1
|
Rajesh R, Gummadi SN. Purification and biochemical characterization of novel α-amylase and cellulase from Bacillus sp. PM06. Prep Biochem Biotechnol 2024; 54:796-808. [PMID: 38141162 DOI: 10.1080/10826068.2023.2288574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023]
Abstract
Bacillus sp. PM06, previously isolated from sugarcane waste pressmud, could produce dual enzymes α-amylase and cellulase. The isolate's crude enzymes were purified homogeneously using ammonium sulfate precipitation followed by High Quaternary amine anion exchange chromatography. Purified enzymes revealed the molecular weights of α-amylase and cellulase as 55 and 52 kDa, with a purification fold of 15.4 and 11.5, respectively. The specific activity of purified α-amylase and cellulase were 740.7 and 555.6 U/mg, respectively. It demonstrated a wide range of activity from pH 5.0 to 8.5, with an optimum pH of 5.5 and 6.4 for α-amylase and cellulase. The optimum temperature was 50 °C for α-amylase and 60 °C for cellulase. The kinetic parameters of purified α-amylase were 741.5 ± 3.75 µmol/min/mg, 1.154 ± 0.1 mM, and 589 ± 3.5/(s mM), using starch as a substrate. Whereas cellulase showed 556.3 ± 1.3 µmol/min/mg, 1.78 ± 0.1 mM, and 270.9 ± 3.8/(s mM) of Vmax, Km, Kcat/Km, respectively, using carboxymethyl cellulose (CMC) as substrate. Among the various substrates tested, α-amylase had a higher specificity for amylose and CMC for cellulase. Different inhibitors and activators were also examined. Ca2+ Mg2+, Co2+, and Mn2+ boosted α-amylase and cellulase activities. Cu2+ and Ni2+ both inhibited the enzyme activities. Enzymatic saccharification of wheat bran yielded 253.61 ± 1.7 and 147.5 ± 1.0 mg/g of reducing sugar within 12 and 24 h of incubation when treated with purified α-amylase and cellulase. A more significant amount of 397.7 ± 1.9 mg/g reducing sugars was released from wheat bran due to the synergetic effect of two enzymes. According to scanning electron micrograph analysis, wheat bran was effectively broken down by both enzymes.
Collapse
Affiliation(s)
- Rekha Rajesh
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, BJM School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, BJM School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
2
|
Castro LGZ, Sousa MR, Pereira LÉC, Martins DV, Oliveira FAS, Bezerra SGS, Melo VMM, Hissa DC. Pioneer access of the foam nest bacterial community of Leptodactylidae frogs and its biotechnological potential. BRAZ J BIOL 2024; 84:e280884. [PMID: 38922194 DOI: 10.1590/1519-6984.280884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/10/2024] [Indexed: 06/27/2024] Open
Abstract
Many anuran amphibians deposit their eggs in foam nests, biostructures that help protect the eggs and tadpoles from predators. Currently, there are no other identification and description studies of the cultivable microbiota role in the nests of the Leptodactylid frogs such as Physalaemus cuvieri, Leptodactylus vastus and Adenomera hylaedactyla. This study aimed to isolate and identify the culturable bacteria from these three anuran species' nests, as well as to prospect enzymes produced by this microbiota. Foam nests samples and environmental samples were diluted and viable cell count was determined. Bacterial morphotypes from foam nest samples were isolated through spread plate technique. Isolates' DNAs were extracted followed by rRNA 16S gene amplification and Sanger sequencing. To evaluate their enzymatic potential, the isolates were cultured in ATGE medium supplemented with starch (0.1% w/v), gelatin (3% w/v) and skimmed milk (1% w/v), to verify amylase and protease activity. A total of 183 bacterial morphotypes were isolated, comprising 33 bacterial genera. Proteobacteria phylum was the most abundant in all the three nests (79%). The genera Pseudomonas and Aeromonas were the most abundant taxon in P. cuvieri and L. vastus. In A. Hylaedactyla, were Enterobacter and Bacillus. Regarding enzymatic activities, 130 isolates displayed protease activity and 45 isolates were positive for amylase activity. Our results provide unprecedented information concerning culturable bacterial microbiota of the foam nests of the Leptodactylid frogs, as well as their potential for biomolecules of biotechnological interest.
Collapse
Affiliation(s)
- L G Z Castro
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - M R Sousa
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - L É C Pereira
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - D V Martins
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - F A S Oliveira
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - S G S Bezerra
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - V M M Melo
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - D C Hissa
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| |
Collapse
|
3
|
Fărcaș AC, Socaci SA, Nemeș SA, Salanță LC, Chiș MS, Pop CR, Borșa A, Diaconeasa Z, Vodnar DC. Cereal Waste Valorization through Conventional and Current Extraction Techniques-An Up-to-Date Overview. Foods 2022; 11:foods11162454. [PMID: 36010454 PMCID: PMC9407619 DOI: 10.3390/foods11162454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, in the European Union more than 100 million tons of food are wasted, meanwhile, millions of people are starving. Food waste represents a serious and ever-growing issue which has gained researchers’ attention due to its economic, environmental, social, and ethical implications. The Sustainable Development Goal has as its main objective the reduction of food waste through several approaches such as the re-use of agro-industrial by-products and their exploitation through complete valorization of their bioactive compounds. The extraction of the bioactive compounds through conventional methods has been used for a long time, whilst the increasing demand and evolution for using more sustainable extraction techniques has led to the development of new, ecologically friendly, and high-efficiency technologies. Enzymatic and ultrasound-assisted extractions, microwave-assisted extraction, membrane fractionation, and pressure-based extraction techniques (supercritical fluid extraction, subcritical water extraction, and steam explosion) are the main debated green technologies in the present paper. This review aims to provide a critical and comprehensive overview of the well-known conventional extraction methods and the advanced novel treatments and extraction techniques applied to release the bioactive compounds from cereal waste and by-products.
Collapse
Affiliation(s)
- Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (M.S.C.); Tel.: +40-264-596384 (A.C.F.); +40-(21)-318-2564 (M.S.C.)
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Silvia Amalia Nemeș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Maria Simona Chiș
- Laboratory for Testing Quality and Food Safety, Calea Florești Street, No. 64, 400516 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (M.S.C.); Tel.: +40-264-596384 (A.C.F.); +40-(21)-318-2564 (M.S.C.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Andrei Borșa
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Zorița Diaconeasa
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods 2022; 11:foods11142035. [PMID: 35885279 PMCID: PMC9319240 DOI: 10.3390/foods11142035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Ultrasonic processing has a great potential to transform waste from the food and agriculture industry into value-added products. In this review article, we discuss the use of ultrasound for the valorisation of food and agricultural waste. Ultrasonic processing is considered a green technology as compared to the conventional chemical extraction/processing methods. The influence of ultrasound pre-treatment on the soluble chemical oxygen demand (SCOD), particle size, and cell wall content of food waste is first discussed. The use of ultrasonic processing to produce/extract bioactives such as oil, polyphenolic, polysaccharides, fatty acids, organic acids, protein, lipids, and enzymes is highlighted. Moreover, ultrasonic processing in bioenergy production from food waste such as green methane, hydrogen, biodiesel, and ethanol through anaerobic digestion is also reviewed. The conversion of waste oils into biofuels with the use of ultrasound is presented. The latest developments and future prospective on the use of ultrasound in developing energy-efficient methods to convert food and agricultural waste into value-added products are summarised.
Collapse
|
5
|
Si D, Shang T, Liu X, Zheng Z, Hu Q, Hu C, Zhang R. Production and characterization of functional wheat bran hydrolysate rich in reducing sugars, xylooligosaccharides and phenolic acids. ACTA ACUST UNITED AC 2020; 27:e00511. [PMID: 32775234 PMCID: PMC7397401 DOI: 10.1016/j.btre.2020.e00511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/01/2022]
Abstract
The aim was to enhance production of functional hydrolysate from wheat bran (WB). WB was hydrolyzed with 3000 U/mL ɑ-amylase and 1200 U/mL alkaline protease to prepare WB insoluble dietary fibre (WBIDF). Functional hydrolysate production from the extract containing crude xylan of WBIDF by xylanase was optimized by Taguchi method. The optimal condition for xylan degradation and functional substances production was 78.50 U/mL xylanase, pH 10.0, 50 °C, and reaction time 6 h. The maximum yield of reducing sugars was 614.0 μg/mL, xylobiose increased from 12.9 μg/mL to 213.3 μg/mL, xylotriose increased from 34.9 μg/mL to 174.0 μg/mL, ferulic acid 13.1 μg/mL made up 57.5 % of the total identifiable phenolic pool in the hydrolysate. The total antioxidant activity of hydrolysate was 141.8 mg ascorbic acid equivalents g-1 crude xylan, and the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity reached 92.7 %. The hydrolysate exhibited great potential in agricultural and food industry application.
Collapse
Key Words
- AAE, ascorbic acid equivalents
- ANOVA, analysis of variance
- Antioxidant capacity
- DAD, diode array detector
- DNS, dinitrosalicylic acid
- DP, degree of polymerization
- DPPH, 1,1-diphenyl-2-picrylhydrazyl
- Hydrolysis optimization
- Phenolic acids
- Reducing sugars
- WB, wheat bran
- WBIDF, wheat bran insoluble dietary fibre
- Wheat bran
- X2, xylobiose
- X3, xylotriose
- X4, xylotetraose
- X5, xylopentose
- X6, xylohexose
- XOS, xylooligosaccharides
- Xylooligosaccharides
Collapse
Affiliation(s)
- Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Tingting Shang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China.,Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Key Laboratory for Feed Biotechnology, No. 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
| | - Xuhui Liu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Zhaojun Zheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Qingyong Hu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Cong Hu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
6
|
Li Q, Sun H, Zhang M, Wu T. Characterization of the flavor compounds in wheat bran and biochemical conversion for application in food. J Food Sci 2020; 85:1427-1437. [PMID: 32339265 DOI: 10.1111/1750-3841.14965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022]
Abstract
Wheat bran, an abundant and low-cost by-product from agricultural processing, can be used as an alternative food resource. Biochemical conversion of wheat bran to food ingredient involves pretreatments of bran to enhance its acceptability. In this work, the effects of the Maillard reaction and enzymolysis on flavor properties of wheat bran and sensory evaluation of steamed buns fortified with wheat bran were analyzed using GC-MS combined with sensory evaluation. The results showed that the Maillard reaction and enzymatic hydrolysis, as well as flavoring process, could effectively improve the flavor profiles of wheat bran. The flavor compounds in modified wheat bran products as well as its fuzzy sensory score increased significantly (P < 0.05) compared with those in commercially available dry malt extract. Additionally, steamed buns fortified with wheat bran had enhanced flavor and overall acceptability. The study can be useful in valorization a plethora of grain bran (waste) into valuable resources.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Nutrition and Safety, Tianjin Univ. of Science & Technology, Tianjin, 300457, PR China
| | - Haoran Sun
- State Key Laboratory of Nutrition and Safety, Tianjin Univ. of Science & Technology, Tianjin, 300457, PR China
| | - Min Zhang
- State Key Laboratory of Nutrition and Safety, Tianjin Univ. of Science & Technology, Tianjin, 300457, PR China.,Tianjin Agricultural Univ., Tianjin, 300384, PR China.,Tianjin Univ. of Science and Technology, Inst. for New Rural Development, Tianjin, China
| | - Tao Wu
- State Key Laboratory of Nutrition and Safety, Tianjin Univ. of Science & Technology, Tianjin, 300457, PR China
| |
Collapse
|
7
|
Zhao J, Xu Y, Zhang M, Wang D. Integrating bran starch hydrolysates with alkaline pretreated soft wheat bran to boost sugar concentration. BIORESOURCE TECHNOLOGY 2020; 302:122826. [PMID: 32000133 DOI: 10.1016/j.biortech.2020.122826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 05/17/2023]
Abstract
Soft wheat bran (SWB), one of the most abundant byproducts from the wheat milling industry, is a potential candidate for biofuel production. In this study, bran starch hydrolysates were separately integrated with dilute acid pretreated SWB and alkaline pretreated SWB to boost fermentable sugar concentration. Alkaline pretreatment showed higher sugar recoveries than acid pretreatment. Significant sugar degradation for acid pretreatment was observed when pretreatment temperature higher than 170 ℃. The optimal pretreatment condition was 15% solid loading with 0.08 mol/L NaOH at 150 ℃ for 20 min. The neutralization reaction between dilute alkaline and released acids reduced sugar decomposition and inhibitors formation. Integrating bran starch hydrolysates with alkaline pretreated SWB yielded the highest glucose concentration of 50.91 g/L and a total sugar concentration of 101.29 g/L.
Collapse
Affiliation(s)
- Jikai Zhao
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, United States
| | - Youjie Xu
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, United States
| | - Meng Zhang
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, United States
| | - Donghai Wang
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
8
|
Valorization of Wheat Byproducts for the Co-Production of Packaging Material and Enzymes. ENERGIES 2020. [DOI: 10.3390/en13061300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Waste management systems are overloaded with huge streams of plastic, a large part of this being originated from packaging. Additionally, the production of wheat, one of the most cultivated crops in the world, generates low-value lignocellulosic materials, which are mostly discarded. In this study, the wheat lignocellulosic byproducts straw and bran were used for the co-production of enzymes and bio-based materials with possible application as packaging via the compression molding method. The mechanical properties of the films were studied based on the effects of the removal of lignin by alkali and biological pretreatment, the growth of filamentous fungi, the size of the particles, and the enzyme recovery. Generally, the straw films were stiffer than the bran ones, but the highest Young’s modulus was obtained for the biologically pretreated bran (1074 MPa). The addition of a step to recover the fungal cellulases produced during the cultivation had no statistical effect on the mechanical properties of the films. Moreover, alkali and biological pretreatments improved the anaerobic biodegradability of the straw films. Thus, the wheat bran and straw can be used for the co-production of enzymes, materials, and biogas, potentially changing how wheat and packaging wastes are managed.
Collapse
|
9
|
Alokika, Singh B. Production, characteristics, and biotechnological applications of microbial xylanases. Appl Microbiol Biotechnol 2019; 103:8763-8784. [PMID: 31641815 DOI: 10.1007/s00253-019-10108-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 01/29/2023]
Abstract
Microbial xylanases have gathered great attention due to their biotechnological potential at industrial scale for many processes. A variety of lignocellulosic materials, such as sugarcane bagasse, rice straw, rice bran, wheat straw, wheat bran, corn cob, and ragi bran, are used for xylanase production which also solved the great issue of solid waste management. Both solid-state and submerged fermentation have been used for xylanase production controlled by various physical and nutritional parameters. Majority of xylanases have optimum pH in the range of 4.0-9.0 with optimum temperature at 30-60 °C. For biochemical, molecular studies and also for successful application in industries, purification and characterization of xylanase have been carried out using various appropriate techniques. Cloning and genetic engineering are used for commercial-level production of xylanase, to meet specific economic viability and industrial needs. Microbial xylanases are used in various biotechnological applications like biofuel production, pulp and paper industry, baking and brewing industry, food and feed industry, and deinking of waste paper. This review describes production, characteristics, and biotechnological applications of microbial xylanases.
Collapse
Affiliation(s)
- Alokika
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India. .,Department of Biotechnology, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
10
|
Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. SUSTAINABILITY 2017. [DOI: 10.3390/su9081492] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Shang T, Si D, Zhang D, Liu X, Zhao L, Hu C, Fu Y, Zhang R. Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation. BMC Biotechnol 2017. [PMID: 28633643 PMCID: PMC5479016 DOI: 10.1186/s12896-017-0361-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xylanase degrades xylan into monomers of various sizes by catalyzing the endohydrolysis of the 1,4-β-D-xylosidic linkage randomly, possessing potential in wide industrial applications. Most of xylanases are susceptible to be inactive when suffering high temperature and high alkaline process. Therefore, it is necessary to develop a high amount of effective thermoalkaliphilic xylanases. This study aims to enhance thermoalkaliphilic xylanase production in Pichia pastoris through fermentation parameters optimization and novel efficient fed-batch strategy in high cell-density fermentation. RESULTS Recombinant xylanase activity increased 12.2%, 7.4%, 12.0% and 9.9% by supplementing the Pichia pastoris culture with 20 g/L wheat bran, 5 mg/L L-histidine, 10 mg/L L-tryptophan and 10 mg/L L-methionine in shake flasks, respectively. Investigation of nutritional fermentation parameters, non-nutritional fermentation parameters and feeding strategies in 1 L bioreactor and 1 L shake flask revealed that glycerol and methanol feeding strategies were the critical factors for high cell density and xylanase activity. In 50 L bioreactor, a novel glycerol feeding strategy and a four-stage methanol feeding strategy with a stepwise increase in feeding rate were developed to enhance recombinant xylanase production. In the initial 72 h of methanol induction, the linear dependence of xylanase activity on methanol intake was observed (R2 = 0.9726). The maximum xylanase activity was predicted to be 591.2 U/mL, while the actual maximum xylanase activity was 560.7 U/mL, which was 7.05 times of that in shake flask. Recombinant xylanase retained 82.5% of its initial activity after pre-incubation at 80 °C for 50 min (pH 8.0), and it exhibited excellent stability in the broad temperature (60-80 °C) and pH (pH 8.0-11.0) ranges. CONCLUSIONS Efficient glycerol and methanol fed-batch strategies resulting in desired cell density and xylanase activity should be applied in other P. pastoris fermentation for other recombinant proteins production. Recombinant xylanases with high pH- and thermal-stability showed potential in various industrial applications.
Collapse
Affiliation(s)
- Tingting Shang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Dongyan Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuhui Liu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Longmei Zhao
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Cong Hu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yu Fu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
12
|
Li J, Sun J, Wu B, He B. Combined utilization of nutrients and sugar derived from wheat bran for d-Lactate fermentation by Sporolactobacillus inulinus YBS1-5. BIORESOURCE TECHNOLOGY 2017; 229:33-38. [PMID: 28092734 DOI: 10.1016/j.biortech.2016.12.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
To decrease d-Lactate production cost, wheat bran, a low-cost waste of milling industry, was selected as the sole feedstock. First, the nutrients were recovered from wheat bran by acid protease hydrolysis. Then, cellulosic hydrolysates were prepared from protease-treated samples after acid pretreatment and enzymatic saccharification. The combined use of nutrients and hydrolysates as nitrogen and carbon sources for fermentation by S. inulinus YB1-5 resulted in d-Lactate levels of 99.5g/L, with an average production efficiency of 1.94g/L/h and a yield of 0.89g/g glucose. Moreover, fed-batch simultaneous saccharification and fermentation process at 40°C, 20% (w/v) solid loading and 20FPU/g solid cellulase concentration was obtained. d-Lactate concentrations, yield, productivity, and optical purity were 87.3g/L, 0.65g/g glucose, 0.81g/L/h and 99.1%, respectively. This study provided a feasible procedure that can help produce cellulosic d-Lactate using agricultural waste without external nutrient supplementation.
Collapse
Affiliation(s)
- Jiahuang Li
- School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Junfei Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China.
| | - Bingfang He
- Jiangsu National Synergetic Innovation Center for Advanced Materials, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China; School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| |
Collapse
|
13
|
Osipov DO, Bulakhov AG, Korotkova OG, Rozhkova AM, Duplyakin EO, Afonin AV, Sereda AS, Sinitsyn AP. Effect of the milling of wheat bran on its properties and reactivity during biocatalytic conversion. CATALYSIS IN INDUSTRY 2017. [DOI: 10.1134/s2070050417010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|