1
|
Wang Y, Teng H, Bai S, Li C, Wang Y, Ma L, Zhang Y, Chen L. Pickering emulsion of camellia oil stabilized by Octenyl succinic acid starch: Interaction, lipid oxidation and digestibility. Int J Biol Macromol 2024; 279:135108. [PMID: 39244123 DOI: 10.1016/j.ijbiomac.2024.135108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
The application of camellia oil is limited by its susceptibility to oxidation and insolubility in water, particularly under high humidity and temperature conditions. In order to effectively reduce the oxidation rate of camellia oil, prolong the shelf life in order to improve the stability in storage under different conditions, this study encapsulates camellia oil in Pickering emulsions stabilized by Octenyl succinic acid (OSA) starch, achieving a 100-fold reduction in release rate and enhanced lipid oxidation stability. The smooth surface and complete particles of the emulsion were observed and no new chemical bonds were formed. The minimum particle sizes were 1.72 μm and 2.73 μm, when the Pickering emulsion was set at pH 6 and 0.1 M NaCl. In the digestion process, the microstructures observed that Pickering emulsion possessed super stability against oral and gastric digestions, prolonged the release time and improved the bioavailability compared with camellia oil, and the digestibility of the emulsion was 56.16 % within 120 min. All these results indicate that OSA-starch stabilized camellia oil can effectively increase solubility, improve stability and expand the application range.
Collapse
Affiliation(s)
- Yitong Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shuxian Bai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chen Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ye Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Linyin Ma
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China.
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Liu T, Shi HM, Elejalde U, Chen X. Classification of Sesame Oil Based on Processing-Originated Differences in the Volatile Organic Compound Profile by a Colorimetric Sensor. Foods 2024; 13:3230. [PMID: 39456292 PMCID: PMC11507991 DOI: 10.3390/foods13203230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Fragrant edible sesame oil is popular for its unique aroma. The aroma of sesame oil is determined by its volatile organic compound (VOC) profile. Sesame oils produced by different techniques could have different VOC profiles. In addition, blending fragrant sesame oil with refined oil could also alter the VOC profile of the final product. Current practices in aroma analysis, such as sensory evaluation and gas chromatography (GC), still face many restraints. Hence, there is a need for alternatives. We present a novel 14-unit multiplexed paper-based colorimetric sensor for fragrant sesame oil VOC analysis. The sensor was designed to visualize the VOC profile as a color "fingerprint". The sensor was validated with 55 branded sesame oil samples produced by two different techniques, i.e., hot pressing and small milling; the experimental results suggested a processing dependency in color VOC fingerprints. The sensor also demonstrated the potential to detect the change in sesame oil VOC profile due to blending with refined oil, with an estimated limit of detection down to 20% v/v of the refined oil. The colorimetric sensor might be used as a simple, rapid, and cost-effective analytical tool in the production and quality control of fragrant sesame oil.
Collapse
Affiliation(s)
- Tianyi Liu
- Wilmar Innovation Center, Wilmar International HQ, 28 Biopolis Rd., Singapore 138568, Singapore;
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Hai-Ming Shi
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., 118 Gao Dong Rd., Shanghai 200137, China;
| | - Untzizu Elejalde
- Wilmar Innovation Center, Wilmar International HQ, 28 Biopolis Rd., Singapore 138568, Singapore;
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Ave., Singapore 639798, Singapore
| |
Collapse
|
3
|
Liu J, Wan Y, Chen Y, Fan H, Li M, Jiang Q, Fu G. Evaluation of the effect of Torulaspora delbrueckii on important volatile compounds in navel orange original brandy using E-nose combined with HS-SPME-GC-MS. Food Chem 2024; 453:139625. [PMID: 38754349 DOI: 10.1016/j.foodchem.2024.139625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/03/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Simultaneous inoculation of non-Saccharomyces cerevisiae during the alcoholic fermentation process has been found to be an effective strategy for enhancing wine flavor. This study aimed to investigate the effect of Torulaspora delbrueckii NCUF305.2 on the flavor of navel orange original brandy (NOOB) using E-nose combined with HS-SPME-GC-MS. The results showed a significant increase (p < 0.05) in the sensitivity of NOOB to W5C, W3C, W1S, and W3S sensors by mixed fermentation (MF). Esters in NOOB increased by 4.13%, while higher alcohols increased by 21.93% (p < 0.001), terpenes and others increased by 52.07% and 40.99% (p < 0.01), respectively. Notably, several important volatile compounds with relative odor activity values above 10 showed an increase. Sensory analysis revealed that a more pronounced citrus-like flavor and higher overall appearance scores were found in MF than in pure fermentation (PF). These findings offer valuable theoretical guidance for enhancing the quality of fruit brandies.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330299, China
| | - Yin Wan
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330299, China
| | - Yanru Chen
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330299, China
| | - Haowei Fan
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330299, China
| | - Mengxiang Li
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330299, China
| | - Qihai Jiang
- Ruijin Kejiahong Brewing Co., Ltd., Ruijin, Jiangxi 342500, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330299, China.
| |
Collapse
|
4
|
Lu Y, Xiong R, Tang Y, Yu N, Nie X, Zhang L, Meng X. An overview of the detection methods to the edible oil oxidation degree: Recent progress, challenges, and perspectives. Food Chem 2024; 463:141443. [PMID: 39353307 DOI: 10.1016/j.foodchem.2024.141443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Oil oxidation, the main quality-deteriorated reaction, would significantly and negatively influence its quality and safety during processing and storage. Evaluating oil oxidation degree is an effective strategy to enable early warning and ensure food safety. Herein, principles, recent progresses, advantages and shortcomings, representative applications, current challenges and promising perspectives, and summary tables of traditional (titration), instrumental (chromatography and spectroscopy), and especially rapid detection methods (chemical colorimetric methods and portable miniaturized devices) for evaluating oil oxidation degree are presented and reviewed. It is believed that rapid detection methods are the most promising practical candidate for detecting oil oxidation. Also, the interaction between advanced data-processing techniques and detection methods, and the systematic integration of whole analytical processes is proposed as next-generation perspectives in the oil oxidation evaluation. We wish to provide the knowledge of oil oxidation degree determination and enlighten novel strategies.
Collapse
Affiliation(s)
- Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Ruixin Xiong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yingcheng Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Liangxiao Zhang
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
5
|
Ye L, Song L, Zhang L, Cui R. Waste Point Identification of Frying Oil Based on Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). Molecules 2024; 29:3979. [PMID: 39203057 PMCID: PMC11357186 DOI: 10.3390/molecules29163979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
This study described the quality detection and rapid identification of frying oil waste points based on gas chromatography-ion mobility spectrometry (GC-IMS). A total of 48 volatile substances were identified, among which the levels of 11 components, including 2-pentylfuran, 2-butylfuran, and 2-hexanone, increased with prolonged frying time after 40 h in cottonseed oil. Conversely, the levels of hexanal, heptanal, and E,E-2,4-heptadienal decreased as frying time extended. Correlation analysis revealed a significant association between volatile substances of the oil and acid value (p < 0.05) and polar components with volatile substances (p < 0.05). Furthermore, significant differences in the types and contents of flavor substances were observed in cottonseed oil at different frying times (including before and after reaching the discard point) (p < 0.05). Subsequently, principal component analysis (PCA) results clearly showed that the cottonseed oil samples at different frying times were well distinguished by the volatile compounds; moreover, discriminant model analysis indicated a model accuracy rate of 100%. These results showed the potential of GC-IMS-based approaches in discriminating the waste points of frying oil.
Collapse
Affiliation(s)
- Lin Ye
- College of Food Science and Engineering, Tarim University, Alar 843300, China;
- Construction Corps Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Alar 843300, China
| | - Lijun Song
- School of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China; (L.S.); (L.Z.)
| | - Li Zhang
- School of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China; (L.S.); (L.Z.)
| | - Ruiguo Cui
- School of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China; (L.S.); (L.Z.)
| |
Collapse
|
6
|
Han Y, Gao P, Chen Z, Luo X, Zhong W, Hu C, He D, Wang X. Multifaceted analysis of the effects of roasting conditions on the flavor of fragrant Camellia oleifera Abel. seed oil. Food Chem 2024; 446:138779. [PMID: 38430762 DOI: 10.1016/j.foodchem.2024.138779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Fragrant Camellia oleifera Abel. seed oil (FCSO), produced by a roasting process, is popular for its characteristic aroma. This study investigated the effects of various roasting temperatures (90℃, 120℃, 150℃, 180℃) and durations (20 min, 40 min, 60 min) on the flavor of FCSO by physicochemical properties, hazardous substances, sensory evaluation, and flavor analyses. The results showed that FCSO roasted at 120℃/20 min had a reasonable fatty acid composition with a lower acid value (0.16 mg/g), peroxide value (0.13 g/100 g), p-anisidine value (2.27), dibutyl phthalate content (0.04 mg/kg), and higher 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity (224.51 μmol TE/kg) than other samples. A multivariate analysis of FCSO flavor revealed that the 120℃/20 min group had a higher grassy flavor score (5.3 score) from nonanoic acid and a lower off-flavor score (2.2 score) from 2-methylbutyric acid. The principal component analysis showed that 120℃/20 min could guarantee the best flavor and quality of FCSO. Therefore, this information can guide the preparation of FCSO.
Collapse
Affiliation(s)
- Yubo Han
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Pan Gao
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China.
| | - Zhe Chen
- Wuhan Institute for Food and Cosmetic Control, Wuhan, PR China
| | - Xin Luo
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Wu Zhong
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Chuanrong Hu
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Dongping He
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
7
|
Zhang L, Chen J, Guo X, Cao Y, Qu G, Li Q, Gao Y, Yu X. Microwave pretreatment effects on the aroma precursors, sensory characteristics and flavor profiles of fragrant rapeseed oil. Food Chem X 2024; 22:101381. [PMID: 38665635 PMCID: PMC11043819 DOI: 10.1016/j.fochx.2024.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Microwave technology offers a rapid and uniform heating method. This study investigated how microwave pretreatment affects the aroma precursors and flavor of fragrant rapeseed oils (FROs). Microwave pretreatment led to decreased levels of polyunsaturated fatty acids, sugars, protein-bound amino acids, and glucosinolates. Using gas chromatography-mass spectrometry, we identified 66 volatile compounds in the oil samples. Among these, based on odor activity values (OAV ≥ 1), we found 9 aldehydes, 1 ketone, 6 pyrazines, 1 isothiocyanate, and 7 nitriles as the key aroma-active compounds, contributing fatty-like, nutty-like, and pungent-like odors, respectively. The electronic nose results highlighted W5S and W1W as primary sensors for determining the flavor profiles of FROs. Notably, aroma-active pyrazines exhibited strong negative correlations with sucrose, cysteine, lysine, and isoleucine. This research provides essential insights for enhancing the aroma of FROs.
Collapse
Affiliation(s)
- Lingyan Zhang
- Agricultural Science and Engineering School, Liaocheng University, 1 Hunan Road, Liaocheng 252000, Shandong, PR China
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Jia Chen
- Agricultural Science and Engineering School, Liaocheng University, 1 Hunan Road, Liaocheng 252000, Shandong, PR China
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xingfeng Guo
- Agricultural Science and Engineering School, Liaocheng University, 1 Hunan Road, Liaocheng 252000, Shandong, PR China
| | - Yongsheng Cao
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Guoyi Qu
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Qi Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yuan Gao
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
8
|
Yang X, Pei J, He X, Wang Y, Wang L, Shen F, Li P, Fang Y. A novel method for determination of peroxide value and acid value of extra-virgin olive oil based on fluorescence internal filtering effect correction. Food Chem 2024; 441:138342. [PMID: 38176142 DOI: 10.1016/j.foodchem.2023.138342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Peroxide value (PV) and acid value (AV) are widely used indicators for evaluating oxidation degree of olive oils. Fluorescence spectroscopy has been extensively studied on the detection of oil oxidation, however, the detection accuracy is limited due to internal filtering effect (IFE). Due to the primary and secondary IFE, at least two wavelengths of absorption information are required. Least squares support vector regression (LSSVR) models for PV and AV were established based on two absorption coefficients (μa) at 375 nm and emission wavelength and one fluorescence intensity at corresponding wavelength. The regression results proved that the model based on 375 and 475 nm could reach the best performance, with the highest correlation coefficient for prediction (rp) of 0.889 and 0.960 for PV and AV respectively. Finally, the explicit formulations for PV and AV were determined by nonlinear least squares fitting, and the rp could reach above 0.94 for two indicators.
Collapse
Affiliation(s)
- Xiaoyun Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Jingyu Pei
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Xueming He
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China.
| | - Yue Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Liu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms , Ministry of Agriculture and Rural Affairs, Hangzhou 310022, China
| | - Fei Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023, China
| |
Collapse
|
9
|
Xiang F, Ding CX, Wang M, Hu H, Ma XJ, Xu XB, Zaki Abubakar B, Pignitter M, Wei KN, Shi AM, Wang Q. Vegetable oils: Classification, quality analysis, nutritional value and lipidomics applications. Food Chem 2024; 439:138059. [PMID: 38039608 DOI: 10.1016/j.foodchem.2023.138059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Lipids are widespread in nature and play a pivotal role as a source of energy and nutrition for the human body. Vegetable oils (VOs) constitute a significant category in the food industry, containing various lipid components that have garnered attention for being natural, environmentally friendly and health-promoting. The review presented the classification of raw materials (RMs) from oil crops and quality analysis techniques of VOs, with the aim of improving comprehension and facilitating in-depth research of VOs. Brief descriptions were provided for four categories of VOs, and quality analysis techniques for both RMs and VOs were generalized. Furthermore, this study discussed the applications of lipidomics technology in component analysis, processing and utilization, quality determination, as well as nutritional function assessment of VOs. Through reviewing RMs and quality analysis techniques of VOs, this study aims to encourage further refinement and development in the processing and utilization of VOs, offering valuable references for theoretical and applied research in food chemistry and food science.
Collapse
Affiliation(s)
- Fei Xiang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Cai-Xia Ding
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Miao Wang
- The China-Africa Green Agriculture Development Research Center, CGCOC Agriculture Development Co., Ltd., Beijing 100101, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiao-Jie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xue-Bing Xu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Bello Zaki Abubakar
- Department of Agricultural Extension and Rural Development, Faculty of Agriculture, Usmanu Danfodiyo University, Sokoto 840101, Nigeria
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Kang-Ning Wei
- The China-Africa Green Agriculture Development Research Center, CGCOC Agriculture Development Co., Ltd., Beijing 100101, China
| | - Ai-Min Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
10
|
Navarro Soto JP, Rico SI, Martínez Gila DM, Satorres Martínez S. Influence of the Degree of Fruitiness on the Quality Assessment of Virgin Olive Oils Using Electronic Nose Technology. SENSORS (BASEL, SWITZERLAND) 2024; 24:2565. [PMID: 38676183 PMCID: PMC11053873 DOI: 10.3390/s24082565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The electronic nose is a non-invasive technology suitable for the analysis of edible oils. One of the practical applications in the olive oil industry is the classification of virgin oils based on their sensory characteristics. Notwithstanding that this technology, at this stage, cannot realistically replace the currently used methods, it is fruitful for a preliminary analysis of the oil quality. This work makes use of this technology to develop a methodology for the detection of the threshold by which an extra-virgin olive oil (EVOO) drops into the virgin olive oil (VOO) category. With this aim, two features were studied: the level of fruitiness level and the type of defect. The results showed a greater influence of the level of fruitiness than the type of defect in the determination of the detection threshold. Furthermore, three of the sensors (S2, S7 and S9) of the commercial e-nose PEN3 were identified as the most discriminating in the classification between EVOO and VOO oils.
Collapse
Affiliation(s)
- Javiera P. Navarro Soto
- System Engineering and Automation Department, University of Jaén, 23071 Jaén, Spain; (J.P.N.S.); (S.I.R.); (S.S.M.)
| | - Sergio Illana Rico
- System Engineering and Automation Department, University of Jaén, 23071 Jaén, Spain; (J.P.N.S.); (S.I.R.); (S.S.M.)
| | - Diego M. Martínez Gila
- System Engineering and Automation Department, University of Jaén, 23071 Jaén, Spain; (J.P.N.S.); (S.I.R.); (S.S.M.)
- University Institute of Research on Olive Groves and Olive Oils, University of Jaén, 23071 Jaén, Spain
| | - Silvia Satorres Martínez
- System Engineering and Automation Department, University of Jaén, 23071 Jaén, Spain; (J.P.N.S.); (S.I.R.); (S.S.M.)
- University Institute of Research on Olive Groves and Olive Oils, University of Jaén, 23071 Jaén, Spain
| |
Collapse
|
11
|
Wang X, Gu Y, Lin W, Zhang Q. Rapid quantitative authentication and analysis of camellia oil adulterated with edible oils by electronic nose and FTIR spectroscopy. Curr Res Food Sci 2024; 8:100732. [PMID: 38699681 PMCID: PMC11063990 DOI: 10.1016/j.crfs.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Camellia oil, recognized as a high-quality edible oil endorsed by the Food and Agriculture Organization, is confronted with authenticity issues arising from fraudulent adulteration practices. These practices not only pose health risks but also lead to economic losses. This study proposes a novel machine learning framework, referred to as a transformer encoder backbone with a support vector machine regressor (TES), coupled with an electronic nose (E-nose), for detecting varying adulteration levels in camellia oil. Experimental results indicate that the proposed TES model exhibits the best performance in identifying the adulterated concentration of camellia oi, compared with five other machine learning models (the support vector machine, random forest, XGBoost, K-nearest neighbors, and backpropagation neural network). The results obtained by E-nose detection are verified by complementary Fourier transform infrared (FTIR) spectroscopy analysis for identifying functional groups, ensuring accuracy and providing a comprehensive assessment of the types of adulterants. The proposed TES model combined with E-nose offers a rapid, effective, and practical tool for detecting camellia oil adulteration. This technique not only safeguards consumer health and economic interests but also promotes the application of E-nose in market supervision.
Collapse
Affiliation(s)
- Xiaoran Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Gu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- School of Automation, Guangdong University of Petrochemical Technology, Maoming, 525000, China
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Basic Research in Clinical Applied Biomechanics, China
| | - Weiqi Lin
- Xiamen Products Quality Supervision and Inspection Institute, Xiamen, 361004, China
| | - Qian Zhang
- Xiamen Products Quality Supervision and Inspection Institute, Xiamen, 361004, China
| |
Collapse
|
12
|
Wang Y, Kratzer R, Murkovic M, Eibinger M, Machado Charry E, Li S, Zhang T, Zhang X, Zhang M, Chen H. Fabrication and characterization of a novel zein/pectin/pumpkin seed oil Pickering emulsion and the effects of myricetin on oxidation stability. Int J Biol Macromol 2023; 253:127386. [PMID: 37838112 DOI: 10.1016/j.ijbiomac.2023.127386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
In this study, zein/pectin/pumpkin seed oil (PSO) Pickering emulsions (ZPPEs) were fabricated loading with myricetin (MYT), and the quality control methods of oxidation stability were innovatively investigated. The microstructure and particle properties of zein-pectin particles were determined. The zein to pectin ratio of 5:3 and oil phase fraction (φ = 50 %) turned out as the most optimal conditions for the stabilization of myricetin-loaded ZPPEs. The expected oil-in-water emulsion-type structure was confirmed by confocal laser scanning microscopy (CLSM). The internal 3D structure of Pickering emulsions (Lugol's solution improved the water-phase contrast) was imaged by micro-computed tomography (Micro-CT) for the first time. Results showed a sponge like structure of water phase in emulsion with 42 μm as mean droplet size. Light-induced oxidation was evaluated with the PetroOxy method and malondialdehyde (MDA) assays. Encapsuling ZPPEs with MYT could prevent the light induced oxidation, especially, loading of MYT at the core of the emulsion. The analysis of Electronic nose (E-nose) was used to analyze the odor before and after UV-induced oxidation, and showed a good discrimination. This study provided a new approach to prepare ZPPEs with high oxidation stability. Micro-CT, PetroOxy and E-nose could be new methods for characterization and quality assessment of Pickering emulsions.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Michael Murkovic
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | | | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
13
|
Mehdizadeh SA, Noshad M, Chaharlangi M, Ampatzidis Y. Development of an Innovative Optoelectronic Nose for Detecting Adulteration in Quince Seed Oil. Foods 2023; 12:4350. [PMID: 38231827 DOI: 10.3390/foods12234350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, an innovative odor imaging system capable of detecting adulteration in quince seed edible oils mixed with sunflower oil and sesame oil based on their volatile organic compound (VOC) profiles was developed. The system comprises a colorimetric sensor array (CSA), a data acquisition unit, and a machine learning algorithm for identifying adulterants. The CSA was created using a method that involves applying a mixture of six different pH indicators (methyl violet, chlorophenol red, Nile blue, methyl orange, alizarin, cresol red) onto a Thin Layer Chromatography (TLC) silica gel plate. Subsequently, difference maps were generated by subtracting the "initial" image from the "final" image, with the resulting color changes being converted into digital data, which were then further analyzed using Principal Component Analysis (PCA). Following this, a Support Vector Machine was employed to scrutinize quince seed oil that had been adulterated with varying proportions of sunflower oil and sesame oil. The classifier was progressively supplied with an increasing number of principal components (PCs), starting from one and incrementally increasing up to five. Each time, the classifier was optimized to determine the hyperparameters utilizing a random search algorithm. With one to five PCs, the classification error accounted for a range of 37.18% to 1.29%. According to the results, this novel system is simple, cost-effective, and has potential applications in food quality control and consumer protection.
Collapse
Affiliation(s)
- Saman Abdanan Mehdizadeh
- Department of Mechanics of Biosystems Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani 6341773637, Iran
| | - Mohammad Noshad
- Department of Food Science & Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani 6341773637, Iran
| | - Mahsa Chaharlangi
- Central Laboratory, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani 6341773637, Iran
| | - Yiannis Ampatzidis
- Southwest Florida Research and Education Center, Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Wu Q, Kong Y, Liang Y, Niu M, Feng N, Zhang C, Qi Y, Guo Z, Xiao J, Zhou M, He Y, Wang C. Protective mechanism of fruit vinegar polyphenols against AGEs-induced Caco-2 cell damage. Food Chem X 2023; 19:100736. [PMID: 37415956 PMCID: PMC10319990 DOI: 10.1016/j.fochx.2023.100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Accumulation of advanced glycation end products (AGEs) is linked with development or aggravation of many degenerative processes or disorders. Fruit vinegars are rich in polyphenols that can be a good dietary source of AGEs inhibitors. In this study, eight kinds of vinegars were prepared. Among them, the highest polyphenol and flavonoid content were orange vinegar and kiwi fruit vinegar, respectively. Ferulic acid, vanillic acid, chlorogenic acid, p-coumaric acid, caffeic acid, catechin, and epicatechin were main polyphenols in eight fruit vinegars. Then, we measured the inhibitory effect of eight fruit vinegars on fluorescent AGEs, and found that orange vinegar had the highest inhibitory rate. Data here suggested that orange vinegar and its main components catechin, epicatechin, and p-coumaric acid could effectively reduce the level of ROS, RAGE, NADPH and inflammatory factors in Caco-2 cells. Our research provided theoretical basis for the application of orange vinegar as AGEs inhibitor.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Yingfei Kong
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Yinggang Liang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Mengyao Niu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Chan Zhang
- Beijing Laboratory of Food Quality and Safety, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yonggang Qi
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Zhiqiang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea/Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province/Engineering Research Center of Utilization of Tropical Polysaccharide Resources/School of Food Science and Engineering, Hainan University, Haikou, China
| | - Juan Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea/Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province/Engineering Research Center of Utilization of Tropical Polysaccharide Resources/School of Food Science and Engineering, Hainan University, Haikou, China
| | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, Hubei, China
| |
Collapse
|
15
|
Hosseini H, Minaei S, Beheshti B. A dedicated electronic nose combined with chemometric methods for detection of adulteration in sesame oil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2681-2694. [PMID: 37599854 PMCID: PMC10439068 DOI: 10.1007/s13197-023-05792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
Sesame oil (SO), one of the most popular and expensive edible oils, is prone to adulteration. In this study, the fatty acid profiles of pure sesame seed oil and samples adulterated with two less expensive edible oils (canola and sunflower) were analyzed using Gas Chromatography. A dedicated e-nose system was developed and tested on 15 mixtures of sesame-canola and sesame-sunflower samples. Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Multi-Layered Perceptron (MLP) methods were utilized to identify adulteration through the evaluation of Volatile Organic Compound. Result of chromatography showed that most samples of sesame oil containing impurities at levels less than 30% were recognized incorrectly in the standard range of SO fatty acids. This is while the developed e-nose system was able to detect adulteration at much lower levels. According to the results, PCA and LDA methods can describe the data set variance with precision of 95.6% and 97%, respectively. The MLP model had better results compared to PCA and LDA, with high determination coefficient (R2 = 0.981) and low RMSE (0.0178). Results indicate that the e-nose system provided an effective non-destructive method to detect SO adulteration at levels as low as 5%, which GC was unable to detect.
Collapse
Affiliation(s)
- Hadi Hosseini
- Department of Biosystems Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeid Minaei
- Biosystems Engineering Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Babak Beheshti
- Department of Biosystems Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Aghili NS, Rasekh M, Karami H, Edriss O, Wilson AD, Ramos J. Aromatic Fingerprints: VOC Analysis with E-Nose and GC-MS for Rapid Detection of Adulteration in Sesame Oil. SENSORS (BASEL, SWITZERLAND) 2023; 23:6294. [PMID: 37514589 PMCID: PMC10383484 DOI: 10.3390/s23146294] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Food quality assurance is an important field that directly affects public health. The organoleptic aroma of food is of crucial significance to evaluate and confirm food quality and origin. The volatile organic compound (VOC) emissions (detectable aroma) from foods are unique and provide a basis to predict and evaluate food quality. Soybean and corn oils were added to sesame oil (to simulate adulteration) at four different mixture percentages (25-100%) and then chemically analyzed using an experimental 9-sensor metal oxide semiconducting (MOS) electronic nose (e-nose) and gas chromatography-mass spectroscopy (GC-MS) for comparisons in detecting unadulterated sesame oil controls. GC-MS analysis revealed eleven major VOC components identified within 82-91% of oil samples. Principle component analysis (PCA) and linear detection analysis (LDA) were employed to visualize different levels of adulteration detected by the e-nose. Artificial neural networks (ANNs) and support vector machines (SVMs) were also used for statistical modeling. The sensitivity and specificity obtained for SVM were 0.987 and 0.977, respectively, while these values for the ANN method were 0.949 and 0.953, respectively. E-nose-based technology is a quick and effective method for the detection of sesame oil adulteration due to its simplicity (ease of application), rapid analysis, and accuracy. GC-MS data provided corroborative chemical evidence to show differences in volatile emissions from virgin and adulterated sesame oil samples and the precise VOCs explaining differences in e-nose signature patterns derived from each sample type.
Collapse
Affiliation(s)
- Nadia Sadat Aghili
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Mansour Rasekh
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Hamed Karami
- Department of Petroleum Engineering, Knowledge University, Erbil 44001, Iraq
| | - Omid Edriss
- Department of Computer, Rafsanjan Branch, Islamic Azad University, Rafsanjan 77181-84483, Iran
| | - Alphus Dan Wilson
- Southern Hardwoods Laboratory, Pathology Department, Center for Forest Health & Disturbance, Forest Genetics & Ecosystems Biology, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776-0227, USA
| | - Jose Ramos
- College of Computing and Engineering, Nova Southeastern University (NSU), 3301 College Avenue, Fort Lauderdale, FL 33314-7796, USA
| |
Collapse
|
17
|
He Y, Zhang C, Zheng Y, Xiong H, Ai C, Cao H, Xiao J, El-Seedi H, Chen L, Teng H. Effects of blackberry polysaccharide on the quality improvement of boiled chicken breast. Food Chem X 2023; 18:100623. [PMID: 36935905 PMCID: PMC10020652 DOI: 10.1016/j.fochx.2023.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/18/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Blackberry polysaccharide was isolated from blackberry powder with 70% ethanol. The crude polysaccharide was composed of 95.44% glucose, 2.01% arabinose, 1.81% galactose and 0.74% glucuronic acid. Chicken breast meat was only marinated with different concentrations of the isolated blackberry polysaccharide (1 g/kg, 3 g/kg) for 24 h at a ratio of material to liquid of 1:3, and boiled at 80℃ for 1 h. The differences in texture, water distribution and volatile flavor components among different groups (adding 0,1,3 g/kg blackberry polysaccharide) were investigated. The results showed that the addition of blackberry polysaccharide could significantly improve the hardness of chicken breast, the transformation of free water to bound water, the overall flavor characteristics of the control group and the addition of different concentrations of blackberry polysaccharide were significantly different, and the concentration of volatile flavor substances in boiled chicken breast was reduced.
Collapse
Affiliation(s)
- Yuanju He
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chang Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yimei Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Huaxing Xiong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hesham El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, 751 23 Uppsala, Sweden
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Corresponding authors.
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Corresponding authors.
| |
Collapse
|
18
|
Wang Y, Fu Q, Hu Y, Hua L, Li H, Xu G, Ni Q, Zhang Y. Determination of oxidative deterioration in edible oils by high-pressure photoionization time-of-flight mass spectrometry. Food Chem 2023; 424:136260. [PMID: 37244184 DOI: 10.1016/j.foodchem.2023.136260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/29/2023]
Abstract
Since lipid oxidation often causes serious food safety issues worldwide, determination of oil's oxidative deterioration becomes quite significant, which still calls for efficient analytical methods. In this work, high-pressure photoionization time-of-flight mass spectrometry (HPPI-TOFMS) was firstly introduced for rapid detection of oxidative deterioration in edible oils. Through non-targeted qualitative analysis, oxidized oils with various oxidation levels were successfully discriminated for the first time by coupling HPPI-TOFMS with the orthogonal partial least squares discriminant analysis (OPLS-DA). Furthermore, by targeted interpretation of the HPPI-TOFMS mass spectra and the subsequent regression analysis (signal intensities vs TOTOX values), good linear correlations were observed for several predominant VOCs. Those specific VOCs were promising oxidation indicators, which would play important roles as TOTOX to judge the oxidation states of tested samples. The proposed HPPI-TOFMS methodology can be used as an innovative tool for accurate and effective assessment of lipid oxidation in edible oils.
Collapse
Affiliation(s)
- Yan Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Food and Health, Zhejiang A & F University, Linan 311300, China.
| | - Qianwen Fu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Food and Health, Zhejiang A & F University, Linan 311300, China
| | - Yu Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Food and Health, Zhejiang A & F University, Linan 311300, China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guangzhi Xu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Food and Health, Zhejiang A & F University, Linan 311300, China
| | - Qinxue Ni
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Food and Health, Zhejiang A & F University, Linan 311300, China
| | - Youzuo Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Food and Health, Zhejiang A & F University, Linan 311300, China.
| |
Collapse
|
19
|
Russo N, Di Rosa AR, Pino A, Mazzeo G, Liotta L, Caggia C, Randazzo CL. Assessment of sensory properties and in vitro antimicrobial activity of monofloral Sicilian honey. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Sun L, Wu J, Wang K, Liang T, Liu Q, Yan J, Yang Y, Qiao K, Ma S, Wang D. Comparative Analysis of Acanthopanacis Cortex and Periplocae Cortex Using an Electronic Nose and Gas Chromatography-Mass Spectrometry Coupled with Multivariate Statistical Analysis. Molecules 2022; 27:molecules27248964. [PMID: 36558097 PMCID: PMC9781861 DOI: 10.3390/molecules27248964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Chinese Herbal Medicines (CHMs) can be identified by experts according to their odors. However, the identification of these medicines is subjective and requires long-term experience. The samples of Acanthopanacis Cortex and Periplocae Cortex used were dried cortexes, which are often confused in the market due to their similar appearance, but their chemical composition and odor are different. The clinical use of the two herbs is different, but the phenomenon of being confused with each other often occurs. Therefore, we used an electronic nose (E-nose) to explore the differences in odor information between the two species for fast and robust discrimination, in order to provide a scientific basis for avoiding confusion and misuse in the process of production, circulation and clinical use. In this study, the odor and volatile components of these two medicinal materials were detected by the E-nose and by gas chromatography-mass spectrometry (GC-MS), respectively. An E-nose combined with pattern analysis methods such as principal component analysis (PCA) and partial least squares (PLS) was used to discriminate the cortex samples. The E-nose was used to determine the odors of the samples and enable rapid differentiation of Acanthopanacis Cortex and Periplocae Cortex. GC-MS was utilized to reveal the differences between the volatile constituents of Acanthopanacis Cortex and Periplocae Cortex. In all, 82 components including 9 co-contained components were extracted by chromatographic peak integration and matching, and 24 constituents could be used as chemical markers to distinguish these two species. The E-nose detection technology is able to discriminate between Acanthopanacis Cortex and Periplocae Cortex, with GC-MS providing support to determine the material basis of the E-nose sensors' response. The proposed method is rapid, simple, eco-friendly and can successfully differentiate these two medicinal materials by their odors. It can be applied to quality control links such as online detection, and also provide reference for the establishment of other rapid detection methods. The further development and utilization of this technology is conducive to the further supervision of the quality of CHMs and the healthy development of the industry.
Collapse
|
21
|
Yang Y, Wu YN, Ce LGE, Ge XGBR, Shuang Q, Zhang FM. Analysis of microbial community and its correlation with flavor compounds during Congee fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
22
|
Qiu H, Qu K, Eun JB, Zhang H. Analysis of thermal oxidation of different multi-element oleogels based on carnauba wax, β-sitosterol/lecithin, and ethyl cellulose by classical oxidation determination method combined with the electronic nose. Food Chem 2022; 405:134970. [DOI: 10.1016/j.foodchem.2022.134970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
23
|
Wang Y, Cao X, Shi J, Li X, Liu Y, Xu YJ. Tracking the dynamics of epoxy triglycerides during thermal oxidation by liquid chromatography-mass spectrometry. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Detection of fraud in sesame oil with the help of artificial intelligence combined with chemometrics methods and chemical compounds characterization by gas chromatography–mass spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Ge L, Wu Y, Zou W, Mao X, Wang Y, Du J, Zhao H, Zhu C. Analysis of the trend of volatile compounds by HS-SPME-GC-MS and the main factors affecting the formation of rancid odor during the oxidation process of infant nutrition package. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3367-3378. [PMID: 35875207 PMCID: PMC9304473 DOI: 10.1007/s13197-021-05320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/27/2021] [Accepted: 11/04/2021] [Indexed: 06/15/2023]
Abstract
In this study, headspace solid-phase micro-extraction (HS-SPME) coupled with GC-MS was used to analyze the trend of volatile compounds in fresh and oxidative infant nutrition package. Among the volatile compounds, aldehydes and ketones, alcohols, lipids, cycloalkenes, alkanes, alkenes, aromatic hydrocarbons, oxygenated compound were identified. A total of 65 volatile compounds were detected in the fresh nutrition package, whereas 9 new volatile compounds were detected during the accelerated oxidation process, which was oxidized at 45 °C for 4 weeks. The main components of the rancid flavor formed and the relative content of volatile substances gradually changed during the accelerated oxidation process. The volatile substances hexanal, nonanal, and 2-pentylfuran substantially increased. Linalool, α-terpineol, d-limonene, and 1-methoxy-nonane presented an evidently downward trend. The relative content of the newly formed compound 3-hydroxy-2-methylpyran-4-one during the oxidation process was always large, its relative content initially increased, then decreased, and finally increased again. The formation of rancid flavor of the nutrient package was speculated to have been formed by the interaction of hexanal, nonanal, 2-pentylfuran, and 3-hydroxy-2-methylpyran-4-one.
Collapse
Affiliation(s)
- Liqin Ge
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 Jiangxi China
| | - Yuqin Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 Jiangxi China
| | - Wenhaotian Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 Jiangxi China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 Jiangxi China
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 Jiangxi China
| | - Jinlin Du
- Ganzhou Quanbiao Biological Technology Co., Ltd, Ganzhou, 341100 Jiangxi China
| | - Haibin Zhao
- Ganzhou Quanbiao Biological Technology Co., Ltd, Ganzhou, 341100 Jiangxi China
| | - Chunyan Zhu
- Ganzhou Quanbiao Biological Technology Co., Ltd, Ganzhou, 341100 Jiangxi China
| |
Collapse
|
26
|
Extraction and encapsulation of squalene-rich cod liver oil using supercritical CO2 process for enhanced oxidative stability. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Dynamics of Bacterial Composition and Association with Quality Formation and Biogenic Amines Accumulation during Fish Sauce Spontaneous Fermentation. Appl Environ Microbiol 2022; 88:e0069022. [PMID: 35695487 PMCID: PMC9275223 DOI: 10.1128/aem.00690-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-throughput sequencing and high-pressure liquid chromatography (HPLC) methods were used to investigate the influences of microbial dynamics on the quality and biogenic amine (BA) content during fish sauce fermentation. The homogeneity of total viable bacteria and lactic acid bacteria in fish sauce becomes higher as fermentation progresses. Tetragenococcus was the key genus of fish sauce fermentation. Carnobacterium (38.43%) and Lentibacillus (41.01%) were the dominant genera in the samples fermented for 3 months and 18 months, respectively. These three bacterial genera were significantly related to the physicochemical characteristics and characteristic flavors of the sauces. Tetragenococcus was significantly positively correlated with nitrogen oxides, the main characteristic flavor components in fish sauce. The BA content in fish sauce fermentation increased from 106.88 to 376.03 mg/kg, and the content of histamine reached 115.30 mg/kg at the end of fermentation, indicating that fish sauce has health risks. About 66.67% of Lentibacillus isolates were able to produce a large amount of BA, suggesting that Lentibacillus was the key genus for BA accumulation in fish sauce fermentation. Research on reducing the content of BA in fish sauce by intervening with regard to the fermentation temperature showed that a safe fish sauce product could be obtained at the fermentation temperature of about 25°C. These results help us to understand the contribution of microbial community composition to fish sauce fermentation and provide a basis for improving the quality and safety of fermented fish sauce. IMPORTANCE Traditional fermentation of fish sauce is mainly carried out by complex microbial communities from raw anchovies and processing environments. However, it is still unclear how the environmental microbiota influences the quality and the safety of fish sauce products. Therefore, this study comprehensively explained the influence of microorganisms on the quality and safety of fish sauce during the fermentation process in terms of physicochemical characters, flavors, and BA. Additionally, the accumulation of BA in fish sauce fermentation was controlled by intervening in the fermentation temperature. This finding contributes to a deeper understanding of the role of environmental microbiota during fermentation and provides data support for improving the safety of fish sauce.
Collapse
|
28
|
Synthesis and application of magnetic surface molecularly imprinted polymers in selective solid-phase extraction of epoxy triglyceride from deep frying oil. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Anconi ACSA, Brito NCS, Nunes CA. Determination of peroxide value in edible oils based on Digital Image Colorimetry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Mondal K, Bose A, Chakraborty S, Chatterjee D, Paul K, Tamili D, Bhattacharyya N, Bhattacharjee P. Cookies Formulated with Gamma‐irradiated Virgin Coconut Oil are Less Rancid: Analysis By Metal Oxide‐based Electronic Nose and Support Vector Machines. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kona Mondal
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata 700 032 India
| | - Anupama Bose
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata 700 032 India
| | - Soumi Chakraborty
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata 700 032 India
| | - Dipan Chatterjee
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata 700 032 India
| | - Kaninika Paul
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata 700 032 India
| | - Dipshikha Tamili
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata 700 032 India
| | - Nabarun Bhattacharyya
- Centre for Development of Advanced Computing (C‐DAC) E‐2/1 Block‐GP, Sector‐V, Salt Lake Kolkata 700091 India
| | - Paramita Bhattacharjee
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata 700 032 India
| |
Collapse
|
31
|
Martín-Torres S, Ruiz-Castro L, Jiménez-Carvelo AM, Cuadros-Rodríguez L. Applications of multivariate data analysis in shelf life studies of edible vegetal oils – A review of the few past years. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Ma X, Zhang Y, Li X, Bi J, Zhang G, Hao H, Hou H. Impacts of salt-tolerant Staphylococcus nepalensis 5-5 on bacterial composition and biogenic amines accumulation in fish sauce fermentation. Int J Food Microbiol 2022; 361:109464. [PMID: 34749187 DOI: 10.1016/j.ijfoodmicro.2021.109464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022]
Abstract
High levels of biogenic amines (BAs) in fermented food can present a health risk to consumers. Microorganisms that can reduce BAs are widely used in fermented foods. However, the mechanism by which microorganisms reduce BAs in foods has not been explored. In this study, we investigated how Staphylococcus nepalensis 5-5 (S. nepalensis 5-5), which was a BA-degrading strain isolated from fish sauce, could reduce BA accumulation in the fish sauce. High-throughput sequencing and HPLC methods were sequentially used to determine the microbial community structure and BA content in fish sauce with/without S. nepalensis 5-5. The results showed that S. nepalensis 5-5 might be a safe strain that could improve the flavor of fish sauce while still exhibiting good BA degradation ability under a high salt environment. The content of BAs in fish sauce inoculated with S. nepalensis 5-5 was significantly decreased compared with the control fish sauce, achieving maximal reductions of 15.74, 14.18 and 16.65% in putrescine, cadaverine and histamine accumulation, respectively. According to high-throughput sequencing data, S. nepalensis 5-5 reduced the abundance of the genera positively associated with BAs, while increasing the number of bacterial genera negatively correlated with BAs in the sample and changed the correlation between some genera and BAs via species interaction. In addition, analysis of amino acid metabolism showed that S. nepalensis 5-5 might use histidine to produce metabolites other than histamine, thereby reducing the production of BAs. These findings not only explained the mechanisms by which the BA level in fish sauce could be reduced but also provided a potential means to control BA production in the fish sauce during the fermentation stage.
Collapse
Affiliation(s)
- Xinxiu Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China
| | - Yanan Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China
| | - Xinyu Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
33
|
Gu H, Huang X, Chen Q, Sun Y, Lv R. A feasibility study for rapid evaluation of emulsion oxidation using synchronous fluorescence spectroscopy coupled with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120337. [PMID: 34530201 DOI: 10.1016/j.saa.2021.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
A rapid method based on three-dimensional synchronous fluorescence spectroscopy was developed for emulsion oxidation evaluation. This method was selected because of its high sensitivity to dissolved organic matter typically occurring in the lipid oxidation. Spectral signal and chemical reference measurements were recorded for each emulsion sample as input and output data for the model construction. Characteristic values were extracted from the spectral data by the application of parallel factor (PARAFAC) analysis. Partial least squares regression (PLSR) was then used to construct a regression model for the rapid determination of emulsion oxidation. The correlation coefficient of the calibration and prediction sets were used as the performance parameters for the PLSR models as follows: R = 0.929, 0.973 for emulsion samples stored at 25℃; R = 0.897, 0.903 for emulsion samples stored at 70℃. The overall results demonstrated that the fluorescence spectroscopy, coupled with PARAFAC and PLSR algorithms, could be successfully used as a rapid method for the emulsion oxidation evaluation.
Collapse
Affiliation(s)
- Haiyang Gu
- School of Bio and Food Engineering, Chuzhou University, Chuzhou 239000, China.
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Quansheng Chen
- School of Bio and Food Engineering, Chuzhou University, Chuzhou 239000, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanhui Sun
- School of Bio and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Riqin Lv
- School of Bio and Food Engineering, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
34
|
Pascoal DRDC, Moura LE, Silva JRD, Assis DDJ, Costa SS, Druzian JI. Characteristics volatiles of cassava flours and their relationship to parameters other, process and geographical origin: a preliminary study. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.80221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Ramirez-Montes S, Santos EM, Galan-Vidal CA, Tavizon-Pozos JA, Rodriguez JA. Classification of Edible Vegetable Oil Degradation Using Multivariate Data Analysis From Electrochemical Techniques. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Zhang Y, Wang M, Zhang X, Qu Z, Gao Y, Li Q, Yu X. Mechanism, indexes, methods, challenges, and perspectives of edible oil oxidation analysis. Crit Rev Food Sci Nutr 2021:1-15. [PMID: 34845958 DOI: 10.1080/10408398.2021.2009437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Edible oils are indispensable food components, because they are used for cooking or frying. However, during processing, transport, storage, and consumption, edible oils are susceptible to oxidation, during which various primary and secondary oxidative products are generated. These products may reduce the nutritional value and safety of edible oils and even harm human health. Therefore, analyzing the oxidation of edible oil is essential to ensure the quality and safety of oil. Oxidation is a complex process with various oxidative products, and the content of these products can be evaluated by corresponding indexes. According to the structure and properties of the oxidative products, analytical methods have been employed to quantify these products to analyze the oxidation of oil. Combined with proper chemometric analytical methods, qualitative identification has been performed to discriminate oxidized and nonoxidized oils. Oxidative products are complex and diverse. Thus, proper indexes and analytical methods should be selected depending on specific research objectives. Expanding the mechanism of the correspondence between oxidative products and analytical methods is crucial. The underlying mechanism, conventional indexes, and applications of analytical methods are summarized in this review. The challenges and perspectives for future applications of several methods in determining oxidation are also discussed. This review may serve as a reference in the selection, establishment, and improvement of methods for analyzing the oxidation of edible oil. HighlightsThe mechanism of edible oil oxidation analysis was elaborated.Conventional oxidation indexes and their limited values were discussed.Analytical methods for the determination of oxidative products and qualitative identification of oxidized and non-oxidized oils were reviewed.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China
| | - Mengzhu Wang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xuping Zhang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China
| | - Zhihao Qu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China
| | - Yuan Gao
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China
| | - Qi Li
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China
| |
Collapse
|
37
|
Rodrigues N, Silva K, Veloso ACA, Pereira JA, Peres AM. The Use of Electronic Nose as Alternative Non-Destructive Technique to Discriminate Flavored and Unflavored Olive Oils. Foods 2021; 10:foods10112886. [PMID: 34829167 PMCID: PMC8618962 DOI: 10.3390/foods10112886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
Cv. Arbequina extra virgin olive oils (EVOO) were flavored with cinnamon, garlic, and rosemary and characterized. Although flavoring significantly affected the physicochemical quality parameters, all oils fulfilled the legal thresholds for EVOO classification. Flavoring increased (20 to 40%) the total phenolic contents, whereas oxidative stability was dependent on the flavoring agent (a slight increase for rosemary and a decrease for cinnamon and garlic). Flavoring also had a significant impact on the sensory profiles. Unflavored oils, cinnamon, and garlic flavored oils had a fruity-ripe sensation while rosemary flavored oils were fruity-green oils. Fruit-related sensations, perceived in unflavored oils, disappeared with flavoring. Flavoring decreased the sweetness, enhanced the bitterness, and did not influence the pungency of the oils. According to the EU regulations, flavored oils cannot be commercialized as EVOO. Thus, to guarantee the legal labelling requirement and to meet the expectations of the market-specific consumers for differentiated olive oils, a lab-made electronic nose was applied. The device successfully discriminated unflavored from flavored oils and identified the type of flavoring agent (90 ± 10% of correct classifications for the repeated K-fold cross-validation method). Thus, the electronic nose could be used as a practical non-destructive preliminary classification tool for recognizing olive oils’ flavoring practice.
Collapse
Affiliation(s)
- Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; (N.R.); (K.S.); (J.A.P.)
| | - Kevin Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; (N.R.); (K.S.); (J.A.P.)
| | - Ana C. A. Veloso
- Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; (N.R.); (K.S.); (J.A.P.)
| | - António M. Peres
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; (N.R.); (K.S.); (J.A.P.)
- Correspondence: ; Tel.: +351-273303220
| |
Collapse
|
38
|
Visual detection of edible oil oxidation by using chitin-based colorimetric sensor for aldehydes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Changes in the volatile profile, fatty acid composition and oxidative stability of flaxseed oil during heating at different temperatures. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Jiang Q, Jin W, Zhang W, Zhang Z, You L, Bi Y, Yuan L. Analysis of vibration acceleration levels and quality deterioration of Chinese bayberry fruit in
semi‐vacuum
package by express delivery. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiao‐Jun Jiang
- Wenzhou Vocational College of Science and Technology Wenzhou People's Republic of China
| | - Wei‐Wei Jin
- Wenzhou Vocational College of Science and Technology Wenzhou People's Republic of China
| | - Wei‐Yi Zhang
- Wenzhou Vocational College of Science and Technology Wenzhou People's Republic of China
| | | | - Li‐Fan You
- College of Electrical and Electronic Engineering Wenzhou University Wenzhou People's Republic of China
| | - Yuqing Bi
- College of Electrical and Electronic Engineering Wenzhou University Wenzhou People's Republic of China
| | - Lei‐Ming Yuan
- College of Electrical and Electronic Engineering Wenzhou University Wenzhou People's Republic of China
| |
Collapse
|
41
|
Optimization of Electronic Nose Sensor Array for Tea Aroma Detecting Based on Correlation Coefficient and Cluster Analysis. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9090266] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electronic nose system is widely used in tea aroma detecting, and the sensor array plays a fundamental role for obtaining good results. Here, a sensor array optimization (SAO) method based on correlation coefficient and cluster analysis (CA) is proposed. First, correlation coefficient and distinguishing performance value (DPV) are calculated to eliminate redundant sensors. Then, the sensor independence is obtained through cluster analysis and the number of sensors is confirmed. Finally, the optimized sensor array is constructed. According to the results of the proposed method, sensor array for green tea (LG), fried green tea (LF) and baked green tea (LB) are constructed, and validation experiments are carried out. The classification accuracy using methods of linear discriminant analysis (LDA) based on the average value (LDA-ave) combined with nearest-neighbor classifier (NNC) can almost reach 94.44~100%. When the proposed method is used to discriminate between various grades of West Lake Longjing tea, LF can show comparable performance to that of the German PEN2 electronic nose. The electronic nose SAO method proposed in this paper can effectively eliminate redundant sensors and improve the quality of original tea aroma data. With fewer sensors, the optimized sensor array contributes to the miniaturization and cost reduction of the electronic nose system.
Collapse
|
42
|
E-Nose and Olfactory Assessment: Teamwork or a Challenge to the Last Data? The Case of Virgin Olive Oil Stability and Shelf Life. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electronic nose (E-nose) devices represent one of the most trailblazing innovations in current technological research, since mimicking the functioning of the biological sense of smell has always represented a fascinating challenge for technological development applied to life sciences and beyond. Sensor array tools are right now used in a plethora of applications, including, but not limited to, (bio-)medical, environmental, and food industry related. In particular, the food industry has seen a significant rise in the application of technological tools for determining the quality of edibles, progressively replacing human panelists, therefore changing the whole quality control chain in the field. To this end, the present review, conducted on PubMed, Science Direct and Web of Science, screening papers published between January 2010 and May 2021, sought to investigate the current trends in the usage of human panels and sensorized tools (E-nose and similar) in the food industry, comparing the performances between the two different approaches. In particular, the focus was mainly addressed towards the stability and shelf life assessment of olive oil, the main constituent of the renowned “Mediterranean diet”, and nowadays appreciated in cuisines from all around the world. The obtained results demonstrate that, despite the satisfying performances of both approaches, the best strategy merges the potentialities of human sensory panels and technological sensor arrays, (i.e., E-nose somewhat supported by E-tongue and/or E-eye). The current investigation can be used as a reference for future guidance towards the choice between human panelists and sensorized tools, to the benefit of food manufacturers.
Collapse
|
43
|
Carrillo-Gómez JK, Durán Acevedo CM, García-Rico RO. Detection of the bacteria concentration level in pasteurized milk by using two different artificial multisensory methods. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
44
|
He J, Wu X, Yu Z. Microwave pretreatment of camellia (Camellia oleifera Abel.) seeds: Effect on oil flavor. Food Chem 2021; 364:130388. [PMID: 34182360 DOI: 10.1016/j.foodchem.2021.130388] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Microwave is a new pretreatment technology, and microwave processing time of camellia seeds is a factor affecting the flavor of camellia seed oil (CSO). Therefore, this study on the characteristic volatile compounds of CSO from microwaved seeds with different processing time was carried out by electronic nose (E-nose), headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). The results of E-nose show that W1W, W2W and W5S were the main sensors to distinguish the flavor profile of CSOs. Through HS-SPME-GC-MS and odor activity value analysis, 80 volatile compounds were detected and 22 key aroma compounds were screened in CSOs. Compared with HS-SPME-GC-MS, 44 volatile compounds were detected by HS-GC-IMS, including 9 identical compounds and 35 different compounds. In general, the volatile compounds of 0, 2 and 3 min CSOs were mainly alcohols and esters, while the 4, 5 and 6 min CSOs were mainly heterocycles and aldehydes.
Collapse
Affiliation(s)
- Junhua He
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuehui Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Oil-Tea Camellia, Guangzhou 510642, China.
| | - Zhiliang Yu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
45
|
Jiang H, He Y, Chen Q. Qualitative identification of the edible oil storage period using a homemade portable electronic nose combined with multivariate analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3448-3456. [PMID: 33270243 DOI: 10.1002/jsfa.10975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The edible oil storage period is one of the important indicators for evaluating the intrinsic quality of edible oil. The present study aimed to develop a portable electronic nose device for the qualitative identification of the edible oil storage period. First, four metal oxide semiconductor gas sensors, comprising TGS2600, TGS2611, TGS2620 and MQ138, were selected to prepare a sensor array to assemble a portable electronic nose device. Second, the homemade portable electronic nose device was used to obtain the odor change information of edible oil samples during different storage periods, and the sensor features were extracted. Finally, three pattern recognition methods, comprising linear discriminant analysis (LDA), K-nearest neighbors (KNN) and support vector machines (SVM), were compared to establish a qualitative identification model of the edible oil storage period. The input features and related parameters of the model were optimized by a five-fold cross-validation during the process of model establishment. RESULTS The research results showed that the recognition performance of the non-linear SVM model was significantly better than that of the linear LDA and KNN models, especially in terms of generalization performance, which had a correct recognition rate of 100% when predicting independent samples in the prediction set. CONCLUSION The overall results demonstrate that it is feasible to apply the homemade portable electronic nose device with the help of the appropriate pattern recognition methods to achieve the fast and efficient identification of the edible oil storage period, which provides an effective analysis tool for the quality detection of the edible oil storage. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yingchao He
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
46
|
Lee J, Boo C, Hong SJ, Shin EC. Chemosensory Device Assisted-Estimation of the Quality of Edible Oils with Repetitive Frying. Foods 2021; 10:foods10050972. [PMID: 33946677 PMCID: PMC8146517 DOI: 10.3390/foods10050972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated chemosensory degradations of soybean and canola oils with repeated frying in order to estimate the quality of the oils. Methods: Chemical parameters including oxygen induction time, acid value, p-anisidine value, malondialdehyde, and total polar compounds were measured. Electronic nose and electronic tongue analyses were performed to assess sensory properties. Multivariate analyses were employed to investigate relationships among tastes and volatile compounds using principal component analysis (PCA) and Pearson’s correlation analysis. Results: All chemical parameters increased with repeated frying in both oils. Electronic nose analysis found ethyl butyrate, 2-heptenal, and 2,4-pentanedione as major volatiles for soybean oil and ethyl butyrate and linalool for canola oil. As the numbers of frying increased, all volatiles showed an increased concentration in various extents. In multivariate analyses, ethyl butyrate revealed strong positive correlations with sourness, umami, and sweetness, and umami showed strong positive correlations with sourness and saltiness (p < 0.05). PCA confirmed that in PC1 with 49% variance, sourness, saltiness, and umami were at similar rates while acetyl pyrazine, 2,4-pentadieone, and 1-octanol were found at similar rates. Canola oil was chemically more stable and less susceptible to deterioration in all chemical parameters compared to soybean oil, resulting in a relatively better quality oil when repeatedly fried. Conclusion: The results suggested that minimum repeated frying (5 times) degrades chemosensory characteristics of both oils, thereby compromising their quality. The findings of this study will be utilized as a foundation for quality control of fried foods in food industry, fried food development, and fast-food industry.
Collapse
Affiliation(s)
- Jookyeong Lee
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia;
| | - Changguk Boo
- Department of Food Science/Institute for Food Sensory & Cognitive Science, Gyeongsang National University, Jinju, Gyeongnam 52725, Korea; (C.B.); (S.-j.H.)
| | - Seong-jun Hong
- Department of Food Science/Institute for Food Sensory & Cognitive Science, Gyeongsang National University, Jinju, Gyeongnam 52725, Korea; (C.B.); (S.-j.H.)
| | - Eui-Cheol Shin
- Department of Food Science/Institute for Food Sensory & Cognitive Science, Gyeongsang National University, Jinju, Gyeongnam 52725, Korea; (C.B.); (S.-j.H.)
- Correspondence: ; Tel.: +82-55-772-3271; Fax: +82-55-772-3279
| |
Collapse
|
47
|
Farris S, Buratti S, Benedetti S, Rovera C, Casiraghi E, Alamprese C. Influence of Two Innovative Packaging Materials on Quality Parameters and Aromatic Fingerprint of Extra-Virgin Olive Oils. Foods 2021; 10:foods10050929. [PMID: 33922671 PMCID: PMC8146028 DOI: 10.3390/foods10050929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
The performance of two innovative packaging materials was investigated on two Sardinian extra-virgin olive oils (Nera di Gonnos and Bosana). In particular, a transparent plastic film loaded with a UV-blocker (packaging B) and a metallized material (packaging C) were compared each other and to brown-amber glass (packaging A). During accelerated shelf-life tests at 40 and 60 °C, the evolution of quality parameters (i.e., acidity, peroxide value, K270, and phenolic content) was monitored, together with the aromatic fingerprint evaluated by electronic nose. Packaging B resulted in the best-performing material in protecting oil from oxidation, due to its lower oxygen transmission rate (0.1 ± 0.02 cm3/m2 24 h) compared to packaging C (0.23 ± 0.04 cm3/m2 24 h). At the end of storage, phenolic reduction was on average 25% for packaging B and 58% for packaging C, and the aromatic fingerprint was better preserved in packaging B. In addition, other factors such as the sanitary status of the olives at harvesting and the storage temperature were demonstrated to have a significant role in the shelf life of packaged extra-virgin olive oil.
Collapse
|
48
|
Zhang N, Li Y, Wen S, Sun Y, Chen J, Gao Y, Sagymbek A, Yu X. Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chem 2021; 358:129834. [PMID: 33933972 DOI: 10.1016/j.foodchem.2021.129834] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 01/06/2023]
Abstract
Edible oils are prone to oxidation during processing and storage that may negatively affect the oil quality and human health. Determining the peroxide value (PV) of edible oils is essential because PV is one of the most typically used quality parameters to monitor lipid oxidation and control oil quality. Many approaches have been developed to determine the PV of oils. Among them, iodometric titration is the commonly used method for PV determination. Considering the limitations related to titrimetric methods, such as time and environmental concerns, several instrumental techniques have been considered as reliable alternatives. The advantages and limitations of classical titration and instrumental methods are summarized in this review. The prospects and reformative aspects for the future applications of these approaches in PV determination are also discussed.
Collapse
Affiliation(s)
- Na Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yonglin Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Shasha Wen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yiwen Sun
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Jia Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yuan Gao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Altayuly Sagymbek
- S.Seifullin Kazakh Agro Technical University, 62 Zhenis Avenue, 010011, 14 Nur-Sultan, Kazakhstan
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China.
| |
Collapse
|
49
|
Chen J, Zhang L, Wen Y, Li Y, Sun Y, Yu X. Polar compound composition of four vegetable oils as affected by tert‐butylhydroquinone (TBHQ) and chlorophyll during room‐temperature storage. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jia Chen
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi712100China
| | - Lingyan Zhang
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi712100China
| | - Yuxiu Wen
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi712100China
| | - Yonglin Li
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi712100China
| | - Yiwen Sun
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi712100China
| | - Xiuzhu Yu
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi712100China
| |
Collapse
|
50
|
Abstract
An increasing number of foodborne outbreaks, growing consumer desire for healthier products, and surging numbers of food allergy cases necessitate strict handling and screening of foods at every step of the food supply chain. Current standard procedures for detecting food toxins, contaminants, allergens, and pathogens require costly analytical devices, skilled technicians, and long sample preparation times. These challenges can be overcome with the use of biosensors because they provide accurate, rapid, selective, qualitative, and quantitative detection of analytes. Their ease of use, low-cost production, portability, and nondestructive measurement techniques also enable on-site detection of analytes. For this reason, biosensors find many applications in food safety and quality assessments. The detection mechanisms of biosensors can be varied with the use of different transducers, such as optical, electrochemical, or mechanical. These options provide a more appropriate selection of the biosensors for the intended use. In this review, recent studies focusing on the fabrication of biosensors for food safety or food quality purposes are summarized. To differentiate the detection mechanisms, the review is divided into sections based on the transducer type used.
Collapse
Affiliation(s)
- Hazal Turasan
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| | - Jozef Kokini
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| |
Collapse
|