1
|
Cometta S, Donose BC, Juárez-Saldivar A, Ravichandran A, Xu Y, Bock N, Dargaville TR, Rakić AD, Hutmacher DW. Unravelling the physicochemical and antimicrobial mechanisms of human serum albumin/tannic acid coatings for medical-grade polycaprolactone scaffolds. Bioact Mater 2024; 42:68-84. [PMID: 39280579 PMCID: PMC11399811 DOI: 10.1016/j.bioactmat.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Biofilm-related biomaterial infections are notoriously challenging to treat and can lead to chronic infection and persisting inflammation. To date, a large body of research can be reviewed for coatings which potentially prevent bacterial infection while promoting implant integration. Yet only a very small number has been translated from bench to bedside. This study provides an in-depth analysis of the stability, antibacterial mechanism, and biocompatibility of medical grade polycaprolactone (mPCL), coated with human serum albumin (HSA), the most abundant protein in blood plasma, and tannic acid (TA), a natural polyphenol with antibacterial properties. Molecular docking studies demonstrated that HSA and TA interact mainly through hydrogen-bonding, ionic and hydrophobic interactions, leading to smooth and regular assemblies. In vitro bacteria adhesion testing showed that coated scaffolds maintained their antimicrobial properties over 3 days by significantly reducing S. aureus colonization and biofilm formation. Notably, amplitude modulation-frequency modulation (AMFM) based viscoelasticity mapping and transmission electron microscopy (TEM) data suggested that HSA/TA-coatings cause morphological and mechanical changes on the outer cell membrane of S. aureus leading to membrane disruption and cell death while proving non-toxic to human primary cells. These results support this antibiotic-free approach as an effective and biocompatible strategy to prevent biofilm-related biomaterial infections.
Collapse
Affiliation(s)
- Silvia Cometta
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Bogdan C Donose
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alfredo Juárez-Saldivar
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, 88740, Mexico
| | - Akhilandeshwari Ravichandran
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yanan Xu
- Central Analytical Research Facility (CARF), Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Tim R Dargaville
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Aleksandar D Rakić
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dietmar W Hutmacher
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Translational Research Institute, Woolloongabba, QLD, 4102, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
2
|
Tarahi M, Gharagozlou M, Niakousari M, Hedayati S. Protein-Chlorogenic Acid Interactions: Mechanisms, Characteristics, and Potential Food Applications. Antioxidants (Basel) 2024; 13:777. [PMID: 39061846 PMCID: PMC11273606 DOI: 10.3390/antiox13070777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The interactions between proteins and chlorogenic acid (CGA) have gained significant attention in recent years, not only as a promising approach to modify the structural and techno-functional properties of proteins but also to enhance their bioactive potential in food systems. These interactions can be divided into covalent (chemical or irreversible) and non-covalent (physical or reversible) linkages. Mechanistically, CGA forms covalent bonds with nucleophilic amino acid residues of proteins by alkaline, free radical, and enzymatic approaches, leading to changes in protein structure and functionality, such as solubility, emulsification properties, and antioxidant activity. In addition, the protein-CGA complexes can be obtained by hydrogen bonds, hydrophobic and electrostatic interactions, and van der Waals forces, each offering unique advantages and outcomes. This review highlights the mechanism of these interactions and their importance in modifying the structural, functional, nutritional, and physiological attributes of animal- and plant-based proteins. Moreover, the potential applications of these protein-CGA conjugates/complexes are explored in various food systems, such as beverages, films and coatings, emulsion-based delivery systems, and so on. Overall, this literature review provides an in-depth overview of protein-CGA interactions, offering valuable insights for future research to develop novel protein-based food and non-food products with improved nutritional and functional characteristics.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| | - Maryam Gharagozlou
- Center for Organic Farming, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| |
Collapse
|
3
|
Wang X, Gong X, Lin B. Optimization of ultrasonic pretreatment and analysis of chlorogenic acid in potato leaves. Sci Rep 2024; 14:10613. [PMID: 38719831 PMCID: PMC11079030 DOI: 10.1038/s41598-024-61139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Chlorogenic acid (CA) is an effective ingredient that can strengthen immunity during following the COVID-19 era. The current cost of CA is high owing to its complex purification process and low yield (approximately 2%). In this study, a one-step path orthogonal experiment was designed based on the results from Gauss calculation, which consisted of acidity, coordination, and hydrolysis in molecules. The optimized extraction conditions were 60 ℃, 60 min, 1:20 liquid ratio, and 40% ethanol in a nitrogen atmosphere controlled using a device of our own design, which led to CA yields of up to 6.35% from potato leaves. The purified CA was analyzed using high-performance liquid chromatography, thin-layer chromatography, ultraviolet-visible spectroscopy, and molecular fluorescence. This accurate and reproducible method can not only be used to obtain high yields of CA but can also be used for the quality control of active plant products and their isomers.
Collapse
Affiliation(s)
- Xin Wang
- Department of Food Engineering, Chemistry, Harbin University, Harbin, Heilongjiang, China.
| | - Xianyun Gong
- Department of Food Engineering, Chemistry, Harbin University, Harbin, Heilongjiang, China
| | - Binbin Lin
- Department of Food Engineering, Chemistry, Harbin University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Chen N, Wan X, Wang M, Li Y, Wang X, Zeng L, Zhou J, Zhang Y, Cheng S, Shen Y. Cross-talk between Vimentin and autophagy regulates blood-testis barrier disruption induced by cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123625. [PMID: 38401636 DOI: 10.1016/j.envpol.2024.123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The blood-testis barrier (BTB) plays a vital role in mammalian spermatogenesis by separating the seminiferous epithelium into an adluminal and a basal compartment. Cadmium (Cd) is a toxic heavy metal that is widely present in the environment. We observed that Cd can induce BTB disruption, leading to apoptosis of testicular cells. However, the molecular mechanisms contributing to BTB injury induced by Cd have not yet been fully clarified. Vimentin (Vim) is an important desmosome-like junction protein that mediates robust adhesion in the BTB. In this study, we investigated how Vim responds to Cd. We found that Cd treatment led to a significant decrease in Vim expression, accompanied by a marked increase in LC3-II expression and a higer number of autophagosomes. Interestingly, we also observed that Cd-induced autophagy was associated with decreased Vim activity and enhanced apoptosis of testicular cells. To further investigate the role of autophagy in Vim regulation under Cd exposure, we treated cells with an autophagy inhibitor called 3-MA. We found that 3-MA treatment enhanced Vim expression and improved the disruption of the BTB under Cd exposure. Additionally, the inhibition of Vim confirmed the role of autophagy in modulating Vim expression. These results reveal a previously unknown regulatory mechanism of Cd involving the interplay between a heavy metal and a protein.
Collapse
Affiliation(s)
- Na Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Xiaoyan Wan
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, PR China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Yamin Li
- Department of Woman's Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Xiaofei Wang
- Center for Reproductive Medicine, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, Hubei, PR China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, PR China
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shun Cheng
- College of Zhixing, Hubei University, Wuhan, 430011, PR China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| |
Collapse
|
5
|
Tong Y, Li G, Shi X, Wang L, Zhou J, Chu M, Wang Z, Abd El-Aty AM, Dang J. Protection against myocardial ischemia/reperfusion injury in mice by 3-caffeoylquinic acid isomers isolated from Saxifraga tangutica. RSC Adv 2024; 14:6642-6655. [PMID: 38390505 PMCID: PMC10883144 DOI: 10.1039/d4ra00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
The development of ischemic heart disease (IHD) involves a variety of pathophysiological responses, such as mitochondrial dysfunction. Many compounds with antioxidant activity isolated from natural products have been shown to have significant effects on the prevention and treatment of cardiovascular diseases. However, little is known about the palliative effects of 3-caffeoylquinic acid isomers isolated from Saxifraga tangutica (S. tangutica) on myocardial ischemia/reperfusion injury (MIRI). Three isomers of 3-caffeoylquinic acid were isolated from S. tangutica and identified as neochlorogenic acid (Fr2-4-1-1, 18.5 mg), chlorogenic acid (Fr2-5-1-1, 81.7 mg) and cryptochlorogenic acid (Fr2-5-2-1, 15.0 mg) using medium-pressure liquid chromatography-high-pressure two-dimensional liquid chromatography. An in vitro DPPH assay showed that cryptochlorogenic acid (CCGA), neochlorogenic acid (NCGA) and chlorogenic acid (CGA) (in order of activity from strongest to weakest) possessed superior antioxidant activity. Langendorff's in vitro model was utilized to explore the protective effects of 3 caffeoylquinic acid isomers against MIRI. The ex vivo MIRI assay demonstrated that CCGA significantly improved hemodynamic function (P < 0.05), hemodynamic function-related indices (LVDP, RPP, +dP/dt and -dP/dt), and cell morphology in I/R myocardium tissues. In addition, the results of western blot analysis showed that mitochondrial biogenesis was significantly increased in I/R myocardial tissues after treatment with CCGA. In contrast, the activities of CGA and NCGA were lower. This is the first demonstration of efficient preparative isolation of 3-caffeoylquinic acid isomers (CGA, NCGA and CCGA) from S. tangutica. CCGA may be a promising approach for the treatment of cardiac I/R injury, especially for the regulation of mitochondrial biogenesis after MIRI.
Collapse
Affiliation(s)
- Yingying Tong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining 810001 Qinghai China +86-971-6143282 +86-971-6143282
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - Xiaobing Shi
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - Lin Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - Jia Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining 810001 Qinghai China +86-971-6143282 +86-971-6143282
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - Ming Chu
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University Erzurum 25240 Turkey
| | - Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining 810001 Qinghai China +86-971-6143282 +86-971-6143282
| |
Collapse
|
6
|
Wang S, Li Y, Ma C, Huang D, Chen S, Zhu S, Wang H. Enzymatic molecular modification of water-soluble polyphenols: Synthesis, structure, bioactivity and application. Crit Rev Food Sci Nutr 2023; 63:12637-12651. [PMID: 35912423 DOI: 10.1080/10408398.2022.2105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The poor lipophilicity and instability of water-soluble polyphenols limit their bioavailability and application in food. However, increasing attention has been given to water-soluble polyphenols due to their multiple biological activities, which prompts the modification of the structure of water-soluble polyphenols to improve their lipophilicity and stability and enable more efficient application. This review presents the enzymatic biosynthesis of lipophilic derivatives of water-soluble polyphenols, which will change the molecular structure of water-soluble polyphenols based on the loss of hydroxyl or carboxyl groups. Therefore, the effects of reaction factors on the structure of polyphenol derivatives and the change in their bioactivities will be further analyzed. Previous studies have shown that lipases, solvent systems, and hydrophobic groups are major factors influencing the synthesis and lipophilicity of polyphenol derivatives. Moreover, the biological activities of polyphenol derivatives were changed to a certain extent, such as through the enhancement or weakening of antioxidant activity in different systems and the increase in anti-influenza virus activity and antibacterial activity. The improvement of lipophilicity also expands polyphenol application in food. This review may contribute to the efficient synthesis of lipophilic derivatives of water-soluble polyphenols to extend the utilization and application range of polyphenols.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chaoyang Ma
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Shangwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Sepehri N, Valipour M, Parchizadeh E, Maghami P. Investigating the Protective Role of Biochaga Drug on Structural Changes of Bovine Serum Albumin in the Presence of Methyl tert-butyl Ether. Protein J 2023; 42:112-124. [PMID: 36905495 DOI: 10.1007/s10930-023-10102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND The health benefits of natural products have a long history. Chaga (Inonotus obliques) is used in traditional medicine and is an essential antioxidant for protecting the body from oxidants. Reactive oxygen species (ROS) are produced routinely due to metabolic processes. However, environmental pollution factors such as methyl tert-butyl ether (MTBE) can increase oxidative stress in the human body. MTBE is widely used as a fuel oxygenator that can harm health. The widespread use of MTBE has posed significant threats to the environment by polluting environmental resources, including groundwater. This compound can accumulate in the bloodstream by inhaling polluted air, with a strong affinity for blood proteins. The primary mechanism of MTBE's harmful effects is ROS production. The use of antioxidants may help reduce MTBE oxidation conditions. The present study proposes that biochaga, as an antioxidant, can reduce MTBE damage in the bovine serum albumin (BSA) structure. METHODS AND RESULTS This study investigated the role of different concentrations of biochaga in the structural change of BSA in the presence of MTBE by biophysical methods such as UV-Vis, fluorescence, FTIR spectroscopy, DPPH radical inhibition method, aggregation test, and molecular docking. Research at the molecular level is critical to investigate the structural change of proteins by MTBE and the protective effect of the ideal dose (2.5 µg/ml) of biochaga. CONCLUSION the results of spectroscopic examinations showed that the concentration of 2.5 µg/ml of biochaga has the least destructive effect on the structure of BSA in the presence and absence of MTBE, and it can play as an antioxidant.
Collapse
Affiliation(s)
- Niloofar Sepehri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Valipour
- Department of Biology, Faculty of Basic Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Elmira Parchizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Interactions between Hazelnut (Corylus avellana L.) Protein and Phenolics and In Vitro Gastrointestinal Digestibility. SEPARATIONS 2022. [DOI: 10.3390/separations9120406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
In this study, we investigated the formation of protein–phenolic complexes from dephenolized hazelnut meal protein isolates (dHPI) and hazelnut skin phenolic extracts (HSE) and their effects on the bioaccessibility of both hazelnut proteins and phenolics. The dHPI–HSE complexes were of considerable size and were dependent on HSE concentration due to aggregation. Although catechin was the main component of HSE, it did not cause aggregation, except for a slight rise in particle size. According to fluorescence quenching, the hazelnut protein–phenolic extract complex had a linear Stern–Volmer plot expressing static quenching between 0–0.5 mM concentration; the interaction was mainly dependent on hydrogen bonding and van der Waals forces (ΔH < 0 and ΔS < 0), and the reaction was spontaneous (ΔG < 0). According to Fourier transform infrared (FTIR) spectroscopy results, higher phenolic extract concentration caused an increase in irregular structures in hazelnut protein, while the lowest catechin and phenolic concentration altered the regular structure. Skin extracts did not alter the digestibility of dephenolized proteins, but dephenolization reduced the degree of hydrolysis by pancreatin. The formation of the protein–phenolic complex had a beneficial effect on the bioaccessibility of hazelnut skin phenols, predominantly those on the galloylated form of the catechins, such as gallocatechin gallate and epigallocatechin gallate. Thus, the bioaccessibility and antioxidant activity analysis results showed that protein–phenolic complexes obtained from hazelnut meal and skin may promote the transition of phenolic compounds from the gastrointestinal tract without degradation.
Collapse
|
9
|
Chen J, Wang Y, Pan X, Cheng Y, Liu J, Cao X. Study on the interaction mechanism between luteoloside and xanthine oxidase by multi-spectroscopic and molecular docking methods. J Mol Recognit 2022; 35:e2985. [PMID: 35907782 DOI: 10.1002/jmr.2985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Gout is an inflammatory joint disease caused by urate crystal deposition, which is associated with hyperuricemia. Gout will take place when the uric acid accumulates. Xanthine oxidase (XO) is a crucial enzyme in the formation of uric acid. Inhibiting XO is one of the means to ameliorate gout. Luteoloside is a kind of natural flavonoid, which has an excellent prospect for relieving gout. But there are few reports on the interaction mechanism between luteoloside and XO currently. In this study, the interaction mechanism between luteoloside and XO was explored using spectroscopy and molecular docking. The fluorescence spectroscopy results indicated that luteoloside could make the intrinsic fluorescence of XO quenched, and the binding constant between luteoloside and XO was (1.85 ± 0.22) × 103 L mol-1 at 298 K. The synchronous fluorescence spectroscopy results showed that the absorption peaks of Tyr and Trp shifted blue, and the hydrophobicity of the microenvironment increased. Moreover, CD spectra showed that α-helix of XO decreased, β-sheet and β-turn increased after adding luteoloside. The results of molecular docking analysis showed that XO could combine with luteoloside through hydrogen bonds and hydrophobic force. The results indicated that luteoloside could remarkably interact with XO. Insights into the interaction mechanism provide a necessary basis for the search for low-toxic natural products as targets of XO. HIGHLIGHTS: Luteoloside and xanthine oxidase was a strong binding mode and had only one binding site. Luteoloside could cause α-helix reduced, β-sheet and β-turn increased, and change the secondary structure of XO. The binding between luteoloside and xanthine oxidase was a spontaneous process. The main binding force was hydrophobic force between luteoloside and xanthine oxidase.
Collapse
Affiliation(s)
- Junliang Chen
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, People's Republic of China
| | - Yuxiao Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang, People's Republic of China
| | - Xinyu Pan
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, People's Republic of China
| | - Ye Cheng
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, People's Republic of China
| | - Jianli Liu
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, People's Republic of China
| | - Xiangyu Cao
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, People's Republic of China
| |
Collapse
|
10
|
Li M, Li J, Huang Y, Gao Z, Jiang Z, Mu Z. Insight into comparison of binding interactions and biological activities of whey protein isolate exposed prior to two structurally different sterols. Food Chem 2022; 405:134827. [DOI: 10.1016/j.foodchem.2022.134827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
11
|
Exploring the lentil protein and onion skin phenolics interaction by fluorescence quenching method. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Chang Y, Huang K, Yang F, Gao Y, Zhang Y, Li S, Liu B, Guo S. Metabolites of chlorogenic acid and its isomers: Metabolic pathways and activities for ameliorating myocardial hypertrophy. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
13
|
Cen C, Chen J, Wang W, Zhang J, Yang X, Fu L, Wang Y. Exploring the interaction mechanism of dietary protein ovalbumin and folic acid: A combination research of molecular simulation technology and multispectroscopy. Food Chem 2022; 385:132536. [PMID: 35278738 DOI: 10.1016/j.foodchem.2022.132536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/26/2022]
Abstract
This study aims to reveal the mechanism of the interaction between folic acid (FA) and egg ovalbumin (OVA) through the method of multi-spectroscopic, molecular docking, and molecular dynamics simulation in order to probe OVA as the possibility of a carrier of unstable vitamins. The results of the fluorescence spectra indicated a static quenching in the OVA-FA with a strong affinity of 6.998 × 104 M-1. At the same time, the complex formed by FA and OVA has changed the microenvironment. The measurement results of circular dichroism and particle size showed that FA and OVA gradually formed larger particles without changed the secondary structure of the protein. In addition, the results of molecular simulations indicated that the interaction between OVA and FA is mainly stabilized by strong hydrophobic and hydrogen bonds. This research was expanded the application prospect of dietary protein OVA as a transportation and protection system of vitamin substances.
Collapse
Affiliation(s)
- Congnan Cen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Weiqiang Wang
- Jinhua Jinnian Ham Co., Ltd, Jinhua 321041, PR China
| | - Jie Zhang
- Food Safety Institute, Science and Technology Research Center of China Customs, Beijing 100026, PR China
| | - Xiangying Yang
- Food Safety Institute, Science and Technology Research Center of China Customs, Beijing 100026, PR China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
14
|
Azeem K, Ahmed M, Mohammad T, Uddin A, Shamsi A, Hassan MI, Singh S, Patel R, Abid M. A multi-spectroscopic and computational simulations study to delineate the interaction between antimalarial drug hydroxychloroquine and human serum albumin. J Biomol Struct Dyn 2022:1-17. [PMID: 35924780 DOI: 10.1080/07391102.2022.2107077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Hydroxychloroquine (HCQ), a quinoline based medicine is commonly used to treat malaria and autoimmune diseases such as rheumatoid arthritis. Since, human serum albumin (HSA) serves as excipient for vaccines or therapeutic protein drugs, it is important to understand the effect of HCQ on the structural stability of HSA. In this study, the binding mechanism of HCQ and their effect on stability of HSA have been studied using various spectroscopic techniques and molecular dynamic simulation. The UV-VIS results confirmed the strong binding of HCQ with HSA. The calculated thermodynamics parameters confirmed that binding is spontaneous in nature and van der Waals forces and hydrogen bonding are involved in the binding system which is also confirmed by molecular docking results. The steady-state fluorescence confirms the static quenching mechanism in the interaction system, which was further validated by time-resolved fluorescence. The synchronous fluorescence confirmed the more abrupt binding of HCQ with tryptophan residue of HSA compared to Tyr residue of HSA. Isothermal titration calorimetry (ITC) was done to validate the thermodynamics parameters of HSA-HCQ complex in one experiment, supporting the values obtained from the spectroscopic techniques. The circular dichroism (CD) demonstrated that the HCQ affected the secondary structure of HSA protein by reducing their α-helical content. The docking and molecular dynamic simulation results further helped in understanding the effect of HCQ on conformational changes of HSA. Overall, present work defined the physicochemical properties and interaction mechanism of HCQ with HSA that have extensively been elucidated by both in vitro and in silico approaches.
Collapse
Affiliation(s)
- Kashish Azeem
- Department of Biosciences, Medicinal Chemistry Laboratory, New Delhi, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mofieed Ahmed
- Department of Biosciences, Medicinal Chemistry Laboratory, New Delhi, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Amad Uddin
- Department of Biosciences, Medicinal Chemistry Laboratory, New Delhi, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rajan Patel
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Medicinal Chemistry Laboratory, New Delhi, India
| |
Collapse
|
15
|
Nassarawa SS, Nayik GA, Gupta SD, Areche FO, Jagdale YD, Ansari MJ, Hemeg HA, Al-Farga A, Alotaibi SS. Chemical aspects of polyphenol-protein interactions and their antibacterial activity. Crit Rev Food Sci Nutr 2022; 63:9482-9505. [PMID: 35475717 DOI: 10.1080/10408398.2022.2067830] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The hunt for novel antibiotics has become a global public health imperative due to the rise in multidrug-resistant microorganisms, untreatable infection cases, overuse, and inefficacy of modern antibiotics. Polyphenols are getting much attention in research due to their multiple biological effects; their use as antimicrobial agents is attributed to their activity and that microbes have a hard time developing resistance to these natural compounds. Polyphenols are secondary metabolites produced in higher plants. They are known to possess various functional properties in the human body. Polyphenols also exhibit antibacterial activities against foodborne pathogens. Their antibacterial mechanism is based on inhibiting bacterial biofilm formation or inactivating enzymes. This review focused on polyphenol-protein interactions and the creation of this complex as a possible antibacterial agent. Also, different phenolic interactions on bacterial proteins, efflux pump, cell membrane, bacterial adhesion, toxins, and other bacterial proteins will be explored; these interactions can work in a synergic combination with antibiotics or act alone to assure bacterial inhibition. Additionally, our review will focus on polyphenol-protein interaction as a possible strategy to eradicate bacteria because polyphenols have shown a robust enzyme-inhibitory characteristic and a high tendency to complex with proteins, a response that neutralizes any bactericidal potential.
Collapse
Affiliation(s)
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College Shopian, Srinagar, Jammu and Kashmir, India
| | - S Dutta Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Yash D Jagdale
- MIT School of Food Technology, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University), Bareilly, Uttar Pradesh, India
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Monawra, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
16
|
Bala I, Singh K, Kataria R, Sindhu M. Exploration of structural, electrostatic and photophysical behaviour of novel Ni (II), Cu (II) and Zn (II) complexes, and their utility as potent antimicrobial agents. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Indu Bala
- Department of Chemistry Kurukshetra University Kurukshetra Haryana India
| | - Kiran Singh
- Department of Chemistry Kurukshetra University Kurukshetra Haryana India
| | - Ramesh Kataria
- Department of Chemistry and Center of Advanced Studies in Chemistry Panjab University Chandigarh India
| | - Meena Sindhu
- Department of Microbiology, COBS&H CCS Haryana Agricultural University Hisar India
| |
Collapse
|
17
|
Xue P, Zhang G, Zhao H, Wang W, Zhang J, Ren L. Serum albumin complexed with ellagic acid from pomegranate peel and its metabolite urolithin B. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Zhao C, Miao Z, Yan J, Liu J, Chu Z, Yin H, Zheng M, Liu J. Ultrasound-induced red bean protein–lutein interactions and their effects on physicochemical properties, antioxidant activities and digestion behaviors of complexes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Wu C, Dong H, Wang P, Han M, Xu X. Sequential changes in antioxidant activity and structure of curcumin-myofibrillar protein nanocomplex during in vitro digestion. Food Chem 2022; 382:132331. [PMID: 35149465 DOI: 10.1016/j.foodchem.2022.132331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
This study aimed to investigate the in vitro digestion of curcumin-myofibrillar protein (MP) complexes characterized by antioxidant activity and structure changes. Curcumin-MP nanocomplexes were prepared by pH-shifting (from 12 to 7) method and then digested in vitro. Results showed that the protein released by dissolved nitrogen and the scavenging rates of DPPH and ABTS free radicals were enhanced significantly by the formation of nanocomplex with curcumin. During simulated digestion, curcumin can reduce the α-helix of protein, along with red shifted and significantly decreased maximum fluorescence intensity. This structural difference may change the restriction sites of MP, resulting in substantial changes in the digested products composition and 11 unique peptides with potential bioactivity appearance in the digested products of curcumin-MP complex. Our finding revealed the Curcumin-MP nanocomplexes has unique protein digestion fate which has potential application on functional enhanced food.
Collapse
Affiliation(s)
- Changling Wu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Hualin Dong
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Peng Wang
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Minyi Han
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
20
|
Chen B, Luo H, Chen W, Huang Q, Zheng K, Xu D, Li S, Liu A, Huang L, Zheng Y, Lin X, Yao H. Pharmacokinetics, Tissue Distribution, and Human Serum Albumin Binding Properties of Delicaflavone, a Novel Anti-Tumor Candidate. Front Pharmacol 2021; 12:761884. [PMID: 34867382 PMCID: PMC8635734 DOI: 10.3389/fphar.2021.761884] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 01/12/2023] Open
Abstract
Delicaflavone (DF), a natural active ingredient from Selaginella doederleinii Hieron, has been reported to have favorable anticancer effects and is thus considered a potential anticancer agent. However, its pharmacokinetics and plasma protein binding properties remain unknown. Here, we investigated the pharmacokinetic profile of DF in rats using a validated HPLC-MS/MS methods, as well as its human serum albumin (HSA) binding properties through multi-spectroscopic and in silico methods. The results showed that DF was rapidly eliminated and had a widespread tissue distribution after intravenous administration. DF showed linear dynamics in the dose range of 30–60 mg/kg and poor oral bioavailability. The major distribution tissues of DF were the liver, lungs, and kidneys. Ultraviolet and fluorescence spectroscopy and molecular docking demonstrated that DF had a static quenching effect on HSA, with one binding site, and relatively strong binding constants. Thermodynamic analysis of the binding data revealed that hydrogen bonding and van der Waals interactions played major roles in binding. The results of this study further our understanding of the pharmacokinetic and plasma protein binding properties of the potential anticancer agent DF and shed light on pharmacological strategies that may be useful for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Bing Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hongbin Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Department of Orthopedic, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Weiying Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Department of Pharmacy, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Qishu Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Kaifan Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dafen Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yanjie Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Gu J, Yang G, Huang X, He Q. Revealing the complexity of distinct manganese species-protein interactions through multi-spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119981. [PMID: 34052764 DOI: 10.1016/j.saa.2021.119981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The effect of manganese (Mn) on protein conformation is closely related to its chemical species. To further realize the behavior of different species of Mn in vivo, this study is designed to analyze the separate and simultaneous interactions of Mn(ii) and Mn(iii) with bovine serum albumin (BSA) using multi-spectroscopy. The results demonstrated that the interaction of Mn(ii) or Mn(iii) with BSA is a process of static quenching and Mn(iii) formed a more stable complex. The binding constants and thermodynamic constants indicated that a 1:1 complex was formed between Mn(ii)/Mn(iii) and BSA through a moderate binding force, and hydrophobic interaction played an important role in the binding. UV-Vis spectroscopy, synchronous fluorescence spectroscopy and three-dimensional fluorescence spectroscopy results revealed that the conformation changes in BSA induced by Mn(ii)/Mn(iii) binding. The results of the ternary systems suggested that both Mn species interfered the interaction of the other with BSA. The conformation of BSA may change more to adapt to the simultaneous binding to Mn (ii) and Mn (iii) when two Mn species coexist.
Collapse
Affiliation(s)
- Jiali Gu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China.
| | - Gang Yang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| | - Xiyao Huang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| | - Qian He
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| |
Collapse
|
22
|
Meng D, Zhang L, Wang Q, Zhang Y, Sun Y, Zhang H, Wang Z, Zhou Z, Yang R. Self-Assembly of Phycoerythrin with Oligochitosan by Electrostatic Interaction for Stabilization of Phycoerythrin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12818-12827. [PMID: 34669400 DOI: 10.1021/acs.jafc.1c05205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phycoerythrin (PE) is a natural water-soluble pigment protein with characteristic phycobilins and is sensitive to thermal and light environmental changes. In this study, PE was extracted from Porphyra haitanensis and PE-oligochitosan complexes (POC) were fabricated by a self-assembly approach. The effects of cationic oligochitosan on the binding interaction, structure, size distribution, and color stability of PE were evaluated. The stoichiometric number n was calculated to be 21.67 ± 2.65 (oligochitosan/PE) and the binding constant K was (6.47 ± 0.48) × 105 M-1. Cationic oligochitosan could electrostatically interact with PE and affect the PE structure by increasing the α-helix content. In addition, high concentrations of oligochitosan led to the formation of dense phycoerythrin protein granules. Moreover, at a reaction ratio of 20.0:1 (oligochitosan/PE), being approximately the predicted stoichiometric number n, the thermal stability (40-80 °C), natural light stability, and ultraviolet light irradiation (254 nm) stability of the POC were improved. This study provides an approach to reduce the susceptibility of PE upon environmental changes by forming a stable self-assembly complex, which will promote the application of PE as a natural pigment protein in food and chemical applications.
Collapse
Affiliation(s)
- Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liqun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiaoe Wang
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Yidan Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yifei Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haili Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhiwei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhongkai Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
23
|
Wu S, Sun Y, Chen D, Liu H, Li Z, Chen M, Wang C, Cheng L, Guo Q, Peng X. The noncovalent conjugations of human serum albumin (HSA) with MS/AK and the effect on anti-oxidant capacity as well as anti-glycation activity of Monascus yellow pigments. Food Funct 2021; 12:3692-3704. [PMID: 33900309 DOI: 10.1039/d0fo03025b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Monascin (MS) and ankaflavin (AK), as typical yellow lipid-soluble pigments identified from Monascus-fermented products, have been confirmed to possess diverse biological activities such as anti-oxidation, reversing diabetes, and anti-atherosclerosis, and have received increasing attention in recent years. Certainly Monascus-fermented product with a high content of MS/AK is also a concern. The current work explored interactions between MS/AK and human serum albumin (HSA) as well as their influence on the anti-oxidant properties of MS/AK. Moreover, the anti-glycation potential of Monascus-fermented products rich in MS and AK (denoted as Mps) was assessed. The results showed that the fluorescence emission of HSA was quenched by MS/AK through a static quenching mechanism, and MS-HSA and AK-HSA complexes were mainly formed by van der Waals forces and hydrophobic interactions, but AK showed a higher binding affinity than MS. Although the DPPH radical-scavenging abilities of MS-HSA and AK-HSA complexes declined, Mps significantly reduced the formation of fructosamine, α-dicarbonyl compounds and advanced glycation end products (AGEs) in the in vitro glycation model (HSA-glucose). Notably, approximately 80% of fluorescent-AGEs were suppressed by Mps at a concentration of 0.95 mg mL-1, while aminoguanidine (AG, a reference standard) caused only 65% decrease at the same concentration. Although radical scavenging and metal chelating activities could justify the observed anti-glycation activity of Mps, in-depth research on the structures of other functional compounds present in Mps except MS/AK and reaction mechanisms should be performed. Overall, the present study proved that Mps would be promising sources of food-based anti-glycation agents because of their superior inhibitory effect on AGEs.
Collapse
Affiliation(s)
- Shufen Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang S, Li Y, Meng X, Chen S, Huang D, Xia Y, Zhu S. Antioxidant activities of chlorogenic acid derivatives with different acyl donor chain lengths and their stabilities during in vitro simulated gastrointestinal digestion. Food Chem 2021; 357:129904. [PMID: 33915469 DOI: 10.1016/j.foodchem.2021.129904] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022]
Abstract
In this study, chlorogenic acid (CA) was acylated with vinyl esters of different carbon chain lengths under the action of the lipase Lipozyme RM. Five CA derivatives (C2-CA, C4-CA, C6-CA, C8-CA, and C12-CA) with different lipophilicities were obtained, and their digestive stabilities and antioxidant activities were evaluated. The lipophilicities were positively correlated with the digestive stabilities of CA derivatives. The antioxidant activities of CA derivatives did not change with the reduction of phenolic hydroxyl groups, and their capacity to scavenge 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•) and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) were similar to those of CA. In cellular antioxidant activity (CAA) tests, it was found that the capacity of these derivates to cross cell membranes were enhanced upon enhancing lipophilicity, and their antioxidant activities were improved. C12-CA showed the best antioxidant activity with a median effective dose (EC50) of 9.40 μg/mL, which was significantly lower than that of CA (i.e., 29.08 μg/mL).
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiangyong Meng
- College of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shangwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
25
|
Zhu S, Bai X, Zhu J, Li W, Wang B. Multi-spectral techniques and molecular docking to investigation of the interaction between ferulic acid and pepsin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119442. [PMID: 33461141 DOI: 10.1016/j.saa.2021.119442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
In this work, the interaction between ferulic acid (FA) and pepsin was explored by UV-visible absorption spectroscopy, fluorescence spectroscopy, synchronous fluorescence, circular dichroism (CD) spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and molecular docking. The results of fluorescence revealed that FA had a strong ability to quench the intrinsic fluorescence of pepsin through a static quenching procedure. The binding constant and the number of binding sites were determined. Thermodynamic dates and docking information suggest that FA combine with pepsin is mainly driven via electrostatic force. It also requires synergistic drive of hydrophobic and hydrogen bonding. The consequences from UV-Vis, synchronous, CD and FT-IR spectra measurements manifested that the secondary structure of pepsin was changed and the microenvironments of certain amino acid residues was modulated by the binding of FA. FA induced conformational changes in pepsin. The β-sheet, α-Helix, and Random fractions of pepsin increased and the β-turn decreased with the treatment of FA. In addition, analysis of pepsin activity assay measurements confirmed that FA reduced enzymatic activity of pepsin within the investigated concentrations. This work studied the inhibitory effects and revealed mechanisms of the interaction between FA and pepsin in vitro, and suggested that FA could be a potential component to affect the structure and properties of digestive enzyme.
Collapse
Affiliation(s)
- Sujuan Zhu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Xuexue Bai
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jing Zhu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Wen Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Bing Wang
- Center for Disease Control and Prevention, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
26
|
Determination of the Dissociation Constants of 16 Active Ingredients in Medicinal Herbs Using a Liquid–Liquid Equilibrium Method. SEPARATIONS 2021. [DOI: 10.3390/separations8040049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dissociation constant is an important physicochemical property of drug molecules that affects the pharmacokinetic and pharmacodynamic properties of drugs. In this study, the distribution coefficients of 16 active ingredients extracted from herbal materials were determined at different pH values in liquid–liquid equilibrium systems; the active ingredients were sinomenine, aescin A, aescin B, aescin C, aescin D, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, isochlorogenic acid C, baicalin, wogonoside, calycosin-7-glucoside, astraisoflavan-7-O-β-D-glucoside, and isomucronulatol 7-O-glucoside. The dissociation constants of these active ingredients were calibrated and compared with reported values. The dissociation constants obtained were close to those reported in other studies, which means that the results of this work are reliable.
Collapse
|
27
|
Investigation of interactions between zein and natamycin by fluorescence spectroscopy and molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Chaves OA, Soares MAG, Campos de Oliveira MC. Monosaccharides interact weakly with human serum albumin. Insights for the functional perturbations on the binding capacity of albumin. Carbohydr Res 2021; 501:108274. [PMID: 33657497 DOI: 10.1016/j.carres.2021.108274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
Monosaccharides, e.g. fructose, glucose, and arabinose are present in most foods consumed daily, whether, in natural or industrialized forms, and their concentration in the human bloodstream can impact the formation of advanced glycation end-products (AGEs, prevalent in people with diabetes) impacting the profile of Human Serum Albumin (HSA) in biodistribution of endogenous and exogenous compounds. Multiple spectroscopic techniques (UV-vis, circular dichroism, steady-state, and time-resolved fluorescence) combined with molecular docking showed that carbohydrates interact weakly and spontaneously via a ground-state association with HSA. The binding is enthalpically and entropically driven in the subdomain IIA (site I) and perturb weakly the secondary structure of the albumin. Hydrogen bonding and van der Waals forces are the main intermolecular interactions involved in the ligand binding, as well as hydrophobic effects related to the release of hydration shell upon ligand binding. Overall, the results indicated that an increase in glucose, fructose or arabinose level in the human bloodstream may cause functional perturbation on the binding capacity of albumin. Therefore, there is the necessity of carbohydrate level control in the bloodstream to not compromise the interaction and distribution of exogenous and endogenous compounds by HSA.
Collapse
Affiliation(s)
- Otávio A Chaves
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Rodovia BR-465, Km 7, CEP, 23890-000, Seropédica, Rio de Janeiro, Brazil; Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), CEP, 21040-900, Rio de Janeiro, Brazil.
| | - Marilia A G Soares
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Av. Antônio Carlos 6627, CEP, 31270-901, Vila Isabel, Rio de Janeiro, Brazil
| | | |
Collapse
|
29
|
Perumal M, Marimuthu P, Chen X. Investigation into the site-specific binding interactions between chlorogenic acid and ovalbumin using multi-spectroscopic and in silico simulation studies. J Biomol Struct Dyn 2021; 40:6619-6633. [PMID: 33627053 DOI: 10.1080/07391102.2021.1886992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The binding interactions of bioactive compounds with proteins are of great importance in the food, biochemistry and pharmaceutical fields. Herein, the binding mechanisms between 5-O-caffeoylquinic acid (5-CQA) and ovalbumin (OVA) were investigated by multi-spectroscopic studies combined with docking and molecular dynamics (MD) simulations. The emission intensity of OVA was quenched by 5-CQA and Stern-Volmer analysis indicated the existence of a static suppression by OVA-5-CQA complex formation. Thermodynamic parameters revealed that the formation of complex was spontaneously driven by electrostatic and hydrogen-bonding interactions. Circle dichroism analyses showed that 5-CQA decreased the α-helix content of OVA structure from 58.05% to 54.32% upon increased OVA:5-CQA ratio to 1:3. Molecular docking results suggested 5-CQA forms hydrogen bond interactions with N88, T91, K92, N94, S98, F99, S100 and L101 residues of OVA. The experimental values were in good agreement with the calculated binding free energy values obtained by MD simulation (R2 = 0.89).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manivel Perumal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory (SBL - Biochemistry) and Pharmaceutical Science Laboratory (PSL - Pharmacy), Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
30
|
Wu C, Dong H, Wang P, Xu X, Zhang Y, Li Y. Insight into the effect of charge regulation on the binding mechanism of curcumin to myofibrillar protein. Food Chem 2021; 352:129395. [PMID: 33677211 DOI: 10.1016/j.foodchem.2021.129395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Myofibrillar proteins (MPs), as a food-grade material, have the potential to improve the solubility and bioavailability of curcumin. However, the interaction mechanism between MPs and curcumin under charge regulation induced by alkaline pH and NaCl was unclear. In this study, the binding between curcumin and MPs at pH 12 was confirmed by the fluorescence quenching under different NaCl concentration (0, 0.3, 0.6 and 0.9 mol/L). Further kinetic experiments showed, MPs possessed a higher affinity to bind curcumin in the presence of NaCl, especially at 0.6 M NaCl. Followed pH shifting from 12 to 7 does not affect UV-Vis absorption spectra of protein-curcumin dispersions. The secondary structure of MPs was not affected by binding with curcumin. Formation of this stable complex can be explained by hydrophobic other than electrostatic interaction. Therefore, the presence of NaCl facilitated exposure of hydrophobic pocket to improve the binding affinity between curcumin and MPs due to the importance of hydrophobic interaction.
Collapse
Affiliation(s)
- Changling Wu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Hualin Dong
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Peng Wang
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yue Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, People's Republic of China
| | - Yian Li
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
31
|
Huang J, He Z, Cheng R, Cheng Z, Wang S, Wu X, Niu B, Shen GX, Liao X. Assessment of binding interaction dihydromyricetin and myricetin with bovine lactoferrin and effects on antioxidant activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118731. [PMID: 32827907 DOI: 10.1016/j.saa.2020.118731] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The binding interactions of bovine lactoferrin (BLF) with two flavonoids dihydromyricetin (DMY) and myricetin (MY) were investigated by the multi-spectroscopic, microscale thermophoresis (MST) techniques, molecular docking, and then their antioxidant activities were studied by detection of free radical scavenging activity against DPPH. Results of UV-vis and fluorescence spectroscopies showed that DMY/MY and BLF formed the ground state complex through the static quenching mechanism. Moreover, MY with more planar stereochemical structure had higher affinity for BLF than DMY with twisted stereochemical structure, according to the binding constant (Kb), free energy change (ΔG°), dissociation constant (Kd) and donor-acceptor distance (r). Thermodynamic parameters revealed that hydrogen bond and van der Waals force were major forces in the formation of BLF-DMY complex, while hydrophobic interactions played major roles in the formation of BLF-DMY complex. The circular dichroism (CD) study indicated that MY induced more conformational change in BLF than DMY. Furthermore, molecular modeling provided insights into the difference of binding interactions between BLF and two flavonoids. Finally, the radical scavenging activity assays indicated the presence of BLF delayed the decrease in antioxidant capacities of two flavonoids. These results were helpful to understand the binding mechanism and biological effects of non-covalent BLF-flavonoid interaction.
Collapse
Affiliation(s)
- Junyi Huang
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ziyu He
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Runqing Cheng
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhuo Cheng
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Shanshan Wang
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xianyong Wu
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Bing Niu
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Garry X Shen
- Departments of Internal Medicine and Food and Human Nutritional Sciences, University of Manitoba, Canada.
| | - Xianyan Liao
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
32
|
López-Yerena A, Perez M, Vallverdú-Queralt A, Escribano-Ferrer E. Insights into the Binding of Dietary Phenolic Compounds to Human Serum Albumin and Food-Drug Interactions. Pharmaceutics 2020; 12:E1123. [PMID: 33233356 PMCID: PMC7700232 DOI: 10.3390/pharmaceutics12111123] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
The distribution of drugs and dietary phenolic compounds in the systemic circulation de-pends on, among other factors, unspecific/specific reversible binding to plasma proteins such as human serum albumin (HSA). Phenolic substances, present in plant-derived feeds, foods, beverages, herbal medicines, and dietary supplements, are of great interest due to their biological activity. Recently, considerable research has been directed at the formation of phenol-HSA complexes, focusing above all on structure-affinity relationships. The nucleophilicity and planarity of molecules can be altered by the number and position of hydroxyl groups on the aromatic ring and by hydrogenation. Binding affinities towards HSA may also differ between phenolic compounds in their native form and conjugates derived from phase II reactions. On the other hand, food-drug interactions may increase the concentration of free drugs in the blood, affecting their transport and/or disposition and in some cases provoking adverse or toxic effects. This is caused mainly by a decrease in drug binding affinities for HSA in the presence of flavonoids. Accordingly, to avoid the side effects arising from changes in plasma protein binding, the intake of flavonoid-rich food and beverages should be taken into consideration when treating certain pathologies.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.)
| | - Maria Perez
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.)
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Pharmacy and Food Sciences School, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
33
|
Zhang X, He H, Hou T. Molecular mechanisms of selenium-biofortified soybean protein and polyphenol conjugates in protecting mouse skin damaged by UV-B. Food Funct 2020; 11:3563-3573. [PMID: 32270801 DOI: 10.1039/c9fo02560j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selenium-biofortified crops are a quality functional food resource because of their anti-tumor and anti-cancer properties. In the present study, the conjugates of selenium-biofortified soybean protein and polyphenols were prepared and evaluated by alkali-induced synthesis and in vitro antioxidant tests. Moreover, the antioxidant mechanisms of protecting mice skin damaged by UV-B were studied. The results showed that the antioxidant activity of the conjugate between 7S globulin from selenium-enriched soybean (Se-7S) and EGCG (Se-7S-EGCG) was significantly higher (P < 0.05) than that of Se-7S-GA. Structural characterizations implied that the polymerization of polyphenols with amino acid residues occurred. Se-7S-EGCG inhibited the apoptosis of epidermal cells induced by UV-B. The overexpression of phosphorylated proteins in the MAPK signaling pathway, the activation of related inflammatory factors, and the boost in the MMPs were reversed by Se-7S-EGCG. Overall, this research provides a theoretical and experimental basis for the application of protein and polyphenol conjugates in food and medicine fields.
Collapse
Affiliation(s)
- Xing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | |
Collapse
|
34
|
Effects of chlorogenic acid on the binding process of cadmium with bovine serum albumin: A multi-spectroscopic and docking study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Multi-objective optimization of solid/liquid extraction of total sunflower proteins from cold press meal. Food Chem 2020; 317:126423. [PMID: 32097824 DOI: 10.1016/j.foodchem.2020.126423] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022]
Abstract
The impact of pH (6-9) and NaCl concentration (0-0.5 mol.L-1) on sunflower protein extraction was studied through design of experiments. The considered criteria were protein extraction yield (total proteins, helianthinin and albumins), chlorogenic acids covalently bound to proteins, and free chlorogenic acid concentration in the aqueous extract. Statistical analysis showed that the obtained by design of experiments the polynomial models of each extraction criteria were reliable for predicting the responses. They were employed in an original multi-objective optimization methodology. The optimal conditions revealed to be pH 7.3/0.3 mol.L-1 NaCl yielded 46.83% and 59.16% of total protein and albumin extraction yield, 1.730 and 1.998 mg.g-1 of chlorogenic acids covalently bound to helianthinin and albumins in aqueous extract, respectively. The sunflower protein isolate obtained after extraction in this condition had good solubility (40-80% at pH 5-8), functional properties (foaming and emulsifying) and a satisfying color.
Collapse
|
36
|
Jiao Q, Zhang W, Jiang Y, Jiang L, Chen X, Liu B. Study on the Interactions Between Caffeoylquinic Acids With Bovine Serum Albumin: Spectroscopy, Antioxidant Activity, LC-MS n, and Molecular Docking Approach. Front Chem 2019; 7:840. [PMID: 31867307 PMCID: PMC6909939 DOI: 10.3389/fchem.2019.00840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
Clarified the binding mechanism of drugs with plasma proteins could provide fresh insights into the drug development. Caffeoylquinic acids (CQAs) are a kind of phenolic acid compounds which has extensive biological effects. This study investigated the binding mechanism of three CQAs, including chlorogenic acid, neochlorogenic acid, and cryptochlorogenic acid, with bovine serum albumin (BSA) by using multi-spectroscopic techniques, including fluorescence, UV-Vis, Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy, LC-MSn, molecular docking and antioxidant activity assessment. In addition, the influences of PBS buffer, Tris-HCl buffer and water as solvents on the characteristics of CQAs and BSA interaction were also investigated. The results showed that intrinsic fluorescence of BSA was quenched by CQAs and the interaction was static quenching with the formation of a non-fluorescent complex. The binding of CQAs and BSA was spontaneous, and Van der Waals forces and hydrogen-bond interaction occupied crucial roles in the binding. All the three CQAs could bind to Site I in Domain IIA. The weakest interaction between neochlorogenic acid and BSA may due to its larger polarity. The results also indicated that the binding affinity of CQAs had a descending order of Tris-HCl > H2O > PBS. This study firstly clarified the binding mechanism of CQAs with BSA and changes of the binding in different solvents, and provided fresh insights into this drug transportation and metabolism.
Collapse
Affiliation(s)
- Qishu Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lijuan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Li T, Li X, Dai T, Hu P, Niu X, Liu C, Chen J. Binding mechanism and antioxidant capacity of selected phenolic acid - β-casein complexes. Food Res Int 2019; 129:108802. [PMID: 32036926 DOI: 10.1016/j.foodres.2019.108802] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
Abstract
Phenolic acids are added to some dairy products as functional ingredients. The molecular interactions between the phenolic acids and milk proteins impacts their functional performance and product quality. In this study, the interactions between a milk protein (β-casein) and a number of phenolic acids was investigated: 3,4-dihydroxybenzoic acid (DA); gallic acid (GA); syringic acid (SA); caffeic acid (CaA); ferulic acid (FA); and, chlorogenic acid (ChA). The structural characteristics of the phenolic acids, such as type, hydroxylation, methylation, and steric hindrance, affected their binding affinity to β-casein. The strength of the binding constant decreased in the following order: CaA > ChA > FA > SA > GA > DA. Cinnamic acid derivatives (CaA, FA, and ChA) exhibited a stronger binding affinity with β-casein than benzoic acid derivatives (DA, GA, and SA). Hydrophobic forces and electrostatic interactions dominated the interactions of β-casein with benzoic acid and cinnamic acid derivatives, respectively. The number of hydroxyl groups on the phenolic acids enhanced their binding ability, while steric hindrance effects reduced their binding ability. The influence of methylation depended on phenolic acid type. After binding with phenolic acids, the conformation of the β-casein changed, with a loss of random coil structure, an increase in α-helix structure, and a decrease in surface hydrophobicity. Furthermore, the presence of β-casein decreased the in vitro antioxidant capacities of the phenolic acids, especially for gallic acid. These findings provide some useful insights into the structure-activity relationships of the interaction between β-casein and phenolic acids.
Collapse
Affiliation(s)
- Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Peng Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoqin Niu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
38
|
Chaves OA, Menezes LB, Iglesias BA. Multiple spectroscopic and theoretical investigation of meso-tetra-(4-pyridyl)porphyrin‑ruthenium(II) complexes in HSA-binding studies. Effect of Zn(II) in protein binding. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111581] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Rebollo-Hernanz M, Fernández-Gómez B, Herrero M, Aguilera Y, Martín-Cabrejas MA, Uribarri J, del Castillo MD. Inhibition of the Maillard Reaction by Phytochemicals Composing an Aqueous Coffee Silverskin Extract via a Mixed Mechanism of Action. Foods 2019; 8:E438. [PMID: 31557849 PMCID: PMC6835918 DOI: 10.3390/foods8100438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/23/2022] Open
Abstract
This work aimed to evaluate the contribution of isoflavones and melatonin to the aqueous extract obtained from the coffee silverskin (CSE) antiglycative properties, which has not been previously studied. To achieve this goal, two model systems constituted by bovine serum albumin (BSA) and reactive carbonyls (glucose or methylglyoxal) in the presence or absence of pure phytochemicals (chlorogenic acid (CGA), genistein, and melatonin) and CSE were employed. Glucose was used to evaluate the effect on the formation of glycation products formed mainly in the early stage of the reaction, while methylglyoxal was employed for looking at the formation of advanced products of the reaction, also called methylglyoxal-derivative advanced glycation end products (AGE) or glycoxidation products. CGA inhibited the formation of fructosamine, while genistein and melatonin inhibited the formation of advanced glycation end products and protein glycoxidation. It was also observed that phenolic compounds from CSE inhibited protein glycation and glycoxidation by forming BSA-phytochemical complexes. CSE showed a significant antiglycative effect (p < 0.05). Variations in the UV-Vis spectrum and the antioxidant capacity of protein fractions suggested the formation of protein-phytochemical complexes. Fluorescence quenching and in silico analysis supported the formation of antioxidant-protein complexes. For the first time, we illustrate that isoflavones and melatonin may contribute to the antiglycative/antiglycoxidative properties associated with CSE. CGA, isoflavones, and melatonin composing CSE seem to act simultaneously by different mechanisms of action.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Beatriz Fernández-Gómez
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
| | - Miguel Herrero
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
| | - Yolanda Aguilera
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María A. Martín-Cabrejas
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jaime Uribarri
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY 10029, USA;
| | - María Dolores del Castillo
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
| |
Collapse
|
40
|
Cao X, He Y, Kong Y, Mei X, Huo Y, He Y, Liu J. Elucidating the interaction mechanism of eriocitrin with β-casein by multi-spectroscopic and molecular simulation methods. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Razzak MA, Lee JE, Choi SS. Structural insights into the binding behavior of isoflavonoid glabridin with human serum albumin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Wu D, Duan R, Geng F, Hu X, Gan N, Li H. Comparative analysis of the interaction of mono-, dis-, and tris-azo food dyes with egg white lysozyme: A combined spectroscopic and computational simulation approach. Food Chem 2019; 284:180-187. [DOI: 10.1016/j.foodchem.2019.01.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/29/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022]
|
43
|
Shahraki S, Heydari A, Delarami HS, Oveisi Keikha A, Azizi Z, Fathollahi Zonouz A. Preparation, characterization and comparison of biological potency in two new Zn(II) and Pd(II) complexes of butanedione monoxime derivatives. J Biomol Struct Dyn 2019; 38:997-1011. [PMID: 30938659 DOI: 10.1080/07391102.2019.1591305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel Schiff base ligand (2-iminothiophenol-2,3-butanedione monoxime, ITBM) and its complexes with Pd(II) and Zn(II) metal ions ([M(ITBM)2]Cl2) were synthesized and characterized in the present study. The formulated complexes were evaluated for in vitro antioxidant activity as radical scavengers against 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH•). According to the results, antioxidant activity of Pd complex (IC50=36 mg L-1) was more effective than that of Zn(II) complex (IC50=72 mg L-1). Biophysical techniques along with computational modeling were employed to examine the binding of these complexes with human serum albumin (HSA) as the model protein. The trial findings revealed an interaction between Schiff base complexes and HSA with a modest binding affinity [Kb=6.31(±0.11)×104 M-1 for Zn(II) complex and 0.71(±0.05)×104 M-1 for Pd(II) complex at 310 K]. An intense fluorescence quenching of protein through a static quenching mechanism was occurred due to the binding of both complexes to HSA. Hydrogen bonds and van der Waals forces in both examined systems were the main stabilizing forces in the development of drug-protein complex. Based on far-UV-CD observations, the content of α-helical structure in the protein was reduced through induction by both complexes. Analysis of protein-ligand docking demonstrated binding of the two Schiff base complexes to residues placed in the IIA subdomain of HSA. In addition, Zn complex with HSA showed a stronger binding ability than that of Pd complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ali Heydari
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | | | | | - Zahra Azizi
- Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | | |
Collapse
|
44
|
Wu Q, Zhao H, Chen X, Cai Z. Interaction of bisphenol A 3, 4-quinone metabolite with human hemoglobin, human serum albumin and cytochrome c in vitro. CHEMOSPHERE 2019; 220:930-936. [PMID: 33395814 DOI: 10.1016/j.chemosphere.2018.12.194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 06/12/2023]
Abstract
Since covalent protein-bisphenol A adducts generated by the interaction of protein nucleophiles with bisphenol A quinone affect the physicochemical properties of proteins in functional foods and biological tissues, it has become a hot topic nowadays. Therefore, we investigated the interaction of several different biomacromolecules such as hemoglobin, human serum albumin and cytochrome c with bisphenol A 3, 4-quinone (BPAQ). The effects of binding on changes in biomolecular structure were determined by various spectroscopic methods. BPAQ effects were investigated by using the UV-Vis spectroscopy and the quenching phenomenon from fluorescence emission. It proved that the formation of bio-complex and their aromatic micro-environment was likely to be disturbed with as well. Changes observed in circular dichroism (CD) spectroscopy confirmed the quantitative loss of the alpha-helical structure. Further studies with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOFMS) and molecular docking indicated combining ratio and binding sites between proteins and BPAQ. The in vitro data of BPAQ-proteins adducts may provide a valuable theoretical basis for the elucidation of the toxicological mechanisms of BPAQ adducts in biological systems and environments.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068, China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
45
|
Zhang X, Zeng L, Sun T, Liu X, Hou J, Ma Q, Li Y, Lu Q, Chen S. Purification of chlorogenic acid from Heijingang potatoes and evaluation of its binding properties to recombinant human serum albumin. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:87-93. [PMID: 30785082 DOI: 10.1016/j.jchromb.2019.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to purify the natural chlorogenic acid (CGA) monomer from Heijingang potatoes and investigate its interaction with recombinant human serum albumin (rHSA). The potato extract (PE) was purified using macroporous resins and solvent, and the CGA monomer was subsequently isolated using semipreparative liquid chromatography (SP-LC). The purity and structure of the CGA monomer was analyzed by high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). The interaction between the CGA monomer and rHSA was studied using fluorescence spectroscopy and molecular docking. HPLC analysis indicates that the CGA monomer had a retention time of 5.368 min and a purity of 97.9%, the presence of which was confirmed by NMR. The molecular docking and fluorescence spectroscopy demonstrate that CGA had a static quenching effect on rHSA with one binding site, and the range of K values was 7.14 × 103 to 1.56 × 104 M-1. This simple and efficient extract coupled with SP-LC has the potential for use in the extraction and purification of CGA in pilot or large-scale operations.
Collapse
Affiliation(s)
- Xueli Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, Hubei Province, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi 435002, Hubei Province, China
| | - Lijun Zeng
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, Hubei Province, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi 435002, Hubei Province, China
| | - Tian Sun
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, Hubei Province, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi 435002, Hubei Province, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, Hubei Province, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi 435002, Hubei Province, China.
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, Hubei Province, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi 435002, Hubei Province, China
| | - Qiuping Ma
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, Hubei Province, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi 435002, Hubei Province, China
| | - Yani Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, Hubei Province, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi 435002, Hubei Province, China
| | - Qi Lu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, Hubei Province, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi 435002, Hubei Province, China
| | - Sirui Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, Hubei Province, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi 435002, Hubei Province, China
| |
Collapse
|
46
|
Shahraki S, Shiri F, Heidari Majd M, Dahmardeh S. Investigating the biological potency of novel lanthanum(III) amino acid complex: MCF-7 breast cancer cell line, BSA and β-LG as targets. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-018-1508-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
In vitro and in vivo cytotoxic activity and human serum albumin interaction for a methoxy-styryl-thiosemicarbazone. Invest New Drugs 2019; 37:994-1005. [PMID: 30661149 DOI: 10.1007/s10637-018-00722-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022]
Abstract
Thiosemicarbazone is a class of compounds with potential applications in medicine, presenting high capacity to inhibit the growth of cancer cells as well as low toxicity. Because of high interest in anticancer studies involving thiosemicarbazones as new chemotherapeutic agents, a synthetic thiosemicarbazone derivative, 4-N-(2'-methoxy-styryl)-thiosemicarbazone (MTSC) was evaluated in vivo against Ehrlich carcinoma in an animal model. In vivo results demonstrated that MTSC treatment induced the survival of mice and altered significantly the body weight of the surviving mice 12 days after tumor inoculation. Treatment with 30 mg/kg of MTSC exhibited effective cytotoxic activity with T/C values of 150.49% (1 dose) and 278% (2 doses). Its interaction with human serum albumin (HSA), which plays a crucial role in the biodistribution of a wide variety of ligands, was investigated by multiple spectroscopic techniques at 296 K, 303 K, and 310 K, as well as by theoretical calculations. The interaction between HSA and MTSC occurs via ground-state association in the subdomain IIA (Sudlow's site I). The binding is moderate (Ka ≈ 104 M-1), spontaneous, entropically, and enthalpically driven. Molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces. Overall, the interaction HSA:MTSC could provide therapeutic benefits, improving its cytotoxic efficacy and tolerability.
Collapse
|
48
|
Cheng D, Wang X, Tang J, Zhang X, Wang C, Li H. Characterization of the binding mechanism and conformational changes of bovine serum albumin upon interaction with aluminum-maltol: a spectroscopic and molecular docking study. Metallomics 2019; 11:1625-1634. [DOI: 10.1039/c9mt00088g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The widespread use of aluminum in the treatment of drinking water, food, agriculture and pharmaceuticals has greatly increased the risk of human exposure to excess aluminum, which is a serious health hazard to human beings.
Collapse
Affiliation(s)
- Dai Cheng
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology, Tianjin
- Tianjin
- China
- Beijing Engineering and Technology Research Center of Food Additives
| | - Xuerui Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology, Tianjin
- Tianjin
- China
- Demonstration Center of Food Quality and Safety Testing Technology
| | - Jinlei Tang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology, Tianjin
- Tianjin
- China
- Demonstration Center of Food Quality and Safety Testing Technology
| | - Xinyu Zhang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology, Tianjin
- Tianjin
- China
- Demonstration Center of Food Quality and Safety Testing Technology
| | - Chunling Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology, Tianjin
- Tianjin
- China
- Demonstration Center of Food Quality and Safety Testing Technology
| | - He Li
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| |
Collapse
|
49
|
Kumar M, Kumar G, Dadure KM, Masram DT. Copper(ii) complexes based on levofloxacin and 2N-donor ligands: synthesis, crystal structures and in vitro biological evaluation. NEW J CHEM 2019. [DOI: 10.1039/c9nj03178b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The molecular structures and in vitro biological applications of two cationic copper(ii) complexes are reported.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | | | | | | |
Collapse
|
50
|
Mu H, Chen S, Liu F, Xiao J, Huang H, Zhang Y, Sun Y, Gao X, Lei H, Yuan X. Stereoselective interactions of lactic acid enantiomers with HSA: Spectroscopy and docking application. Food Chem 2019; 270:429-435. [PMID: 30174068 DOI: 10.1016/j.foodchem.2018.07.135] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
|