERS intensity. When the target molecule ACT was added, it formed a stable Apt-ACT complex and free CDNAg that restored catalytic activity and linearly enhanced the SERS signal. Based on this, we proposed a new quantitative SERS analysis method for the determination of 0.01⁻1.5 μg ACT with a detection limit of 0.006 μg/L.
Collapse
Affiliation(s)
- Xiaozhen Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Chongning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
| | - Yanghe Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
- School of Food and Bioengineering, Hezhou University, Hezhou 542899, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
| |
Collapse
|
18
|
Electrochemical oxidation of acetamiprid using Yb-doped PbO2 electrodes: Electrode characterization, influencing factors and degradation pathways. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Fan K, Kang W, Qu S, Li L, Qu B, Lu L. A label-free and enzyme-free fluorescent aptasensor for sensitive detection of acetamiprid based on AT-rich dsDNA-templated copper nanoparticles. Talanta 2019; 197:645-652. [PMID: 30771988 DOI: 10.1016/j.talanta.2019.01.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 01/08/2023]
Abstract
A label-free and enzyme-free aptasensor for sensitive assay of acetamiprid has been established using AT-rich double-stranded (ds) DNA-templated copper nanoparticles (CuNPs) as fluorescent probe. In this work, two hairpin DNA, HP1 and HP2, were elaborately designed with AT-rich DNA sequences in their loops. The aptamer of acetamiprid was located at the 3'-terminal of HP1, which was caged in the stem of HP1. Upon the addition of acetamiprid, the aptamer could combine with acetamiprid to form a target/aptamer complex, and thus its free 5'-terminal was released. Subsequently, the protruded 3'-terminal of HP2 could hybridize with the free 5'-terminal of HP1 to form a stable AT-rich dsDNA. When it interacted with Cu2+ and ascorbic acid (AA), the AT-rich dsDNA/CuNPs were generated with strong fluorescence, offering a "switch-on" detection of acetamiprid. The developed strategy could high selectively detect acetamiprid at the concentration as low as 2.37 nM. Moreover, the possibility of this strategy for the food sample analysis was also investigated. The obtained results demonstrate that the developed strategy has a promising application potential for acetamiprid assay in food safety fields.
Collapse
Affiliation(s)
- Kaimei Fan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wukui Kang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuaifeng Qu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Long Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Baohan Qu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lihua Lu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
20
|
Ge L, Liu Q, Hao N, Kun W. Recent developments of photoelectrochemical biosensors for food analysis. J Mater Chem B 2019; 7:7283-7300. [DOI: 10.1039/c9tb01644a] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments of photoelectrochemical biosensors for food analysis are summarized and the future prospects in this field are discussed.
Collapse
Affiliation(s)
- Lan Ge
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wang Kun
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
21
|
Ultrasensitive "signal-on" electrochemical aptasensor for assay of acetamiprid residues based on copper-centered metal-organic frameworks. Anal Chim Acta 2018; 1050:51-59. [PMID: 30661591 DOI: 10.1016/j.aca.2018.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022]
Abstract
In present work, a versatile "signal-on" electrochemical aptasensor with ultra-sensitivity and high selectivity for detecting acetamiprid residues has been successfully constructed. Electrochemistry behaviors of as-synthesized copper-centered metal-organic frameworks (CuMOF) on various electrodes were investigated in details. The results indicated that CuMOF exhibited well-behaved redox events. Thus, we used Au-CuMOF as signaling element to label probe DNA (pDNA). The gold nanoparticles-reduced graphene oxide (Au-rGO) has a high specific surface area and excellent conductivity, which was utilized to immobilize complementary strand (cDNA). In the presence of acetamiprid, Au-CuMOF-labeled pDNA would hybridize with the exposed cDNA, allowing CuMOF to approach the electrode and produce a sensitive signaling current. Such a "signal-on" method does not suffer from the drawbacks of "signal-off" methods. The linear range of this proposed electrochemical aptasensor was 0.1 pM-10.0 nM and the detection limit was as low as 2.9 fM. This platform exhibited wonderful selectivity, stability, and repeatability, and was successfully applied to detect acetamiprid residues in tea samples exhibiting enormous practical application potential.
Collapse
|
22
|
A facile and sensitive SERS-based biosensor for colormetric detection of acetamiprid in green tea based on unmodified gold nanoparticles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9940-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Lu L, Su H, Liu Q, Li F. Development of a Luminescent Dinuclear Ir(III) Complex for Ultrasensitive Determination of Pesticides. Anal Chem 2018; 90:11716-11722. [PMID: 30192517 DOI: 10.1021/acs.analchem.8b03687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To improve the G-quadruplex specificity of Ir(III) complexes, a novel dinuclear Ir(III) complex (Din Ir(III)-1) was designed and synthesized through connecting two mononuclear Ir(III) complexes via a diphenyl bridge. Din Ir(III)-1 presents 3.4-4.1-fold enhancements for G-quadruplex relative to ssDNA and 4.3-5.3-fold enhancements relative to dsDNA in luminescence intensity, respectively, demonstrating an excellent G-quadruplex selectivity. Ascribed to its superior specificity to G-quadruplex, Din Ir(III)-1 was employed to construct a highly sensitive luminescent pesticides' detection platform. The detection is based on acetylcholinesterase (AChE)-catalyzed hydrolysis product-induced DNA conformational transformation and subsequent terminal deoxynucleotidyl transferase (TdT) directed G-quadruplex formation. The assay exhibited a linear response between the emission intensity of Din Ir(III)-1 and the pesticide concentration in the range of 0.5-25 μg/L ( R2 = 0.994), and the limit of detection for the pesticide was as low as 0.37 μg/L when using aldicarb as the model pesticide. Moreover, this strategy demonstrates good applicability for the pesticide detection in real samples. It is also versatile for the detection of other organophosphate or carbamate pesticides, which have the inhibition ability toward AChE. Therefore, the proposed approach is scalable for practical application in food safety and environmental monitoring fields and will provide promising solutions for the assay of pesticide residues.
Collapse
Affiliation(s)
- Lihua Lu
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Huijuan Su
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266510 , China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| |
Collapse
|
24
|
A label-free triplex-to-G-qadruplex molecular switch for sensitive fluorescent detection of acetamiprid. Talanta 2018; 189:599-605. [PMID: 30086966 DOI: 10.1016/j.talanta.2018.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/10/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
The detection and monitoring of acetamiprid has drawn extensive attentions, due to their potential threat to human health. Herein, a simple, sensitive and label-free fluorescent assay based on triplex-to-G-qadruplex (TTGQ) molecular switch, was developed for the assay of acetamiprid in aqueous solution. In this detection, the proposed TTGQ molecule contained the acetamiprid aptamer sequence at its loop part and the triple-helix structure at its stem part. One single-stranded DNA grafted by two split G-rich DNA sequences at its two ends, participated in the assembly of the triplex part in TTGQ. In the presence of acetamiprid, TTGQ was dissociated, and the split G-rich DNA was released out to result in the fluorescent signal enhancement of a G-quadruplex's probe. By virtue of this TTGQ molecular switch, the proposed assay can sense acetamiprid at the concentration as low as 2.38 nM with excellent selectivity. Furthermore, the detection of acetamiprid in three kinds of foods extract demonstrated the high application potential of the detection platform in the field of food safety. Compared with the other reported strategies for acetamiprid assay, this triplex-to-G-qadruplex-based fluorescent molecular switch was just composed of two DNA probes without the labeling procedure, presenting a really simple and low-cost fluorescent detection for acetamiprid assay.
Collapse
|
25
|
Wang C, Chen D, Wang Q, Wang Q. Aptamer-based Resonance Light Scattering for Sensitive Detection of Acetamiprid. ANAL SCI 2018; 32:757-62. [PMID: 27396657 DOI: 10.2116/analsci.32.757] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, an aptasensor-based resonance light-scattering (RLS) method was developed for the sensitive and selective detection of acetamiprid. The ABA (acetamiprid binding aptamer)-stabilized gold nanoparticles (ABA-AuNPs) were used as a probe. Highly specific single-strand DNA (ssDNA, i.e, aptamers) that bind to acetamiprid with high affinity were employed to discriminate other pesticides, such as edifenphos, kanamycin, metribuzin et. al. The sensing approach is based on a specific interaction between acetamiprid and ABA. Aggregation of AuNPs was specifically induced by the desorption of the ABA from the surface of AuNPs, which caused the RLS signal intensity to be enhanced at 700 nm. The alteration of AuNPs' aggregation has been successfully optimized by controlling several conditions. Under the optimal conditions, the RLS intensity changes (I/I0) of AuNPs were linearly correlated with the acetamiprid concentration in the range of 0 - 100 nM. The detection limit is 1.2 nM (3σ). This method had also been used for acetamiprid detection in lake water samples.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food and Biological Engineering, Jiangsu University
| | | | | | | |
Collapse
|
26
|
Verdian A. Apta-nanosensors for detection and quantitative determination of acetamiprid - A pesticide residue in food and environment. Talanta 2017; 176:456-464. [PMID: 28917776 DOI: 10.1016/j.talanta.2017.08.070] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
In an effort to achieve high sensitive and selective detection of pesticide residues, numerous nanomaterial-based aptasensors are currently being developed for acetamiprid analysis. Recently, aptamers as a potent alternative of antibodies are used in biosensing platforms. There is tremendous interest in utilizing of nanomaterial as basic building blocks and signaling elements in aptasensors. The nanomaterials have the unique optical and electrical properties. The combination of nanomaterial and aptamer technology has opened a new window in pesticide residues monitoring. In this review, recent advances and applications of optical and electrochemical nanomaterial-based aptasensors for the detection and quantitative determination of acetamiprid in details have been discussed.
Collapse
Affiliation(s)
- Asma Verdian
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
27
|
Highly sensitive microcantilever-based immunosensor for the detection of carbofuran in soil and vegetable samples. Food Chem 2017; 229:432-438. [DOI: 10.1016/j.foodchem.2017.02.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/08/2016] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
|
28
|
Rasolonjatovo MA, Cemek M, Cengiz MF, Ortaç D, Konuk HB, Karaman E, Kocaman AT, Göneş S. Reduction of methomyl and acetamiprid residues from tomatoes after various household washing solutions. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1250099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. Angela Rasolonjatovo
- Faculty of Chem. and Met. Eng., Department of Bioengineering, Biochemistry Division, Yıldız Technical University, Istanbul, Turkey
| | - Mustafa Cemek
- Faculty of Chem. and Met. Eng., Department of Bioengineering, Biochemistry Division, Yıldız Technical University, Istanbul, Turkey
| | - M. Fatih Cengiz
- Food Safety and Agricultural Research Center, Akdeniz University, Antalya, Turkey
| | - Deniz Ortaç
- Faculty of Chem. and Met. Eng., Department of Bioengineering, Biochemistry Division, Yıldız Technical University, Istanbul, Turkey
| | - H. Büşra Konuk
- Faculty of Chem. and Met. Eng., Department of Bioengineering, Biochemistry Division, Yıldız Technical University, Istanbul, Turkey
- Faculty of Engineering, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Elif Karaman
- Faculty of Chem. and Met. Eng., Department of Bioengineering, Biochemistry Division, Yıldız Technical University, Istanbul, Turkey
| | - A. Tuba Kocaman
- Faculty of Chem. and Met. Eng., Department of Bioengineering, Biochemistry Division, Yıldız Technical University, Istanbul, Turkey
| | - Sadık Göneş
- Faculty of Chem. and Met. Eng., Department of Bioengineering, Biochemistry Division, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
29
|
Mehta J, Bhardwaj N, Bhardwaj SK, Tuteja SK, Vinayak P, Paul A, Kim KH, Deep A. Graphene quantum dot modified screen printed immunosensor for the determination of parathion. Anal Biochem 2017; 523:1-9. [DOI: 10.1016/j.ab.2017.01.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 11/30/2022]
|
30
|
Kaczynski P, Lozowicka B, Hrynko I, Wolejko E. Behaviour of mesotrione in maize and soil system and its influence on soil dehydrogenase activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:144-156. [PMID: 27492351 DOI: 10.1016/j.scitotenv.2016.05.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 05/15/2023]
Abstract
The aim of this study was to investigate the dissipation of mesotrione and effect on dehydrogenase activity (DHA) in maize and soil system. The paper for the first time describes behaviour of this herbicide applied at various doses (separately or in mixture with other herbicide) in acidic and alkaline environment. The experiments were conducted using the method randomized blocks in four repetition cycles. Chemical application in seven variants at recommended doses of herbicide were performed. The sample preparation was performed by a modified QuEChERS method and the concentrations of mesotrione in maize and soil were determined by the liquid chromatography with tandem mass spectrometry (LC-MS/MS). The limit of detection was 0.0005mgkg(-1) and quantification 0.001mgkg(-1). The dissipation of mesotrione were described according to first-order (FO) kinetics equation with R(2) were between 0.8794 and 0.9934. The initial deposit of herbicide in soil and maize was higher in an acidic environment (0.06-0.18mgkg(-1)). A positive correlation between an alkaline pH and the rate of dissipation in soil was observed. The results showed that the time after which 50% (DT50) of substance has been degraded was different for both plant and soil. DT50 for soil was within the range 3.2-6.0days and 2.9-4.4days, for the maize 3.9-4.8days and 3.4-4.5days in an alkaline and an acidic environment, respectively. Concentration of mesotrione at applicable MRL level of 0.05mgkg(-1) in maize was achieved at 0.5-5.9days and at proposed MRL of 0.01mgkg(-1) at 8.8-15.8days. The results indicate that the application of mesotrione affected on DHA in the soil. One day after application this herbicide, concentration of DHA in soil was lower than in control plots, but after 21days was observed trend of increasing DHA.
Collapse
Affiliation(s)
- Piotr Kaczynski
- Plant Protection Institute - National Research Institute, Laboratory of Pesticide Residues, Chelmonskiego 22, Bialystok, Poland.
| | - Bozena Lozowicka
- Plant Protection Institute - National Research Institute, Laboratory of Pesticide Residues, Chelmonskiego 22, Bialystok, Poland
| | - Izabela Hrynko
- Plant Protection Institute - National Research Institute, Laboratory of Pesticide Residues, Chelmonskiego 22, Bialystok, Poland
| | - Elzbieta Wolejko
- Bialystok University of Technology, Faculty of Civil and Environmental Engineering, Wiejska 45 E, Bialystok, Poland
| |
Collapse
|