1
|
Lu HC, Tian MB, Shi N, Li HQ, Li MY, Cheng CF, Chen W, Li SD, He F, Duan CQ, Schubert A, Wang J. Volatilomics of Cabernet Sauvignon grapes and sensory perception of wines are affected by canopy side in vineyards with different row orientations. Food Chem 2024; 460:140508. [PMID: 39047494 DOI: 10.1016/j.foodchem.2024.140508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to clarify how microclimate diversity altered volatilomics in Cabernet Sauvignon grapes and wines. Four row-oriented vineyards were selected, and metabolites of grapes and wines were determined from separate canopy sides. Results showed that shaded sides received 59% of the solar radiation and experienced 55% of the high-temperature days compared to the exposed sides on average. Grape primary metabolites were slightly affected by the canopy side. Herbaceous aromas were consistently more abundant in grapes and wines from shaded clusters. Heat-stressed canopy sides accelerated terpenoid loss and increased norisoprenoid levels in grapes, while β-damascenone in north-side wines was 13%-32% higher than that in south-side wines of the east-west vineyard. The northeast-southwest vineyard showed the most notable variation in taste and aroma sensory scores, with four parameters significantly different. There were 32 aroma series identified in wines, and banana, pineapple, and strawberry odors were highly correlated with aroma sensory score.
Collapse
Affiliation(s)
- Hao-Cheng Lu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; PlantStressLab, Department of Agricultural, Forestry, and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, (TO), Italy
| | - Meng-Bo Tian
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ning Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hui-Qing Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ming-Yu Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | | | - Wu Chen
- CITIC Niya Wine Co. Ltd, Manasi 832200, Xinjiang, China
| | - Shu-De Li
- CITIC Niya Wine Co. Ltd, Manasi 832200, Xinjiang, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Andrea Schubert
- PlantStressLab, Department of Agricultural, Forestry, and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, (TO), Italy
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
2
|
Lu J, Wang H, Zhang Y, Wang H, Deng L, Chen L, Cao J, Wang B, Jiang W. Caffeic acid enhances the postharvest quality by maintaining the nutritional features and improving the aroma volatiles for nectarine fruit. Food Chem 2024; 464:141633. [PMID: 39454437 DOI: 10.1016/j.foodchem.2024.141633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Maintaining the quality of postharvest nectarine fruit is considerably challenging owing to their vigorous metabolism processes. This study explored the effectiveness of the natural preservative caffeic acid in extending the shelf-life and improving the flavor quality of nectarine. The decay rate of caffeic acid-treated fruit was only 40.00 % but 73.33 % in control group at the end of storage. Other results showed that caffeic acid inhibited fruit quality deterioration, reflected in weight loss, peel color, pulp softening, respiration rate, malondialdehyde accumulation and ethylene biosynthesis. Findings might be attributed to increased levels of antioxidant compounds, such as ascorbic acid, simple phenols and flavonoids, which maintained high antioxidant capacity and metal reducing power of fruit cells. Notably, the content of phenolics was maintained at 241.11 mg kg-1 in caffeic acid-treated fruit by 8 d, which was only 138.21 mg kg-1 in control. Importantly, nectarine treated with caffeic acid possessed a suitable sugar-to-acid ratio, imparting the fruit with an excellent taste. Additionally, caffeic acid facilitated the effective release of esters and lactones, especially γ- and δ-decalactone with fruity aroma, and prevented green aroma and alcoholic off-flavor. The level of lactones in caffeic acid-treated fruit reached 126.76 μg kg-1 during mid-storage, giving the fruit an attractive flavor quality, while was only 50.61 μg kg-1 in control. Overall, caffeic acid exhibited the potential to preserve the quality of nectarine, ensuring both nutritional and edible value for fruit.
Collapse
Affiliation(s)
- Jingxuan Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Hongxuan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Lizhi Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Baogang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
3
|
Jiang Y, Wang J, Han Y, Wang B, Lei C, Sam FE, Li J, Ma T, Zhang B, Feng L. Transcriptome and metabolite profiles reveal the role of benzothiadiazole in controlling isoprenoid synthesis and berry ripening in chardonnay grapes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106041. [PMID: 39277368 DOI: 10.1016/j.pestbp.2024.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/17/2024]
Abstract
Benzothiadiazole (BTH) regulates grape development, ripening, volatiles, and phenolics. This study used metabolomics and transcriptomics to understand how exogenous BTH affects Chardonnay grapes' maturation and synthesis of isoprenoids. A 0.37 mM BTH solution was sprayed during the swelling and veraison stages, and then the ripe grapes were analyzed. Our results show that BTH application significantly increased levels of important isoprenoids such as free terpinen-4-ol, bound linalool, and 8'-apo-β-carotenal. Additionally, BTH was found to modulate several signaling pathways, including those involved in ethylene biosynthesis, salicylic acid synthesis, the abscisic acid pathway, and sugar metabolism, by regulating the expression of genes like VvACO4, VvTAR, VvPLD, VvTIP1-1, VvSTKs, VvPK, VvSUC2, VvGST4, and VvSTS. BTH also promoted grapevine resistance by up-regulating the expression of VvHSP20, VvGOLS4, VvOLP, and VvPR-10. Furthermore, BTH affected isoprenoids biosynthesis by regulating the expression of VvTPS35 and VvMYB24. Moreover, 13 hub genes in the MEgreen module were identified as crucial for the biosynthesis of isoprenoids. BTH application during the swelling stage remarkably promoted isoprenoid biosynthesis more effectively than veraison. Our study provides insights into the molecular mechanisms underlying BTH-induced regulation of grape development and offers a promising approach for enhancing the quality and resistance of grapes.
Collapse
Affiliation(s)
- Yumei Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jianfeng Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuqi Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Wang
- Technical Center of Lanzhou Customs, Lanzhou 730000, China
| | - Chunni Lei
- Technical Center of Lanzhou Customs, Lanzhou 730000, China
| | - Faisal Eudes Sam
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Jixin Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tengzhen Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Lidan Feng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Hu R, Duan C, Lan Y. Investigating the Effects of Distillation System, Geographical Origin, and Aging Time on Aroma Characteristics in Brandy Using an Untargeted Metabonomic Approach. Foods 2024; 13:1922. [PMID: 38928861 PMCID: PMC11202679 DOI: 10.3390/foods13121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, the influence of the distillation system, geographical origin, and aging time on the volatiles of brandy was investigated. An untargeted metabolomics approach was used to classify the volatile profiles of brandies based on the presence of different distillation systems and geographical origins. Through the predictive ability of PLS-DA models, it was found that higher alcohols, C13-norisopenoids, and furans could serve as key markers to discriminate between continuous stills and pot stills, and the contents of C6/C9 compounds, C13-norisoprenoids, and sesquiterpenoids were significantly affected by brandy origin. A network analysis illustrated that straight-chain fatty acid ethyl esters gradually accumulated during aging, and several higher alcohols, furfural, 5-methylfurfural, 4-ethylphenol, TDN, β-damascenone, naphthalene, styrene, and decanal were also positively correlated with aging time. This study provides effective methods for distinguishing brandies collected from different distillation systems and geographical origins and summarizes an overview of the changes in volatile compounds during the aging process.
Collapse
Affiliation(s)
- Ruiqi Hu
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.H.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.H.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.H.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
5
|
Zhou X, Shan B, Liu S, Gao W, Wang X, Wang H, Xu H, Sun L, Zhu B. Sensory omics combined with mathematical modeling for integrated analysis of retronasal Muscat flavor in table grapes. Food Chem X 2024; 21:101198. [PMID: 38370303 PMCID: PMC10869294 DOI: 10.1016/j.fochx.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024] Open
Abstract
This study focused on analyzing the aroma formation mechanism of retronasal muscat flavor in table grapes. The sensory characteristics and fragrance components of table grape juice with different intensities of Muscat were investigated using GC-Quadrupole-MS, quantitative descriptive analysis and three-alternate forced choice. Free monoterpenoids were the main contributors to the retronasal Muscat flavor. The contribution of Muscat compounds to this flavor was quantified by Stevens coefficient, the most and the least sensitive compounds to concentration changes were citronellol and linalool, respectively. To predict the Muscat flavor intensity by mathematical modeling, established a model between Muscat flavor intensity and monoterpenoids concentration, and an optimal partial least squares regression model with a linear relationship between natural logarithms was obtained. These findings provide reference for understanding the formation mechanism of specific aromas in fruits and provide a basis for the development and quality control of processed products such as Muscat flavor grape juice.
Collapse
Affiliation(s)
- Xiaomiao Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- State Key Laboratory of Tree Genetics and Breeding, Bejing Forestry University, Beijing 100083, China
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Bingqi Shan
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
- Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Songyu Liu
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
| | - Wenping Gao
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyue Wang
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, China
| | - Huiling Wang
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, China
| | - Haiying Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Lei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Baoqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Bejing Forestry University, Beijing 100083, China
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Struwe H, Schrödter F, Spinck H, Kirschning A. Sesquiterpene Backbones Generated by Sesquiterpene Cyclases: Formation of iso-Caryolan-1-ol and an Isoclovane. Org Lett 2023; 25:8575-8579. [PMID: 38011332 PMCID: PMC10714441 DOI: 10.1021/acs.orglett.3c03383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
New sesquiterpene backbones are accessible after incubation of caryolan-synthase (GcoA) and presilphiperfolan-8-β-ol synthase (BcBOT2) with a non-natural farnesyldiphosphate in which the central olefinic double bond is isomerized toward the methyl group. Two newly formed sesquiterpenoids are reported, a constitutional isomer of caryolan-1-ol (3), which we name iso-caryolan-1-ol (17), and the first terpenoid based on the isoclovane ring skeleton generated enzymatically thus far.
Collapse
Affiliation(s)
- Henry Struwe
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Finn Schrödter
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Hanke Spinck
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
7
|
Sun Q, He L, Sun L, Xu HY, Fu YQ, Sun ZY, Zhu BQ, Duan CQ, Pan QH. Identification of SNP loci and candidate genes genetically controlling norisoprenoids in grape berry based on genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1142139. [PMID: 36938056 PMCID: PMC10014734 DOI: 10.3389/fpls.2023.1142139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Obtaining new grapevine varieties with unique aromas has been a long-standing goal of breeders. Norisoprenoids are of particular interest to wine producers and researchers, as these compounds are responsible for the important varietal aromas in wine, characterized by a complex floral and fruity smell, and are likely present in all grape varieties. However, the single-nucleotide polymorphism (SNP) loci and candidate genes genetically controlling the norisoprenoid content in grape berry remain unknown. To this end, in this study, we investigated 13 norisoprenoid traits across two years in an F1 population consisting of 149 individuals from a hybrid of Vitis vinifera L. cv. Muscat Alexandria and V. vinifera L. cv. Christmas Rose. Based on 568,953 SNP markers, genome-wide association analysis revealed that 27 candidate SNP loci belonging to 18 genes were significantly associated with the concentrations of norisoprenoid components in grape berry. Among them, 13 SNPs were confirmed in a grapevine germplasm population comprising 97 varieties, including two non-synonymous mutations SNPs within the VvDXS1 and VvGGPPS genes, respectively in the isoprenoid metabolic pathway. Genotype analysis showed that the grapevine individuals with the heterozygous genotype C/T at chr5:2987350 of VvGGPPS accumulated higher average levels of 6-methyl-5-hepten-2-one and β-cyclocitral than those with the homozygous genotype C/C. Furthermore, VvGGPPS was highly expressed in individuals with high norisoprenoids concentrations. Transient overexpression of VvGGPPS in the leaves of Vitis quinquangularis and tobacco resulted in an increase in norisoprenoid concentrations. These findings indicate the importance of VvGGPPS in the genetic control of norisoprenoids in grape berries, serving as a potential molecular breeding target for aroma.
Collapse
Affiliation(s)
- Qi Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei He
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei Sun
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Hai-Ying Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Ya-Qun Fu
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zheng-Yang Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bao-Qing Zhu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiu-Hong Pan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
8
|
Yue X, Ju Y, Zhang H, Wang Z, Xu H, Zhang Z. Integrated transcriptomic and metabolomic analysis reveals the changes in monoterpene compounds during the development of Muscat Hamburg (Vitis vinifera L.) grape berries. Food Res Int 2022; 162:112065. [DOI: 10.1016/j.foodres.2022.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/29/2022]
|
9
|
Zhou X, Liu S, Gao W, Hu B, Zhu B, Sun L. Monoterpenoids Evolution and MEP Pathway Gene Expression Profiles in Seven Table Grape Varieties. PLANTS 2022; 11:plants11162143. [PMID: 36015445 PMCID: PMC9413098 DOI: 10.3390/plants11162143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022]
Abstract
This research investigated the evolution of both monoterpenoids and expression profiles of related biosynthesis genes in the MEP pathway in seven different table grape varieties from veraison to maturity stage in two seasons, and the correlation was further evaluated between monoterpenoid accumulation and expression of these genes studied in these varieties. Results showed that linalool, trans-furan linalool oxide, geraniol, and cis-furan linalool oxide were the main compounds in the five Muscat varieties two seasons. ‘Zaomeiguixiang’ had the highest contents of geraniol and β-Citronellol. ‘Xiangfei’ had the most abundant of linalool and cis-furan linalool oxide, whereas the neutral varieties of ‘Moldova’ and ‘Christmas Rose’ had the least amount. Monoterpenoid volatiles have been grouped in three evolutionary patterns in the berry development of these varieties. ‘Zaomeiguixiang’ and ‘Xiangfei’ had distinct different pattern of terpenoids evolution profiles. Pearson’s correlation analysis showed that in the MEP pathway, the first biosynthesis gene VvDXS3 was significantly correlated to the accumulation of monoterpenoids, and appeared to be an important candidate gene for synthesis of the monoterpenoids.
Collapse
Affiliation(s)
- Xiaomiao Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Institute of Forestry and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| | - Songyu Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Institute of Forestry and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| | - Wengping Gao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Binfang Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (B.Z.); (L.S.)
| | - Lei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
- Correspondence: (B.Z.); (L.S.)
| |
Collapse
|
10
|
Kaya O, Incesu M, Ates F, Keskin N, Verdugo-Vásquez N, Gutiérrez-Gamboa G. Study of Volatile Organic Compounds of Two Table Grapes (cv. Italia and Bronx Seedless) along Ripening in Vines Established in the Aegean Region (Turkey). PLANTS 2022; 11:plants11151935. [PMID: 35893640 PMCID: PMC9329889 DOI: 10.3390/plants11151935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: Italia is a seeded grape variety widely cultivated in the Aegean Region in Turkey, whereas Bronx Seedless is a seedless grape variety, preferred by consumers due to its pink berries and interesting flavor. The goal was to study the volatile compounds of these table grapes throughout berry ripeness. (2) Methods: The volatile compounds were analyzed by GC-MS in six different phenological stages (3) Results: Bronx Seedless grapes presented a higher content of seven terpenes, three aldehydes, one fatty acid, three alcohols, one C6 compound, total aldehydes and total alcohols, and a lower content of eleven terpenes, one fatty acid, four esters, one alcohol, four C6 compounds and its total content than Italia table grapes. The concentration of most of the volatile compounds analyzed increased from “begin of berry touch” to “berries ripe for harvest” stages. Terpenes content in both varieties at harvest was lower than 1.0 mg L−1. β-ionone presented the highest odor activity value (OAV) in both varieties. Bronx Seedless grapes presented higher OAV for (Z)-3-hexenal and cedrol, and lower hexanal to (E)-2-hexenal ratio than Italia grapes. (4) Conclusions: Both varieties could be classified as neutral aromatical varieties and it is probable that to achieve a better aromatic quality, Bronx Seedless should be harvested later than Italia.
Collapse
Affiliation(s)
- Ozkan Kaya
- Erzincan Horticultural Research Institute, Republic of Turkey Ministry of Agriculture and Forestry, Erzincan 24060, Turkey
- Correspondence: (O.K.); (G.G.-G.); Tel.: +90-553-4701308 (O.K.); +56-9-79942130 (G.G.-G.)
| | - Melek Incesu
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25100, Turkey;
| | - Fadime Ates
- Manisa Viticulture Research Institute, Republic of Turkey Ministry of Agriculture and Forestry, Manisa 45125, Turkey;
| | - Nurhan Keskin
- Faculty of Agriculture, Department of Horticulture, Van Yüzüncü Yıl University, Van 65090, Turkey;
| | - Nicolás Verdugo-Vásquez
- Centro de Investigación Intihuasi, Instituto de Investigaciones Agropecuarias INIA, Colina San Joaquín s/n, La Serena 1700000, Chile;
| | - Gastón Gutiérrez-Gamboa
- Escuela de Agronomía, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Temuco 4780000, Chile
- Correspondence: (O.K.); (G.G.-G.); Tel.: +90-553-4701308 (O.K.); +56-9-79942130 (G.G.-G.)
| |
Collapse
|
11
|
Kovács B, Hohmann J, Csupor-Löffler B, Kiss T, Csupor D. A comprehensive phytochemical and pharmacological review on sesquiterpenes from the genus Ambrosia. Heliyon 2022; 8:e09884. [PMID: 35865986 PMCID: PMC9294060 DOI: 10.1016/j.heliyon.2022.e09884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sesquiterpenes are bitter secondary metabolites characteristic to the genus Ambrosia (Asteraceae) and constitute one of the most diverse classes of terpenoids. These compounds exhibit broad-spectrum bioactivities, such as antiproliferative, cytotoxic, antimicrobial, anti-inflammatory, molluscicidal, schistomicidal, larvicidal, and antiprotozoal activities. This review compiles and discusses the chemistry and pharmacology of sesquiterpenes of the Ambrosia species covering the period between 1950 and 2021. The review identified 158 sesquiterpenes previously isolated from 23 different Ambrosia species collected from across the American, African, and Asian continents. These compounds have guaiane, pseudoguaiane, seco-pseudoguaiane, daucane, germacrane, eudesmane, oplopane, clavane, and aromadendrane carbon skeletons. Most sesquiterpene compounds predominantly harbor the pseudoguaiane skeleton, whereas the eudesmanes have the most varied substituents. Antiproliferative and antiprotozoal activities are the most promising bioactivities of sesquiterpenes in Ambrosia and could lead to new pathways toward drug discovery.
Collapse
Affiliation(s)
- Balázs Kovács
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Boglárka Csupor-Löffler
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Tivadar Kiss
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Dezső Csupor
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.,Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, H-7624 Pécs, Hungary.,Department of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
12
|
Effects of Traditional and Modern Post-Harvest Withering Processes on the Composition of the Vitis v. Corvina Grape and the Sensory Profile of Amarone Wines. Molecules 2021; 26:molecules26175198. [PMID: 34500632 PMCID: PMC8434166 DOI: 10.3390/molecules26175198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
In the Valpolicella area (Verona, Italy) Vitis vinifera cv. Corvina is the main grape variety used to produce Amarone wine. Before starting the winemaking process, the Corvina grapes are stored in a withering (i.e., dehydrating) warehouse until about 30% of the berry weight is lost (WL). This practice is performed to concentrate the metabolites in the berry and enrich the Amarone wine in aroma and antioxidant compounds. In compliance with the guidelines and strict Amarone protocol set by the Consorzio of Amarone Valpolicella, withering must be carried out by setting the grapes in a suitable environment, either under controlled relative air humidity (RH) conditions and wind speed (WS)—no temperature modification is to be applied—or, following the traditional methods, in non-controlled environmental conditions. In general, the two processes have different dehydration kinetics due to the different conditions in terms of temperature, RH, and WS, which affect the accumulation of sugars and organic acids and the biosynthesis of secondary metabolites such as stilbenes and glycoside aroma precursors. For this study, the two grape-withering processes were carried out under controlled (C) and non-controlled (NC) conditions, and the final compositions of the Corvina dried grapes were compared also to evaluate the effects on the organoleptic characteristics of Amarone wine. The findings highlighted differences between the two processes mainly in terms of the secondary metabolites of the dried grapes, which affect the organoleptic characteristics of Amarone wine. Indeed, by the sensory evaluation, wines produced by adopting the NC process were found more harmonious, elegant, and balanced. Finally, we can state how using a traditional system, grapes were characterised by higher levels of VOCs (volatile compounds), whilst wines had a higher and appreciable complexity and finesse.
Collapse
|
13
|
Comparative study of the key aromatic compounds of Cabernet Sauvignon wine from the Xinjiang region of China. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:2109-2120. [PMID: 33967309 DOI: 10.1007/s13197-020-04720-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/04/2020] [Accepted: 08/13/2020] [Indexed: 10/22/2022]
Abstract
To determine the differences in the characteristic volatile compounds between winemaking areas in the Xinjiang region, this study was conducted by sampling Cabernet Sauvignon grapes from four winemaking areas in Xinjiang, named Tianshanbeilu, Yili, Yanqi, and Hami. After undergoing the same alcoholic fermentation treatment, the wines from the four areas were subjected to GC-MS and sensory analysis. The results showed that fifty aromatic compounds (including higher alcohols, esters, acids, terpenes, aldehydes/ketones, et al.) were identified and quantified. Interestingly, the terpene and phenylalanine derivative contents of the wines from northern Xinjiang were higher than those from the south. Additionally, four vineyards highly contributed to the development of key volatile compounds in the Xinjiang region. Sensory analysis showed that the wines from northern Xinjiang were impressive with a flowery and fruity aroma and the wines from southern Xinjiang had a stronger wine body and astringency.
Collapse
|
14
|
Liang Z, Zhi H, Fang Z, Zhang P. Genetic engineering of yeast, filamentous fungi and bacteria for terpene production and applications in food industry. Food Res Int 2021; 147:110487. [PMID: 34399483 DOI: 10.1016/j.foodres.2021.110487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/05/2023]
Abstract
Terpenes are a major class of natural aromatic compounds in grapes and wines to offer the characteristic flavor and aroma, serving as important quality traits of wine products. Saccharomyces cerevisiae represents an excellent cell factory platform for large-scale bio-based terpene production. This review describes the biosynthetic pathways of terpenes in different organisms. The metabolic engineering of S. cerevisiae for promoting terpene biosynthesis and the alternative microbial engineering platforms including filamentous fungi and Escherichia coli are also elaborated. Additionally, the potential applications of the terpene products from engineered microorganisms in food and beverage industries are also discussed. This review provides comprehensive information for an innovative supply way of terpene via microbial cell factory, which could facilitate the development and application of this technique at the industrial scale.
Collapse
Affiliation(s)
- Zijian Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hang Zhi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
15
|
Wang W, Feng J, Wei L, Khalil-Ur-Rehman M, Nieuwenhuizen NJ, Yang L, Zheng H, Tao J. Transcriptomics Integrated with Free and Bound Terpenoid Aroma Profiling during "Shine Muscat" ( Vitis labrusca × V. vinifera) Grape Berry Development Reveals Coordinate Regulation of MEP Pathway and Terpene Synthase Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1413-1429. [PMID: 33481572 DOI: 10.1021/acs.jafc.0c06591] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Terpenes and their derivatives are important biomarkers of grape quality as they contribute to the flavor and aroma of grapes. However, the molecular basis of terpene biosynthesis throughout the grapevine phenological developmental cycle remains elusive. Our current study investigates the free and bound terpene biosynthesis of berries at different phenological stages from preveraison to harvest. Detailed gene expression (transcriptomics) analysis, terpenoid volatile production by gas chromatography-mass spectrometry (GC-MS), and in planta transient expression were employed. Our results show that concentrations of most individual terpenes at different stages are distinctive and increase from preveraison to the veraison stage followed by a decrease from veraison to maturity. The combined transcriptomic analysis and terpene profiling revealed that 22 genes belonging to the MEP pathway and multiple classes of transcription factor family members including bHLH and several hormone biosynthesis- or signaling-related genes likely participate in the regulation of terpenoid biosynthesis according to their specific expression patterns in berries. Quantitative real-time polymerase chain expression analysis of 8 key differentially expressed genes in MEP pathways and further 12 randomly selected genes was performed during 8 sampling stages and validated the RNA-seq-derived expression profiles. To further confirm the function of a subset of the differentially expressed genes, we investigated the effects of combined overexpression of 1-deoxy-d-xylulose-5-phosphate synthase (VvDXS1-LOC100249323), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (VvDXR-LOC100248516), and terpene synthase (VvTPS56-LOC100266449) on the production of terpenes by transient overexpression in Nicotiana benthamiana leaves. The overall developmental patterns of total terpenes and gene expression profiles will help guide the functional analyses of further candidate genes important for terpene biosynthesis of grape as well as identifying the master transcriptional and hormonal regulators of this pathway in the future.
Collapse
Affiliation(s)
- Wu Wang
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiao Feng
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Lingling Wei
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | | | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169 Auckland, New Zealand
| | - Lina Yang
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, 26506-6201 Morgantown, West Virginia, United States
| | - Huan Zheng
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jianmin Tao
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
16
|
Yue X, Ren R, Ma X, Fang Y, Zhang Z, Ju Y. Dynamic changes in monoterpene accumulation and biosynthesis during grape ripening in three Vitis vinifera L. cultivars. Food Res Int 2020; 137:109736. [PMID: 33233302 DOI: 10.1016/j.foodres.2020.109736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Monoterpenes are important aroma components in grapes and wines. We analyzed the free and bound monoterpene profiles and the transcript levels of terpenoid biosynthesis genes in Vitis Vinifera cvs. Muscat Hamburg, Riesling, and Sauvignon Blanc grapes at five ripening stages. Principal component analyses revealed that the three cultivars had different free monoterpene profiles at harvest and the early stage of ripening. In all cultivars, the total bound monoterpene contents were higher than the free monoterpene contents during grape ripening. The changes in monoterpene profiles in different grape varieties were correlated with the transcript levels of some VviTPS and VviGT genes. In Riesling, the VviGT14 and VviUGT88A1L1 transcript levels were related to geraniol glucoside accumulation. In Muscat Hamburg, the VviPNLGl1, VviPNLGl2, and VviPNLGl4 transcript levels were related to linalool accumulation. Understanding the dynamic changes in monoterpene accumulation and biosynthesis will allow winemakers to devise strategies to improve grape and wine aromas.
Collapse
Affiliation(s)
- Xiaofeng Yue
- College of Enology, Northwest A&F University, Yangling 712100, PR China.
| | - Ruihua Ren
- College of Enology, Northwest A&F University, Yangling 712100, PR China.
| | - Xin Ma
- College of Enology, Northwest A&F University, Yangling 712100, PR China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling 712100, PR China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, PR China.
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling 712100, PR China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, PR China.
| | - Yanlun Ju
- College of Enology, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
17
|
Liang Z, Zhang P, Fang Z. Modern technologies for extraction of aroma compounds from fruit peels: a review. Crit Rev Food Sci Nutr 2020; 62:1284-1307. [PMID: 33124893 DOI: 10.1080/10408398.2020.1840333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fruit peel is an agricultural by-product and potential source to extract natural aroma compounds with low cost. In the past few decades, the extraction of plant aroma volatiles experienced a transition from traditional to modern technologies. This review summarizes the main aroma compounds in different fruit peels, evaluates modern extraction techniques applicable for these aroma compounds in terms of mechanism, procedure, merits and demerits, and practice. Additionally, the applications of fruit peel aroma extract in food, pharmaceutical and cosmetic industries are also discussed. This review provides comprehensive information for extraction and application of aroma compounds from fruit peels, which could facilitate the valorization of the agricultural by-products and reduce environmental impacts.
Collapse
Affiliation(s)
- Zijian Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Mele MA, Kang HM, Lee YT, Islam MZ. Grape terpenoids: flavor importance, genetic regulation, and future potential. Crit Rev Food Sci Nutr 2020; 61:1429-1447. [PMID: 32401037 DOI: 10.1080/10408398.2020.1760203] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Terpenes significantly affect the flavor and quality of grapes and wine. This review summarizes recent research on terpenoids with regard to grape wine. Although, the grapevine terpene synthase gene family is the largest identified, genetic modifications involving terpenes to improve wine flavor have received little attention. Key enzyme modulation alters metabolite production. Over the last decade, the heterologous manipulation of grape glycosidase has been used to alter terpenoids, and cytochrome P450s may affect terpene synthesis. Metabolic and genetic engineering can further modify terpenoid metabolism, while using transgenic grapevines (trait transfer to the plant) could yield more flavorful wine. We also discuss traits involved in wine aroma quality, and the strategies that can be used to improve grapevine breeding technology.
Collapse
Affiliation(s)
- Mahmuda Akter Mele
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| | - Ho-Min Kang
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| | - Young-Tack Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Mohammad Zahirul Islam
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
19
|
Shih MK, Lai YH, Lin CM, Chen YW, Hou ZT, Hou CY. A novel application of terpene compound α-pinene for alternative use of sulfur dioxide-free white wine. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1742735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung, Taiwan, ROC
| | - Yu-Heng Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC
| | - Chia-Min Lin
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC
| | - Yu-Wei Chen
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Zheng-Ting Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC
| |
Collapse
|
20
|
Wu Y, Zhang W, Song S, Xu W, Zhang C, Ma C, Wang L, Wang S. Evolution of volatile compounds during the development of Muscat grape ‘Shine Muscat’ (Vitis labrusca × V. vinifera). Food Chem 2020; 309:125778. [DOI: 10.1016/j.foodchem.2019.125778] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023]
|
21
|
Li Z, Howell K, Fang Z, Zhang P. Sesquiterpenes in grapes and wines: Occurrence, biosynthesis, functionality, and influence of winemaking processes. Compr Rev Food Sci Food Saf 2019; 19:247-281. [PMID: 33319521 DOI: 10.1111/1541-4337.12516] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Grapes are an important global horticultural product, and are mainly used for winemaking. Typically, grapes and wines are rich in various phytochemicals, including phenolics, terpenes, pyrazines, and benzenoids, with different compounds responsible for different nutritional and sensory properties. Among these compounds, sesquiterpenes, a subcategory of the terpenes, are attracting increasing interest as they affect aroma and have potential health benefits. The characteristics of sesquiterpenes in grapes and wines in terms of classification, biosynthesis pathway, and active functions have not been extensively reviewed. This paper summarizes 97 different sesquiterpenes reported in grapes and wines and reviews their biosynthesis pathways and relevant bio-regulation mechanisms. This review further discusses the functionalities of these sesquiterpenes including their aroma contribution to grapes and wines and potential health benefits, as well as how winemaking processes affect sesquiterpene concentrations.
Collapse
Affiliation(s)
- Zizhan Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Harner AD, Vanden Heuvel JE, Marini RP, Elias RJ, Centinari M. Modeling the Impacts of Weather and Cultural Factors on Rotundone Concentration in Cool-Climate Noiret Wine Grapes. FRONTIERS IN PLANT SCIENCE 2019; 10:1255. [PMID: 31681367 PMCID: PMC6803480 DOI: 10.3389/fpls.2019.01255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
The sesquiterpenoid rotundone is the compound responsible for the "black pepper" aroma of many plant species, including several economically important wine grape varieties. Since its identification in wine in 2008, there has been an increased interest in understanding how individual climatic or cultural factors affect the accumulation of rotundone in grapes and subsequently the level of wine "pepperiness." However, no study has assessed climatic and viticultural factors together to identify which variables have the strongest influence on rotundone accumulation. Our study aimed to fill this knowledge gap by developing a predictive model that identified factors that explain rotundone concentrations in Noiret (Vitis sp.) grapes at harvest. Over the 2016 and 2017 seasons, we measured 21 viticultural, meso- and microclimatic variables and concentrations of rotundone in Noiret wine grapes at seven vineyards in the northeastern U.S. Vineyard growing degree days (GDD v ) and the amount of solar radiation (cumulative solar exposure; CSEv) accumulated from the beginning of fruit ripening to harvest were the variables best correlated (r = 0.70 and r = 0.74, respectively) with rotundone concentrations. Linear correlations between microclimatic parameters and rotundone concentrations were weaker, but overall rotundone was negatively correlated with low (<15°C) and high (>30°C) berry temperatures. Using the 2-year data set we were able to develop a four-variable model which explained more than 80% of the variation in rotundone concentration at harvest. The model included weather [growing degree days during fruit ripening (GDD v )] and plant-related variables (concentrations of phosphorus and calcium in the leaf petiole, and crop load). The model we developed could be used by wine producers to identify sites or cultural practices that favor rotundone accumulation in Noiret grapes after performing a model validation with an additional, external data set. More broadly, the statistical approach used here could be applied to other studies that also seek to assess the effects of multiple factors on a variable of interest under varying environmental conditions.
Collapse
Affiliation(s)
- Andrew D. Harner
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Justine E. Vanden Heuvel
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Richard P. Marini
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Ryan J. Elias
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Michela Centinari
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
23
|
Luo J, Brotchie J, Pang M, Marriott PJ, Howell K, Zhang P. Dataset of concentrations of free terpenes at different phenological stages in Vitis vinifera L. Shiraz, Cabernet Sauvignon, Riesling, Chardonnay and Pinot Gris. Data Brief 2019; 27:104595. [PMID: 31687434 PMCID: PMC6820309 DOI: 10.1016/j.dib.2019.104595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 12/05/2022] Open
Abstract
Five Vitis vinifera L. cultivars Shiraz, Cabernet Sauvignon, Riesling, Chardonnay and Pinot Gris at different E-L development stages were harvested in two experimental vintages. Temperature and rainfall data of the growing period were obtained from the Australian Government Bureau of Meteorology. Free terpene concentrations of all harvested grape samples were analysed using HS-SPME-GC-MS. One-way ANNOVA was performed to evaluate the significance of changes in terpene concentrations at different maturation stages. More analysis of the data is provided in “Free terpene evolution during the berry maturation of five Vitis vinifera L. cultivars” [1].
Collapse
Affiliation(s)
- Jiaqiang Luo
- School of Agriculture and Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia
| | - Jessica Brotchie
- School of Agriculture and Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia
| | - Meng Pang
- School of Agriculture and Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia
| | | | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia
| |
Collapse
|
24
|
Luo J, Brotchie J, Pang M, Marriott PJ, Howell K, Zhang P. Free terpene evolution during the berry maturation of five Vitis vinifera L. cultivars. Food Chem 2019; 299:125101. [PMID: 31323442 DOI: 10.1016/j.foodchem.2019.125101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 11/27/2022]
Abstract
Terpenes and their derivatives, terpenoids, are important biomarkers of grape quality as they contribute to flavor and aroma of grape and wine. The evolution of terpene and terpenoids throughout grapevine phenological development cycles is not well understood. The current study investigated the volatile profiles of free terpene and terpenoid of five widely grown Vitis vinifera L. cultivars (Shiraz, Cabernet Sauvignon, Riesling, Chardonnay and Pinot Gris), at different phenological stages from fruit-set to harvest. 17 Monoterpenoids, 3 norisoprenoid and 13 sesquiterpenoids were identified and quantified. Discriminant analysis revealed that for each grape cultivar, free terpene profiles at different E-L stages were distinctive. When integrating total sugar, total terpenes and the cumulated heat index, it could be found that flavor ripening was more consistent with sugar ripening in the warmer vintage 2016. Comparing the two red wine varieties, the overall development patterns of total monoterpenes, norisoprenoids and sesquiterpenes were similar.
Collapse
Affiliation(s)
- Jiaqiang Luo
- School of Agriculture and Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Jessica Brotchie
- School of Agriculture and Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Meng Pang
- School of Agriculture and Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | | | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia.
| |
Collapse
|
25
|
Godshaw J, Hjelmeland AK, Zweigenbaum J, Ebeler SE. Changes in glycosylation patterns of monoterpenes during grape berry maturation in six cultivars of Vitis vinifera. Food Chem 2019; 297:124921. [PMID: 31253264 DOI: 10.1016/j.foodchem.2019.05.195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Plants conjugate monoterpenoids to sugars, rendering them non-volatile. Hydrolysis of these glycosidic precursors frees the volatile aroma compounds. Here, we profile intact monoterpenyl glycosides in six Vitis vinifera grape berry cultivars. Relative concentrations of twenty-six monoterpenyl glycosides, including nine new putatively identified compounds, were analyzed by UHPLC-QTOF MS/MS at three times during grape maturation (pre-véraison, véraison, and post-véraison). Total glycoside content reached a maximum in Muscat cultivars post-véraison but remained relatively constant in all other cultivars. Three types of monoterpenyl glycosides predominated in all samples: malonylated monoterpenol glucosides, monoterpenol hexose-pentoses, and monoterpendiol hexose-pentoses. The two Muscat cultivars were not differentiated at the earlier developmental stages but could be differentiated post-véraison. In contrast, similarities between Chardonnay and Pinot noir glycoside profiles developed post-véraison. Overall monoterpene glycoconjugation patterns may align with underlying genetic relationships among cultivars. By understanding monoterpene glycoconjugation in wine grapes, scientists and winemakers can better understand grape and wine aromas.
Collapse
Affiliation(s)
- Joshua Godshaw
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States; Food Safety and Measurement Facility, University of California, Davis, Davis, CA, United States
| | | | | | - Susan E Ebeler
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States; Food Safety and Measurement Facility, University of California, Davis, Davis, CA, United States.
| |
Collapse
|
26
|
Wang CY, Chen YW, Hou CY. Antioxidant and antibacterial activity of seven predominant terpenoids. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1582541] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chung-Yi Wang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Taiwan, ROC
| | - Yu-Wei Chen
- Department of Medicine, Chang Gung University, Taiwan, ROC
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Taiwan, ROC
| |
Collapse
|
27
|
Gutiérrez‐Gamboa G, Pérez‐Álvarez EP, Rubio‐Bretón P, Garde‐Cerdán T. Waste waters from the leachate of mushroom as vine foliar treatments: influence on grape volatile composition over two consecutive seasons. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gastón Gutiérrez‐Gamboa
- Grupo VIENAP Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja) Carretera de Burgos, Km. 6 Logroño 26007 Spain
| | - Eva P. Pérez‐Álvarez
- Grupo VIENAP Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja) Carretera de Burgos, Km. 6 Logroño 26007 Spain
| | - Pilar Rubio‐Bretón
- Grupo VIENAP Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja) Carretera de Burgos, Km. 6 Logroño 26007 Spain
| | - Teresa Garde‐Cerdán
- Grupo VIENAP Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja) Carretera de Burgos, Km. 6 Logroño 26007 Spain
| |
Collapse
|
28
|
Carmichael PC, Siyoum N, Chidamba L, Korsten L. Characterization of fungal communities of developmental stages in table grape grown in the northern region of South Africa. J Appl Microbiol 2018; 123:1251-1262. [PMID: 28862786 DOI: 10.1111/jam.13577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022]
Abstract
AIMS To determine fungal communities that characterize table grapes during berry development. METHODS AND RESULTS Two agro-ecologically different table grape commercial farms (site A and B) were used in this study. Samples were collected at full bloom, pea size and mature stages, from three positions (inside centre, eastern and western peripheral ends) per site. Total DNA extraction, Illumina sequencing and analysis of 18 pooled samples for fungal diversity targeting ITS1-2 generated a total of 2 035 933 high-quality sequences. The phylum Ascomycota (77.0%) and Basidiomycota (23.0%) were the most dominant, while the genera, Alternaria (33.1%) and Cladosporium (24.2%) were the overall dominant postharvest decay causing fungi throughout the developmental stages. Inside centre of site A were more diverse at full bloom (3.82) than those at the peripheral ends (<3.8), while at site B, the peripheral ends showed better diversity, particularly the eastern part at both full bloom (3.3) and pea size (3.7). CONCLUSION Fungal population diversity varies with different phenological table grape growth stages and is further influenced by site and vine position within a specific vineyard. SIGNIFICANCE AND IMPACT OF THE STUDY The information on fungal diversity and succession in table grapes during preharvest growth stages is critical in the development of a more targeted control strategy, to improve postharvest quality of table grapes.
Collapse
Affiliation(s)
- P C Carmichael
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| | - N Siyoum
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| | - L Chidamba
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| | - L Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
29
|
Zhang P, Wu X, Needs S, Liu D, Fuentes S, Howell K. The Influence of Apical and Basal Defoliation on the Canopy Structure and Biochemical Composition of Vitis vinifera cv. Shiraz Grapes and Wine. Front Chem 2017; 5:48. [PMID: 28736728 PMCID: PMC5500617 DOI: 10.3389/fchem.2017.00048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/21/2017] [Indexed: 11/13/2022] Open
Abstract
Defoliation is a commonly used viticultural technique to balance the ratio between grapevine vegetation and fruit. Defoliation is conducted around the fruit zone to reduce the leaf photosynthetic area, and to increase sunlight exposure of grape bunches. Apical leaf removal is not commonly practiced, and therefore its influence on canopy structure and resultant wine aroma is not well-studied. This study quantified the influences of apical and basal defoliation on canopy structure parameters using canopy cover photography and computer vision algorithms. The influence of canopy structure changes on the chemical compositions of grapes and wines was investigated over two vintages (2010-2011 and 2015-2016) in Yarra Valley, Australia. The Shiraz grapevines were subjected to five different treatments: no leaf removal (Ctrl); basal (TB) and apical (TD) leaf removal at veraison and intermediate ripeness, respectively. Basal leaf removal significantly reduced the leaf area index and foliage cover and increased canopy porosity, while apical leaf removal had limited influences on canopy parameters. However, the latter tended to result in lower alcohol level in the finished wine. Statistically significant increases in pH and decreases in TA was observed in shaded grapes, while no significant changes in the color profile and volatile compounds of the resultant wine were found. These results suggest that apical leaf removal is an effective method to reduce wine alcohol concentration with minimal influences on wine composition.
Collapse
Affiliation(s)
| | | | | | | | | | - Kate Howell
- School of Agriculture and Food, University of MelbourneParkville, VIC, Australia
| |
Collapse
|
30
|
Fortification and Elevated Alcohol Concentration Affect the Concentration of Rotundone and Volatiles in Vitis vinifera cv. Shiraz Wine. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3030029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Zhang E, Chai F, Zhang H, Li S, Liang Z, Fan P. Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Food Chem 2017; 237:379-389. [PMID: 28764010 DOI: 10.1016/j.foodchem.2017.05.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 01/31/2023]
Abstract
Terpenes are important aroma compounds in table Muscat grape and wine, and their content in the berry can be affected by sunlight. The effects of sunlight exclusion on monoterpene profiles and relevant gene expression profiles in the exocarp and mesocarp of table Muscat grape 'Jingxiangyu' at different development stages were thoroughly surveyed by bagging pre-veraison clusters in special opaque boxes. The responses of monoterpenes to sunlight treatments varied in three types, representatively linalool, ocimene and geraniol. Linalool was the most sensitive compound to sunlight, whose biosynthesis was severely inhibited by sunlight exclusion and then was elevated by re-exposure. Ocimene and glycosylated geraniol showed a certain suppressive and stimulative responses to sunlight exclusion respectively. Further transcription analysis revealed that VvPNLinNer1, VvCSbOci, VvGT7 and VvGT14 genes were mainly responsible for monoterpene accumulation and sensitivity to sunlight. VvDXS2 and VvDXR genes were partially related to the differential accumulation of total terpenes under different sunlight treatments.
Collapse
Affiliation(s)
- Erpeng Zhang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fengmei Chai
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan 430074, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haohao Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China.
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China.
| |
Collapse
|
32
|
Zhang P, Fuentes S, Siebert T, Krstic M, Herderich M, Barlow EWR, Howell K. Comparison data of common and abundant terpenes at different grape development stages in Shiraz wine grapes. Data Brief 2016; 8:1127-36. [PMID: 27547791 PMCID: PMC4983143 DOI: 10.1016/j.dib.2016.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/14/2016] [Accepted: 07/07/2016] [Indexed: 11/18/2022] Open
Abstract
Terpenoids were extracted from grape vine bunches during plant development and analysed by GC-MSD. The grapevines analysed were from a commercial harvest of Vitis vinifera cv. Shiraz. The terpenoids were analysed from 4 weeks post flowering (wpf) to harvest in one season. The data are presented with the structure of the compound and aroma profile and semi-quantified. The sub-class of sesquiterpenes was given special attention, and this data set describes the first analysis of these compounds during ripening of this important economic crop. Sesquiterpenes may have a hitherto described contribution to wine aroma. This data set may provide insight into biosynthetic pathways and aroma chemistry. Interpretation of our data and further discussion can be found in "Terpene evolution during the development of Vitis vinifera L. cv. Shiraz grapes" (Zhang et al., 2016) [1].
Collapse
Affiliation(s)
- Pangzhen Zhang
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sigfredo Fuentes
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tracey Siebert
- Australian Wine Research Institute, Urrbrae, SA 5064, Australia
| | - Mark Krstic
- Australian Wine Research Institute, Mooroolbark, VIC 3138, Australia
| | | | - Edward William R. Barlow
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kate Howell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
- INRA, UMR1083 SPO, 2, Place Viala, F-34060 Montpellier, France
- Corresponding author at: Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.Faculty of Veterinary and Agricultural Sciences, University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
33
|
Zhang P, Fuentes S, Wang Y, Deng R, Krstic M, Herderich M, Barlow EWR, Howell K. Distribution of Rotundone and Possible Translocation of Related Compounds Amongst Grapevine Tissues in Vitis vinifera L. cv. Shiraz. FRONTIERS IN PLANT SCIENCE 2016; 7:859. [PMID: 27446104 PMCID: PMC4914589 DOI: 10.3389/fpls.2016.00859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/31/2016] [Indexed: 05/19/2023]
Abstract
Rotundone is an attractive wine aroma compound, especially important for cool climate Shiraz. Its presence in wine is mainly from the grape skin, but can also be found in non-grape tissues, such as leaves and stems. Whether rotundone is produced independently within different grapevine tissues or transported amongst non-grape tissues and grape berries remains unclear. The current study investigated the distribution of this compound in different vine tissues during development and studied the most likely mode of rotundone translocation-via phloem-using stable isotope feeding. In addition, local production of rotundone induced by herbivore feeding was assessed. Results showed that rotundone was firstly detected in the petioles and peduncles/rachises within the development of Vitis vinifera L. cv. Shiraz. Different grapevine tissues had a similar pattern of rotundone production at different grape developmental stages. In the individual vine shoots, non-grape tissues contained higher concentrations and amounts of rotundone compared to berries, which showed that non-grape tissues were the larger pool of rotundone within the plant. This study confirmed the local production of rotundone in individual tissues and ruled out the possibility of phloem translocation of rotundone between different tissues. In addition, other terpenes, including one monoterpenoid (geraniol) and six sesquiterpenes (clovene, α-ylangene, β-copaene, α-muurolene, δ-cadinene, and cis/trans-calamenene) were, for the first time, detected in the ethylenediaminetetraacetic acid-facilitated petiole phloem exudates, with their originality unconfirmed. Unlike other herbivore-induced terpenes, herbivorous activity had limited influences on the concentration of rotundone in grapevine leaves.
Collapse
Affiliation(s)
- Pangzhen Zhang
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, ParkvilleVIC, Australia
| | - Sigfredo Fuentes
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, ParkvilleVIC, Australia
| | - Yueying Wang
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, ParkvilleVIC, Australia
| | - Rui Deng
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, ParkvilleVIC, Australia
| | - Mark Krstic
- Australian Wine Research Institute, MooroolbarkVIC, Australia
| | | | - Edward W. R. Barlow
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, ParkvilleVIC, Australia
| | - Kate Howell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, ParkvilleVIC, Australia
- UMR 1083 Sciences pour l’Oenologie, Institut National de la Recherche AgronomiqueMontpellier, France
| |
Collapse
|