1
|
Salo W, Considine JA, Considine MJ. Influence of mixed and single infection of grapevine leafroll-associated viruses and viral load on berry quality. TREE PHYSIOLOGY 2024; 44:tpae035. [PMID: 38501881 PMCID: PMC11070139 DOI: 10.1093/treephys/tpae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Grapevine leafroll disease is a viral disease that affects grapevines (Vitis vinifera L.) and has a severe economic impact on viticulture. In this study, the effect of grapevine leafroll-associated viruses (GLRaV) on berry quality was investigated in clones of cultivar cv. Crimson Seedless table grapes infected with GLRaV. RT-PCR confirmed the identity of the clones: clone 3236, infected only with GLRaV-3 (termed single); clone 3215, infected with GLRaV-3, GLRaV-4 strain 9 and grapevine virus A (termed mixed); and a viral free clone of the same genetic background of the infected clones (termed control). The berry quality indices of size, sugar, acidity and anthocyanin content were measured at harvest maturity. RT-qPCR was used to determine the viral load. The study was repeated over 2 year. A two-way, multivariate analysis of variance was applied with clone and year as independent variables and the measured berry quality parameters as a dependent variable. All dependent variables were significantly affected by viral infection (Wilks, λ, (2,33) = 0.033895, P-value <0.001), while only titratable acidity was affected by year. The average berry dry mass decreased (P-value <0.001). The water content of both infected clones was greater than that of the control (P-value <0.001). Both infected clones displayed reduced sugar content as a fraction of the berry dry mass (P-value <0.001). The anthocyanin and the phenol content of the infected clones were significantly reduced compared with the control clone (P < 0.001, P < 0.05, clone 3236 and clone 3215, respectively). Finally, the viral load was highly variable, and no quantitative relationship between viral load and berry composition was found.
Collapse
Affiliation(s)
- Wisam Salo
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia
- The School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - John A Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia
- The School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia
- The School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
- Department of Primary Industries and Regional Development, Perth 6009, Australia
| |
Collapse
|
2
|
Zhang B, Zhang M, Jia X, Hu G, Ren F, Fan X, Dong Y. Integrated Transcriptome and Metabolome Dissecting Interaction between Vitis vinifera L. and Grapevine Fabavirus. Int J Mol Sci 2023; 24:3247. [PMID: 36834661 PMCID: PMC9961852 DOI: 10.3390/ijms24043247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Grapevine fabavirus (GFabV) is a novel member of the Fabavirus genus associated with chlorotic mottling and deformation symptoms in grapevines. To gain insights into the interaction between GFabV and grapevines, V. vinifera cv. 'Summer Black' infected with GFabV was investigated under field conditions through physiological, agronomic, and multi-omics approaches. GFabV induced significant symptoms on 'Summer Black', and caused a moderate decrease in physiological efficiency. In GFabV-infected plants, alterations in carbohydrate- and photosynthesis-related genes might trigger some defense responses. In addition, secondary metabolism involved in plant defense was progressively induced by GFabV. Jasmonic acid and ethylene signaling were down-regulated in GFabV-infected leaves and berries along with the expression of proteins related to LRR and protein kinases, suggesting that GFabV can block the defense in healthy leaves and berries. Furthermore, this study provided biomarkers for early monitoring of GFabV infection in grapevines, and contributed to a better understanding of the complex grapevine-virus interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Xudong Fan
- National Center for Eliminating Viruses from Deciduous Fruit Trees, Research Institute of Pomology, Chinese Academy of Agriculture Sciences, Xingcheng 125100, China
| | - Yafeng Dong
- National Center for Eliminating Viruses from Deciduous Fruit Trees, Research Institute of Pomology, Chinese Academy of Agriculture Sciences, Xingcheng 125100, China
| |
Collapse
|
3
|
Lee J, Rennaker CD, Thompson BD, Dahan J, Karasev AV. Idaho ‘cabernet sauvignon’ grape composition altered by grapevine leafroll-associated virus 3. NFS JOURNAL 2023. [DOI: 10.1016/j.nfs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Song Y, Hanner RH, Meng B. Transcriptomic Analyses of Grapevine Leafroll-Associated Virus 3 Infection in Leaves and Berries of 'Cabernet Franc'. Viruses 2022; 14:v14081831. [PMID: 36016453 PMCID: PMC9415066 DOI: 10.3390/v14081831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the most important viruses affecting global grape and wine production. GLRaV-3 is the chief agent associated with grapevine leafroll disease (GLRD), the most prevalent and economically destructive grapevine viral disease complex. Response of grapevine to GLRaV-3 infection at the gene expression level is poorly characterized, limiting the understanding of GLRaV-3 pathogenesis and viral-associated symptom development. In this research, we used RNA-Seq to profile the changes in global gene expression of Cabernet franc, a premium red wine grape, analyzing leaf and berry tissues at three key different developmental stages. We have identified 1457 differentially expressed genes (DEGs) in leaves and 1181 DEGs in berries. The expression profiles of a subset of DEGs were validated through RT-qPCR, including those involved in photosynthesis (VvPSBP1), carbohydrate partitioning (VvSUT2, VvHT5, VvGBSS1, and VvSUS), flavonoid biosynthesis (VvUFGT, VvLAR1, and VvFLS), defense response (VvPR-10.3, and VvPR-10.7), and mitochondrial activities (ETFB, TIM13, and NDUFA1). GLRaV-3 infection altered source-sink relationship between leaves and berries. Photosynthesis and photosynthate assimilation were inhibited in mature leaves while increased in young berries. The expression of genes involved in anthocyanin biosynthesis increased in GLRaV-3-infected leaves, correlating with interveinal tissue reddening, a hallmark of GLRD symptoms. Notably, we identified changes in gene expression that suggest a compromised sugar export and increased sugar retrieval in GLRaV-3-infected leaves. Genes associated with mitochondria were down-regulated in both leaves and berries of Cabernet franc infected with GLRaV-3. Results of the present study suggest that GLRaV-3 infection may disrupt mitochondrial function in grapevine leaves, leading to repressed sugar export and accumulation of sugar in mature leaf tissues. The excessive sugar accumulation in GLRaV-3-infected leaves may trigger downstream GLRD symptom development and negatively impact berry quality. We propose a working model to account for the molecular events underlying the pathogenesis of GLRaV-3 and symptom development.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert H. Hanner
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 53876)
| |
Collapse
|
5
|
El Aou-ouad H, Montero R, Baraza E, Bota J. Recovering Ancient Grapevine Cultivars in the Balearic Islands: Sanitary Status Evaluation and Virus Elimination. PLANTS (BASEL, SWITZERLAND) 2022; 11:1754. [PMID: 35807705 PMCID: PMC9268875 DOI: 10.3390/plants11131754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Recuperation and genetic diversity preservation of local cultivars have acquired a huge interest in viticulture areas worldwide. In the Balearic Islands, most of the old cultivars are only preserved in grapevine germplasm banks, and so far, the sanitary status of these local cultivars has remained unexplored. The aim of this study was to survey and detect the virus incidence of all conserved cultivars in the government Grapevine Germplasm Bank of the Balearic Islands and to promote the sanitary recovery of two important minor cultivars, Argamussa and Gorgollassa. Enzyme-linked immunosorbent assay (ELISA) screenings were performed on 315 vines of 33 local cultivars. It was shown that the local cultivars were highly infected with simple (39.7%) and mixed infections (52.1%) and only 8.25% of them were free from the viruses tested. Grapevine leafroll-associated virus 3 (GLRaV-3) infection was the most common (82%). Moreover, Grapevine fanleaf virus (GFLV) and Grapevine fleck virus (GFkV) were also present with considerable incidence (25.4% and 43.5%, respectively). In addition, two sanitation protocols were used: shoot tip culture (ST) and thermotherapy in combination with shoot tip culture (CT). Virus elimination using only ST was effective to obtain "healthy" vines of cvs. Argamussa and Gorgollassa. It is important to emphasize that the methods described in the current study were rapid and effective in eliminating both GLRaV-3 and GFLV, also in combination.
Collapse
Affiliation(s)
- Hanan El Aou-ouad
- Research Group on Plant Biology under Mediterranean Conditions (PlantMed), Biology Department, Agro-Environmental and Water Economy Institute-Universitat de les Illes Balears (INAGEA-UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Spain; (H.E.A.-o.); (R.M.); (E.B.)
- Ecology and Environment Laboratory, Faculty of Science Ben M’sik, University Hassan II, Casablanca 20000, Morocco
| | - Rafael Montero
- Research Group on Plant Biology under Mediterranean Conditions (PlantMed), Biology Department, Agro-Environmental and Water Economy Institute-Universitat de les Illes Balears (INAGEA-UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Spain; (H.E.A.-o.); (R.M.); (E.B.)
| | - Elena Baraza
- Research Group on Plant Biology under Mediterranean Conditions (PlantMed), Biology Department, Agro-Environmental and Water Economy Institute-Universitat de les Illes Balears (INAGEA-UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Spain; (H.E.A.-o.); (R.M.); (E.B.)
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions (PlantMed), Biology Department, Agro-Environmental and Water Economy Institute-Universitat de les Illes Balears (INAGEA-UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Spain; (H.E.A.-o.); (R.M.); (E.B.)
| |
Collapse
|
6
|
Grapevine Leafroll-Associated Virus 3 Genotype Influences Foliar Symptom Development in New Zealand Vineyards. Viruses 2022; 14:v14071348. [PMID: 35891330 PMCID: PMC9316759 DOI: 10.3390/v14071348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Grapevine leafroll disease (GLD) constrains wine production worldwide. In New Zealand, the main causal agent of GLD is grapevine leafroll-associated virus 3 (GLRaV-3). To control GLD, an integrated management program is used and includes removing (roguing) GLRaV-3-infected vines from the vineyard. The classical foliar symptoms from virus-infected red-berry cultivars are leaves with dark red intervein, green veins, and downward rolling of margins. Growers use these phenotypic cues to undertake visual symptom identification (VSI) for GLD. However, the influence of the known large genetic variation among GLRaV-3 isolates on the foliar symptoms from different grapevine cultivars remains undescribed, especially in cool-climate growing environments, such as New Zealand. Over three vintages (2015, 2016, and 2017), VSI for GLD was undertaken at three field sites in New Zealand (Auckland, Hawke’s Bay, and Marlborough), each including four cultivars (Merlot, Pinot noir, Sauvignon blanc, and Pinot gris) infected with three GLRaV-3 genotypes (Groups I, VI, and X) or GLRaV-3-uninfected control plants. Throughout this study, no visual symptoms were observed on white-berry cultivars infected with GLRaV-3. For red-berry cultivars, the greatest variability in observed foliar symptoms among regional study sites, cultivars, and GLRaV-3 genotypes was observed early in the growing season. In particular, Group X had significantly delayed symptom expression across all three sites compared with Groups I and VI. As the newly infected, young vines matured in years 2 and 3, the GLRaV-3 genotype, cultivar, region, and environmental conditions had minimal influence on the accuracy of VSI, with consistently high (>95%) within-vintage identification by the end of each vintage. The results from this study strongly support the use of VSI for the GLD management of red-berry cultivar grapevines, Merlot and Pinot noir, as a reliable and cost-effective tool against GLD.
Collapse
|
7
|
Reynard JS, Brodard J, Zufferey V, Rienth M, Gugerli P, Schumpp O, Blouin AG. Nuances of Responses to Two Sources of Grapevine Leafroll Disease on Pinot Noir Grown in the Field for 17 Years. Viruses 2022; 14:1333. [PMID: 35746804 PMCID: PMC9227476 DOI: 10.3390/v14061333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Grapevine leafroll disease (GLD) is one of the most economically damaging virus diseases in grapevine, with grapevine leafroll-associated virus 1 (GLRaV-1) and grapevine leafroll-associated virus 3 (GLRaV-3) as the main contributors. This study complements a previously published transcriptomic analysis and compared the impact of two different forms of GLD to a symptomless control treatment: a mildly symptomatic form infected with GLRaV-1 and a severe form with exceptionally early leafroll symptoms (up to six weeks before veraison) infected with GLRaV-1 and GLRaV-3. Vine physiology and fruit composition in 17-year-old Pinot noir vines were measured and a gradient of vigor, yield, and berry quality (sugar content and berry weight) was observed between treatments. Virome composition, confirmed by individual RT-PCR, was compared with biological indexing. Three divergent viromes were recovered, containing between four to seven viruses and two viroids. They included the first detection of grapevine asteroid mosaic-associated virus in Switzerland. This virus did not cause obvious symptoms on the indicators used in biological indexing. Moreover, the presence of grapevine virus B (GVB) did not cause the expected corky bark symptoms on the indicators, thus underlining the important limitations of the biological indexing. Transmission of GLRaV-3 alone or in combination with GVB by Planococcus comstocki mealybug did not reproduce the strong symptoms observed on the donor plant infected with a severe form of GLD. This result raises questions about the contribution of each virus to the symptomatology of the plant.
Collapse
Affiliation(s)
| | - Justine Brodard
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| | - Vivian Zufferey
- Groupe Viticulture, Agroscope, 1009 Pully, Switzerland; (J.-S.R.); (V.Z.)
| | - Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, 1260 Nyon, Switzerland;
| | - Paul Gugerli
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| | - Olivier Schumpp
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| | - Arnaud G. Blouin
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| |
Collapse
|
8
|
Avital A, Muzika NS, Persky Z, Karny A, Bar G, Michaeli Y, Shklover J, Shainsky J, Weissman H, Shoseyov O, Schroeder A. Foliar Delivery of siRNA Particles for Treating Viral Infections in Agricultural Grapevines. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101003. [PMID: 34744552 PMCID: PMC7611933 DOI: 10.1002/adfm.202101003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 05/05/2023]
Abstract
Grapevine leafroll disease (GLD) is a globally spreading viral infection that causes major economic losses by reducing crop yield, plant longevity and berry quality, with no effective treatment. Grapevine leafroll associated virus-3 (GLRaV-3) is the most severe and prevalent GLD strain. Here, we evaluated the ability of RNA interference (RNAi), a non-GMO gene-silencing pathway, to treat GLRaV-3 in infected Cabernet Sauvignon grapevines. We synthesized lipid-modified polyethylenimine (lmPEI) as a carrier for long double-stranded RNA (dsRNA, 250-bp-long) that targets RNA polymerase and coat protein genes that are conserved in the GLRaV-3 genome. Self-assembled dsRNA-lmPEI particles, 220 nm in diameter, displayed inner ordered domains spaced 7.3±2 nm from one another, correlating to lmPEI wrapping spirally around the dsRNA. The particles effectively protected RNA from degradation by ribonucleases, and Europium-loaded particles applied to grapevine leaves were detected as far as 60-cm from the foliar application point. In three field experiments, a single dose of foliar administration knocked down GLRaV-3 titer, and multiple doses of the treatment kept the viral titer at baseline and triggered recovery of the vine and berries. This study demonstrates RNAi as a promising platform for treating viral diseases in agriculture.
Collapse
Affiliation(s)
- Aviram Avital
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Noy Sadot Muzika
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Zohar Persky
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Avishai Karny
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Gili Bar
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Yuval Michaeli
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Janna Shainsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Haim Weissman
- The Weizmann Institute of Science, Department of Organic Chemistry, Rehovot 76100, Israel
| | - Oded Shoseyov
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
9
|
Vondras AM, Lerno L, Massonnet M, Minio A, Rowhani A, Liang D, Garcia J, Quiroz D, Figueroa‐Balderas R, Golino DA, Ebeler SE, Al Rwahnih M, Cantu D. Rootstock influences the effect of grapevine leafroll-associated viruses on berry development and metabolism via abscisic acid signalling. MOLECULAR PLANT PATHOLOGY 2021; 22:984-1005. [PMID: 34075700 PMCID: PMC8295520 DOI: 10.1111/mpp.13077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 05/14/2023]
Abstract
Grapevine leafroll-associated virus (GLRaV) infections are accompanied by symptoms influenced by host genotype, rootstock, environment, and which individual or combination of GLRaVs is present. Using a dedicated experimental vineyard, we studied the responses to GLRaVs in ripening berries from Cabernet Franc grapevines grafted to different rootstocks and with zero, one, or pairs of leafroll infection(s). RNA sequencing data were mapped to a high-quality Cabernet Franc genome reference assembled to carry out this study and integrated with hormone and metabolite abundance data. This study characterized conserved and condition-dependent responses to GLRaV infection(s). Common responses to GLRaVs were reproduced in two consecutive years and occurred in plants grafted to different rootstocks in more than one infection condition. Though different infections were inconsistently distinguishable from one another, the effects of infections in plants grafted to different rootstocks were distinct at each developmental stage. Conserved responses included the modulation of genes related to pathogen detection, abscisic acid (ABA) signalling, phenylpropanoid biosynthesis, and cytoskeleton remodelling. ABA, ABA glucose ester, ABA and hormone signalling-related gene expression, and the expression of genes in several transcription factor families differentiated the effects of GLRaVs in berries from Cabernet Franc grapevines grafted to different rootstocks. These results support that ABA participates in the shared responses to GLRaV infection and differentiates the responses observed in grapevines grafted to different rootstocks.
Collapse
Affiliation(s)
- Amanda M. Vondras
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Larry Lerno
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Mélanie Massonnet
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Andrea Minio
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Adib Rowhani
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Dingren Liang
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Jadran Garcia
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Daniela Quiroz
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Deborah A. Golino
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Susan E. Ebeler
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Maher Al Rwahnih
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Dario Cantu
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
10
|
McGreal B, Sandanayaka M, Gough R, Rohra R, Davis V, Marshall CW, Richards K, Bell VA, Chooi KM, MacDiarmid RM. Retention and Transmission of Grapevine Leafroll-Associated Virus 3 by Pseudococcus calceolariae. Front Microbiol 2021; 12:663948. [PMID: 34054767 PMCID: PMC8149732 DOI: 10.3389/fmicb.2021.663948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3), an economically significant pathogen of grapevines, is transmitted by Pseudococcus calceolariae, a mealybug commonly found in New Zealand vineyards. To help inform alternative GLRaV-3 control strategies, this study evaluated the three-way interaction between the mealybug, its plant host and the virus. The retention and transmission of GLRaV-3 by P. calceolariae after access to non-Vitis host plants (and a non-GLRaV-3 host) White clover (Trifolium repens L. cv. “Grasslands Huia white clover”), Crimson clover (T. incarnatum), and Nicotiana benthamiana (an alternative GLRaV-3 host) was investigated. For all experiments, P. calceolariae first instars with a 4 or 6 days acquisition access period on GLRaV-3-positive grapevine leaves were used. GLRaV-3 was detected in mealybugs up to 16 days on non-Vitis plant hosts but not after 20 days. GLRaV-3 was retained by second instars (n = 8/45) and exuviae (molted skin, n = 6/6) following a 4 days acquisition period on infected grapevines leaves and an 11 days feeding on non-Vitis plant hosts. Furthermore, GLRaV-3 was transmitted to grapevine (40−60%) by P. calceolariae second instars after access to white clover for up to 11 days; 90% transmission to grapevine was achieved when no alternative host feeding was provided. The 16 days retention period is the longest observed in mealybug vectoring of GLRaV-3. The results suggest that an alternative strategy of using ground-cover plants as a disrupter of virus transmission may be effective if mealybugs settle and continue to feed on them for 20 or more days.
Collapse
Affiliation(s)
- Brogan McGreal
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Manoharie Sandanayaka
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Rebecca Gough
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Roshni Rohra
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Vicky Davis
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Christina W Marshall
- The New Zealand Institute for Plant and Food Research Limited (PFR), Hastings, New Zealand
| | - Kate Richards
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Vaughn A Bell
- The New Zealand Institute for Plant and Food Research Limited (PFR), Hastings, New Zealand
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Song Y, Hanner RH, Meng B. Probing into the Effects of Grapevine Leafroll-Associated Viruses on the Physiology, Fruit Quality and Gene Expression of Grapes. Viruses 2021; 13:v13040593. [PMID: 33807294 PMCID: PMC8066071 DOI: 10.3390/v13040593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Grapevine leafroll is one of the most widespread and highly destructive grapevine diseases that is responsible for great economic losses to the grape and wine industries throughout the world. Six distinct viruses have been implicated in this disease complex. They belong to three genera, all in the family Closteroviridae. For the sake of convenience, these viruses are named as grapevine leafroll-associated viruses (GLRaV-1, -2, -3, -4, -7, and -13). However, their etiological role in the disease has yet to be established. Furthermore, how infections with each GLRaV induce the characteristic disease symptoms remains unresolved. Here, we first provide a brief overview on each of these GLRaVs with a focus on genome structure, expression strategies and gene functions, where available. We then provide a review on the effects of GLRaV infection on the physiology, fruit quality, fruit chemical composition, and gene expression of grapevine based on the limited information so far reported in the literature. We outline key methodologies that have been used to study how GLRaV infections alter gene expression in the grapevine host at the transcriptomic level. Finally, we present a working model as an initial attempt to explain how infections with GLRaVs lead to the characteristic symptoms of grapevine leafroll disease: leaf discoloration and downward rolling. It is our hope that this review will serve as a starting point for grapevine virology and the related research community to tackle this vastly important and yet virtually uncharted territory in virus-host interactions involving woody and perennial fruit crops.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Robert H. Hanner
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 53876)
| |
Collapse
|
12
|
Chitarra W, Cuozzo D, Ferrandino A, Secchi F, Palmano S, Perrone I, Boccacci P, Pagliarani C, Gribaudo I, Mannini F, Gambino G. Dissecting interplays between Vitis vinifera L. and grapevine virus B (GVB) under field conditions. MOLECULAR PLANT PATHOLOGY 2018; 19:2651-2666. [PMID: 30055094 PMCID: PMC6638183 DOI: 10.1111/mpp.12735] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant virus infections are often difficult to characterize as they result from a complex molecular and physiological interplay between a pathogen and its host. In this study, the impact of the phloem-limited grapevine virus B (GVB) on the Vitis vinifera L. wine-red cultivar Albarossa was analysed under field conditions. Trials were carried out over two growing seasons by combining agronomic, molecular, biochemical and ecophysiological approaches. The data showed that GVB did not induce macroscopic symptoms on 'Albarossa', but affected the ecophysiological performances of vines in terms of assimilation rates, particularly at the end of the season, without compromising yield and vigour. In GVB-infected plants, the accumulation of soluble carbohydrates in the leaves and transcriptional changes in sugar- and photosynthetic-related genes seemed to trigger defence responses similar to those observed in plants infected by phytoplasmas, although to a lesser extent. In addition, GVB activated berry secondary metabolism. In particular, total anthocyanins and their acetylated forms accumulated at higher levels in GVB-infected than in GVB-free berries, consistent with the expression profiles of the related biosynthetic genes. These results contribute to improve our understanding of the multifaceted grapevine-virus interaction.
Collapse
Affiliation(s)
- Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)Via XVIII Aprile 26Conegliano31015Italy
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Danila Cuozzo
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Alessandra Ferrandino
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Francesca Secchi
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Irene Perrone
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Franco Mannini
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| |
Collapse
|
13
|
El Aou-Ouad H, Montero R, Medrano H, Bota J. Interactive effects of grapevine leafroll-associated virus 3 (GLRaV-3) and water stress on the physiology of Vitis vinifera L. cv. Malvasia de Banyalbufar and Giro-Ros. JOURNAL OF PLANT PHYSIOLOGY 2016; 196-197:106-115. [PMID: 27153513 DOI: 10.1016/j.jplph.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Among several biotic and abiotic stress combinations, interaction between drought and pathogen is one of the most studied combinations in some crops but still not in grapevine. In the present work, we focused on the interaction effects of biotic (GLRaV-3) and abiotic (drought) stresses on grapevine photosynthetic metabolism on two cultivars (cvs. 'Malvasia de Banyalbufar and Giro-Ros'). Non-infected and GLRaV-3 infected potted plants were compared under water stress conditions (WS) and well-watered (WW) conditions. Under WW condition, the results showed that photosynthesis (AN) in both cultivars was decreased by the presence of GLRaV-3. The stomatal conductance (gs) was the main factor for decreasing AN in Malvasia, meanwhile reductions in Giro-Ros were closely related to decreases in gm. The observed differences in gm between both cultivars might result from variation in their leaf anatomical, Giro-Ros having higher values of gm and leaf porosity (in all treatments). Moderate water deficit resulted in a closure of stomata and a decrease in gm accompanied by a decrease in AN in both cultivars. The maximum velocity of carboxylation (Vcmax) and electron transport rate (Jmax) were also reduced under water stress. Moreover, the combined stress resulted in a reduction of most physiological parameters compared to healthy irrigated plants. However, no considerable differences were found between non-infected and virus infected (GLRaV-3) plants under water stress. Most of the results could be explained by the difference of virus concentration between cultivars and treatments.
Collapse
Affiliation(s)
- Hanan El Aou-Ouad
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Rafael Montero
- Institut de Recerca i Formació Agrària i Pesquera (IRFAP), Conselleria d'Agricultura, Medi Ambient i Territori, Govern de les Illes Balears, C/Eusebio Estada n° 145, 07009, Palma de Mallorca, Spain
| | - Hipólito Medrano
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Josefina Bota
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain.
| |
Collapse
|