1
|
Barbhuiya RI, Wroblewski C, Ravikumar SP, Kaur G, Routray W, Subramanian J, Elsayed A, Singh A. Upcycling of industrial pea starch by rapid spray nanoprecipitation to develop plant-derived oil encapsulated starch nanoparticles for potential agricultural applications. Carbohydr Polym 2024; 346:122618. [PMID: 39245527 DOI: 10.1016/j.carbpol.2024.122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Starch is one of the natural encapsulant materials widely used in food, pharmaceutical and cosmetic industries. Starch with high amylose content (above 40 %, w/w) is prone to form single helices V-type allomorph with a hydrophilic outer surface and a hydrophobic inner cavity making them suitable for encapsulation of hydrophobic compounds such as essential oils, fatty acids, and vitamins. Pea starch obtained from pea protein processing industries have a high amylose content (40 %, w/w) rendering them unsuitable for direct food applications as ingredients. Therefore, in this study, an in-house spraying procedure was used to synthesize nanoparticles using pea starch, to encapsulate neem oil, a natural antimicrobial compound obtained from neem plant (Azadirachta indica) seed. The synthesis of the oil-encapsulated starch nanoparticles (OESNP) was optimized using a Box-Behnken experimental design to study the influence of the processing parameters such as the initial starch concentration, homogenization speed, duration of homogenization, sample injection rate, and quantity of antisolvent (ethanol). The optimized sample showed an 80-90 % encapsulation efficiency and particle size of <500 nm. The spherical OESNPs also demonstrated sustained release of the oil compared to free oil when dispersed in water. X-ray diffraction analysis revealed the coexistence of C-type and V-type polymorphs in the loaded and unloaded nanoparticles. It is concluded that the synthesized OESNPs with controlled release hold the potential to utilize industrial pea starch waste for the delivery of natural pesticides in agriculture.
Collapse
Affiliation(s)
| | | | | | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Winny Routray
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India
| | | | - Abdallah Elsayed
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
2
|
Yao S, Zhu Q, Xianyu Y, Liu D, Xu E. Polymorphic nanostarch-mediated assembly of bioactives. Carbohydr Polym 2024; 324:121474. [PMID: 37985040 DOI: 10.1016/j.carbpol.2023.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Starch as an edible, biosafe, and functional biopolymer, has been tailored at nanoscale to deliver bioactive guests. Nanostarches fabricated in various morphologies including nanosphere, nanorod, nanoworm, nanovesicle, nanopolyhedron, nanoflake, nanonetwork etc., enable them to assemble different kinds of bioactives due to structural particularity and green modification. Previous studies have reviewed nanostarch for its preparation and application in food, however, no such work has been done for the potential of delivery system via polymorphic nanostarches. In this review, we focus on the merits of nanostarch empowered by multi-morphology for delivery system, and also conclude the assembly strategies and corresponding properties of nanostarch-based carrier. Additionally, the advantages, limitations, and future perspectives of polymorphic nanostarch are summarized to better understand the micro/nanostarch architectures and their regulation for the compatibility of bioactive molecules. According to the morphology of carrier, nanostarch effectively captures bioactives on the surface and/or inside core to form tight complexes, which maintains their stability in the human microenvironment. It improves the bioavailability of bioactive guests by different assembly approaches of carrier/guest surface combination, guest@carrier embedment, and nanostarch-mediated encapsulation. Targeted release of delivery systems is stimulated by the microenvironment conditions based on the complex structure of nanostarch loaded with bioactives.
Collapse
Affiliation(s)
- Siyu Yao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
3
|
Alshangiti DM, El-Damhougy TK, Zaher A, Madani M, Mohamady Ghobashy M. Revolutionizing biomedicine: advancements, applications, and prospects of nanocomposite macromolecular carbohydrate-based hydrogel biomaterials: a review. RSC Adv 2023; 13:35251-35291. [PMID: 38053691 PMCID: PMC10694639 DOI: 10.1039/d3ra07391b] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Nanocomposite hydrogel biomaterials represent an exciting Frontier in biomedicine, offering solutions to longstanding challenges. These hydrogels are derived from various biopolymers, including fibrin, silk fibroin, collagen, keratin, gelatin, chitosan, hyaluronic acid, alginate, carrageenan, and cellulose. While these biopolymers possess inherent biocompatibility and renewability, they often suffer from poor mechanical properties and rapid degradation. Researchers have integrated biopolymers such as cellulose, starch, and chitosan into hydrogel matrices to overcome these limitations, resulting in nanocomposite hydrogels. These innovative materials exhibit enhanced mechanical strength, improved biocompatibility, and the ability to finely tune drug release profiles. The marriage of nanotechnology and hydrogel chemistry empowers precise control over these materials' physical and chemical properties, making them ideal for tissue engineering, drug delivery, wound healing, and biosensing applications. Recent advancements in the design, fabrication, and characterization of biopolymer-based nanocomposite hydrogels have showcased their potential to transform biomedicine. Researchers are employing strategic approaches for integrating biopolymer nanoparticles, exploring how nanoparticle properties impact hydrogel performance, and utilizing various characterization techniques to evaluate structure and functionality. Moreover, the diverse biomedical applications of these nanocomposite hydrogels hold promise for improving patient outcomes and addressing unmet clinical needs.
Collapse
Affiliation(s)
| | - Tasneam K El-Damhougy
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University P.O. Box: 11754, Yousef Abbas Str. Nasr City Cairo Egypt
| | - Ahmed Zaher
- Chemistry Department, Faculty of Science, El-Mansoura University Egypt
| | - Mohamed Madani
- College of Science and Humanities, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority P.O. Box 29 Nasr City Cairo Egypt
| |
Collapse
|
4
|
Luo K, Zhu X, Kim YR. Short-chain glucan self-assembly for green synthesis of functional biomaterials: Mechanism, synthesis, and microstructural control. Carbohydr Polym 2023; 318:121140. [PMID: 37479447 DOI: 10.1016/j.carbpol.2023.121140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Short-chain glucan (SCG) is a linear homopolymer containing 10 to 50 glucose units linked with α(1,4) glycosidic bonds. With its abundant, low-cost, nontoxic, biodegradable/biocompatible nature, self-assembled SCG particles (SSC) have emerged as functional biomaterials, which have recently attracted tremendous attentions in various fields. SCG self-assembly occurs through the spontaneous association of molecules under equilibrium conditions into stable and structurally well-defined nanoscale or micrometer-scale aggregates, which is governed by various intermolecular non-covalent interactions, including hydrogen-bonding, electrostatic, hydrophobic, and van der Waals. With precise and effective control of the self-assembly process of SSC, its structural modulation and function integration can be expected. Thus, we convinced that SCG self-assembly could provide an effective means of developing starch-based functional biomaterials with beneficial health properties and wide application in food industries. In this review, we provide an overview of recent advances in the green approach for the self-assembly of SSC, as well as the influence of thermodynamic and kinetic factors on its morphology and physicochemical properties. We highlight recent contributions to developing strategies for the construction of SSC with increasing complexity and functionality that are suitable for a variety of food applications. Finally, we briefly outline our perspectives and discuss the challenges in the field.
Collapse
Affiliation(s)
- Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Young-Rok Kim
- Institute of Life Science and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
5
|
Ma Y, Chen Z, Wang Z, Chen R, Zhang S. Molecular interactions between apigenin and starch with different amylose/amylopectin ratios revealed by X-ray diffraction, FT-IR and solid-state NMR. Carbohydr Polym 2023; 310:120737. [PMID: 36925233 DOI: 10.1016/j.carbpol.2023.120737] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Starch can readily form complexes with polyphenols. However, its two components, namely amylose and amylopectin, differ significantly in their ability to complex with phenolic compounds. Given that the mechanism of their interaction is still poorly studied, this work investigated intermolecular interactions between apigenin and starch with different amylose/amylopectin ratios using 1H NMR, FT-IR, XRD, DSC and solid-state NMR. Results showed that corn starch with high amylose/amylopectin ratios had a better complexing ability and higher complexing index with apigenin than amylopectin. Besides, solid-state NMR suggested that the molecular mechanism behind the strong intermolecular interactions between corn starch and apigenin involved hydrogen bonds. Furthermore, the detailed binding sites of hydrogen bonds, that linked by hydroxyl-starch and phenyl-apigenin were also confirmed by 1H13C heteronuclear correlation (HETCOR) spectra. This study revealed the molecular mechanism on amylose/amylopectin complexing with apigenin and provides a theoretical basis for further developing polyphenols in starchy food.
Collapse
Affiliation(s)
- Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Zidi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Zhipeng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Ruixi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| |
Collapse
|
6
|
Liu D, Zhong Y, Pu Y, Li X, Chen S, Zhang C. Preparation of pH-Responsive Films from Polyvinyl Alcohol/Agar Containing Cochineal for Monitoring the Freshness of Pork. Foods 2023; 12:2316. [PMID: 37372526 DOI: 10.3390/foods12122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
This study reported the production of pH-responsive films based on 8 wt% polyvinyl alcohol solution/0.2 wt% agar solution incorporated with cochineal-loaded starch particles (CSN) (2, 4, 6 and 8 wt% on agar basis) by a casting process. Results revealed that CSN presented obvious color changes over the pH range of 2-12. FTIR, XRD spectra and SEM micrographs presented that the incorporation of CSN formed new hydrogen bonds with a matrix and a tighter network structure. A certain improvement was observed in the color stability, swelling index and functional properties (antimicrobial and antioxidant activities) but water solubility, water vapor permeability and water contact angle of the pH-responsive films were decreased by the addition of CSN. The release of cochineal was a rate-limiting step following the Korsmeyer-Peppas model. The agar/polyvinyl alcohol film containing 6% CSN (PVA/GG-6) exhibited the best sensitivity for ammonia detection and its limit of detection was 35.4 ppm (part per million) for ammonia. The application trials showed that the PVA/GG-6 film presented different color changes for pork freshness. Hence, these pH-responsive films can be used as potential packaging materials for tracking the freshness of protein-rich fresh food in a non-destructive way.
Collapse
Affiliation(s)
- Danfei Liu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yunfei Zhong
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yumei Pu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Xiaoxuan Li
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Siyuan Chen
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Changfan Zhang
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
7
|
Kou T, Faisal M, Song J, Blennow A. Stabilization of emulsions by high-amylose-based 3D nanosystem. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Zhong C, Luo S, Ye J, Liu C. Shape and size-controlled starch nanoparticles prepared by self-assembly in natural deep eutectic solvents: Effect and mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Study by DFT of the functionalization of amylose/amylopectin with glycerin monoacetate: Characterization by FTIR, electronic and adsorption properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Bai J, Zhang H, Yang Z, Li P, Liu B, Li D, Liang S, Wang Q, Li Z, Zhang J, Chen S, Hou G, Li Y. On demand regulation of blood glucose level by biocompatible oxidized starch-Con A nanogels for glucose-responsive release of exenatide. J Control Release 2022; 352:673-684. [PMID: 36374646 DOI: 10.1016/j.jconrel.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus is a long-term chronic disease characterized by abnormal high level blood glucose (BG). An artificial closed-loop system that mimics pancreatic β-cells and releases insulin on demand has potential to improve the therapeutic efficiency of diabetes. Herein, a lectin Concanavalin A modified oxidized starch nanogel was designed to regulate glucose dynamically according to different glucose concentrations. The nanogels were formed by double cross-linking the Concanavalin A and glucose units on oxidized starch via specific binding and amide bonds to achieve the high drug loading and glucose responsiveness. The results showed that oxidized starch nanogels prolonged the half-life of antidiabetic peptide drug exenatide and released it in response to high BG concentrations. It could absorb BG at a high level and maintain glucose homeostasis. Besides, the oxidized starch nanogels performed well in recovering regular BG level from hyperglycemia state and maintaining in euglycemia state that fitted in a biological rhythm. In addition, the nanogels showed high biocompatibility in vivo and could improve plasma half-life and therapeutic efficacy of exenatide. Overall, the nanogels protected peptide drugs from degradation in plasma as a glucose-responsive platform showing a high potential for peptide drugs delivery and antidiabetic therapy.
Collapse
Affiliation(s)
- Jie Bai
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Huijuan Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zhi Yang
- School of Food and Advanced Technology, Massey University, Auckland 0632, New Zealand
| | - Pinglan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Dan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shuang Liang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Qimeng Wang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zekun Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jipeng Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Guohua Hou
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
11
|
Kou T, Faisal M, Song J, Blennow A. Polysaccharide-based nanosystems: a review. Crit Rev Food Sci Nutr 2022; 64:1-15. [PMID: 35916785 DOI: 10.1080/10408398.2022.2104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polysaccharide-based nanosystem is an umbrella term for many areas within research and technology dealing with polysaccharides that have at least one of their dimensions in the realm of a few hundreds of nanometers. Nanoparticles, nanocrystals, nanofibers, nanofilms, and nanonetworks can be fabricated from many different polysaccharide resources. Abundance in nature, cellulose, starch, chitosan, and pectin of different molecular structures are widely used to fabricate nanosystems for versatile industrial applications. This review presents the dissolution and modification of polysaccharides, which are influenced by their different molecular structures and applications. The dissolution ways include conventional organic solvents, ionic liquids, inorganic strong alkali and acids, enzymes, and hydrothermal treatment. Rheological properties of polysaccharide-based nano slurries are tailored for the purpose functions of the final products, e.g., imparting electrostatic functions of nanofibers to reduce viscosity by using lithium chloride and octenyl succinic acid to increase the hydrophobicity. Nowadays, synergistic effects of polysaccharide blends are increasingly highlighted. In particular, the reinforcing effect of nanoparticles, nanocrystals, nanowhiskers, and nanofibers to hydrogels, aerogels, and scaffolds, and the double network hydrogels of a rigid skeleton and a ductile substance have been developed for many emerging issues.
Collapse
Affiliation(s)
- Tingting Kou
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, PR China
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marwa Faisal
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, PR China
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
12
|
Selective adsorption of epigallocatechin gallate onto highly reusable gallium doped mesoporous TiO2 nanoparticles adsorbent. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Characterization of acid hydrolysis based nano-converted mung bean (Vigna radiata L.) starch for morphological, rheological and thermal properties. Int J Biol Macromol 2022; 211:450-459. [PMID: 35577200 DOI: 10.1016/j.ijbiomac.2022.05.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
Abstract
Mung bean starch nanocrystals (SNC) were fabricated using acid hydrolysis. The resulting nanocrystals were studied for their morphological, thermal, and rheological properties. Irregular or round-shaped nano-scale crystals with average hydrodynamic diameter of 179 nm obtained after acid hydrolysis. The mung bean SNC revealed a CB-type crystalline pattern with enhanced crystallinity as studied by X-ray diffraction (XRD). Lower negative zeta potential was obtained for mung bean SNC as compared to its native starch. Thermal peaks disappeared for nanocrystals, which indicated an increased thermal instability of mung bean SNC. A shear-thinning behavior, even at high concentrations of SNC in the suspension was noticed. The elastic behavior was observed at all studied concentrations and it was independent of the frequency change.
Collapse
|
14
|
Aslam S, Akhtar A, Nirmal N, Khalid N, Maqsood S. Recent Developments in Starch-Based Delivery Systems of Bioactive Compounds: Formulations and Applications. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09311-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Gisbert M, Aleixandre A, Sineiro J, Rosell CM, Moreira R. Interactions between Ascophyllum nodosum Seaweeds Polyphenols and Native and Gelled Corn Starches. Foods 2022; 11:foods11081165. [PMID: 35454752 PMCID: PMC9029316 DOI: 10.3390/foods11081165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
The effect of several blending procedures between Ascophyllum nodosum seaweed flour (AF) and corn starch (CS) on the interactions between polyphenols and starch was studied in this paper. These methods comprised the blending of AF with native starch (NT) with previously gelled starch gel (GL) and promoting the gelling of corn starch in the presence of AF (CGL). Different AF-CS (g/g) ratios (from 1:0.5 to 1:25) were studied. The liquid phase was chemically characterized by polyphenols (TPC) and carbohydrates content. The antioxidant activity of the liquid phase after achieving the solid-liquid equilibrium was determined by DPPH, ABTS, and FRAP methods. The solid phase was characterized by FT-IR and SEM techniques. The Halsey model successfully fitted the equilibrium TPC in liquid and polyphenols adsorbed/retained by the solid phase of tested systems. NT samples showed lower polyphenols sorption than gelled samples. The differences found between samples obtained with GL and CGL methods suggested different interactions between polyphenols and starch. Specifically, physisorption is predominant in the case of the GL method, and molecular trapping of polyphenols in the starch gel structure is relevant for the CGL method. Results allowed us to determine the enhancement of the retention of polyphenols to achieve starchy foods with high bioactivity.
Collapse
Affiliation(s)
- Mauro Gisbert
- Chemical Engineering Department, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (M.G.); (J.S.)
| | - Andrea Aleixandre
- Institute of Agrochemistry and Food Technology, Spanish Council for Science Research (CSIC), 46980 Valencia, Spain; (A.A.); or (C.M.R.)
| | - Jorge Sineiro
- Chemical Engineering Department, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (M.G.); (J.S.)
| | - Cristina M. Rosell
- Institute of Agrochemistry and Food Technology, Spanish Council for Science Research (CSIC), 46980 Valencia, Spain; (A.A.); or (C.M.R.)
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ramón Moreira
- Chemical Engineering Department, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (M.G.); (J.S.)
- Correspondence: ; Tel.: +34-88-181-6759
| |
Collapse
|
16
|
Preparation and characterization of quinoa starch nanoparticles as quercetin carriers. Food Chem 2022; 369:130895. [PMID: 34438343 DOI: 10.1016/j.foodchem.2021.130895] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
Quinoa starch nanoparticles (QSNPs) prepared by nanoprecipitation method under the optimal condition was developed as a carrier for quercetin. The QSNPs prepared under the optimal condition (90 DMSO/H2O ratio, 10 ethanol/solvent ratio, and ultrasonic oscillation dispersion mode) had the smallest particle size and polymer dispersity index through full factorial design. Compared with maize starch nanoparticles (MSNPs), QSNPs exhibited a smaller particle size of 166.25 nm and a higher loading capacity of 26.62%. Starch nanoparticles (SNPs) interacted with quercetin through hydrogen bonding. V-type crystal structures of SNPs were disappeared and their crystallinity increased after loading with quercetin. QSNPs was more effective in protecting and prolonging quercetin bioactivity because of their small particle sizes and high loading capacities. This study will be useful for preparing starch-based carrier used to load sensitive bioactive compounds.
Collapse
|
17
|
Characterization of resistant starch nanoparticles prepared via debranching and nanoprecipitation. Food Chem 2022; 369:130824. [PMID: 34438341 DOI: 10.1016/j.foodchem.2021.130824] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/16/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022]
Abstract
Cyperus esculentus starch was treated by pullulanase debranching and nanoprecipitation to prepare resistant starch nanoparticles. Amylose contents, rheological properties of debranched starch and the size, crystalline structure, resistant starch contents of the prepared starch nanoparticles were investigated. The results of amylose contents showed that enzymatic hydrolysis 4 h was the most appropriate enzymatic hydrolysis time. Dynamic light scattering analysis and scanning electron microscopy observations showed that when the starch solution was added to the ethanol, the larger the amount of ethanol, the more conducive to the formation of small size starch nanoparticles. When volume ratio of starch solution/ethanol was 1/5, the particle size was 271.1 nm, the content of resistant starch was higher (15.28%). X-ray diffraction results indicated that resistant starch nanoparticles had V-type crystalline structure. Pullulanase debranching and nanoprecipitation can be utilized to prepare smaller size of Cyperus esculentus resistant starch with higher efficiency.
Collapse
|
18
|
Preparation and characterization of nanoparticles from cereal and pulse starches by ultrasonic-assisted dissolution and rapid nanoprecipitation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Lian F, Gong E, Liang H, Lin Y, Chen J, He Y, Hebelstrup KH, Xia W. Nano-encapsulation of polyphenols in starch nanoparticles: fabrication, characterization and evaluation. Food Funct 2022; 13:7762-7771. [DOI: 10.1039/d1fo04197e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoparticles are more promising than microcapsules as drug carriers because they can be absorbed directly by intestinal epithelial cells, significantly increasing the uptake and bioaccessibility of polyphenols.
Collapse
Affiliation(s)
- Fengli Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ersheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Hanni Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yanyun Lin
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yunxia He
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Kim Henrik Hebelstrup
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, Slagelse, 4200, Denmark
| | - Wen Xia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, Slagelse, 4200, Denmark
| |
Collapse
|
20
|
Chen YY, Liu K, Zha XQ, Li QM, Pan LH, Luo JP. Encapsulation of luteolin using oxidized lotus root starch nanoparticles prepared by anti-solvent precipitation. Carbohydr Polym 2021; 273:118552. [PMID: 34560964 DOI: 10.1016/j.carbpol.2021.118552] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/20/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022]
Abstract
In this study, luteolin-oxidized lotus root starch (OLRS) nanoparticles (NPs) were developed to improve the stability and antioxidant activity of luteolin. Results showed that a stable luteolin-OLRS NPs was formed using luteolin and OLRS (oxidation degree, 15%) in the weight ratio of 3:1, as well as anti-solvent and solvent in the volume ratio of 10:1. Under this condition, the particle size, polydispersity index and zeta-potential of luteolin-OLRS NPs was 305 nm, 0.173 and -20.8 mV, respectively. The analysis of transmission electron microscopy, X-ray diffractometer and Fourier transform infrared spectroscopy demonstrated that the luteolin was successfully encapsulated in OLRS NPs, giving an encapsulation efficiency of 87.2%. The release characteristic and antioxidant activity of encapsulated luteolin were further investigated. Results exhibited that the OLRS NPs enabled luteolin to be stable in simulated gastric fluid and sustained release in simulated intestinal fluid, leading to the enhancement of antioxidant activity of luteolin.
Collapse
Affiliation(s)
- Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Kang Liu
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
21
|
Thermal and structural study of drying method effect in high amylose starch- beta-carotene nanoparticles prepared with cold gelatinization. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Haq F, Yu H, Wang L, Teng L, Mehmood S, Haroon M, Bilal-Ul-Amin, Uddin MA, Fahad S, Shen D. Synthesis of succinylated carboxymethyl starches and their role as adsorbents for the removal of phenol. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04901-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Zhao W, Sugunan A, Gillgren T, Larsson JA, Zhang ZB, Zhang SL, Nordgren N, Sommertune J, Ahniyaz A. Surfactant-Free Stabilization of Aqueous Graphene Dispersions Using Starch as a Dispersing Agent. ACS OMEGA 2021; 6:12050-12062. [PMID: 34056359 PMCID: PMC8154146 DOI: 10.1021/acsomega.1c00699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Attention to graphene dispersions in water with the aid of natural polymers is increasing with improved awareness of sustainability. However, the function of biopolymers that can act as dispersing agents in graphene dispersions is not well understood. In particular, the use of starch to disperse pristine graphene materials deserves further investigation. Here, we report the processing conditions of aqueous graphene dispersions using unmodified starch. We have found that the graphene content of the starch-graphene dispersion is dependent on the starch fraction. The starch-graphene sheets are few-layer graphene with a lateral size of 3.2 μm. Furthermore, topographical images of these starch-graphene sheets confirm the adsorption of starch nanoparticles with a height around 5 nm on the graphene surface. The adsorbed starch nanoparticles are ascribed to extend the storage time of the starch-graphene dispersion up to 1 month compared to spontaneous aggregation in a nonstabilized graphene dispersion without starch. Moreover, the ability to retain water by starch is reduced in the presence of graphene, likely due to environmental changes in the hydroxyl groups responsible for starch-water interactions. These findings demonstrate that starch can disperse graphene with a low oxygen content in water. The aqueous starch-graphene dispersion provides tremendous opportunities for environmental-friendly packaging applications.
Collapse
Affiliation(s)
- Wei Zhao
- RISE
Research Institutes of Sweden, Stockholm SE-114 86, Sweden
- Division
of Solid State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala SE-751 03, Sweden
| | | | | | | | - Zhi-Bin Zhang
- Division
of Solid State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala SE-751 03, Sweden
| | - Shi-Li Zhang
- Division
of Solid State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala SE-751 03, Sweden
| | - Niklas Nordgren
- RISE
Research Institutes of Sweden, Stockholm SE-114 86, Sweden
| | - Jens Sommertune
- RISE
Research Institutes of Sweden, Stockholm SE-114 86, Sweden
| | - Anwar Ahniyaz
- RISE
Research Institutes of Sweden, Stockholm SE-114 86, Sweden
| |
Collapse
|
24
|
Liang S, Hong Y, Gu Z, Cheng L, Li C, Li Z. Effect of debranching on the structure and digestibility of octenyl succinic anhydride starch nanoparticles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Gao W, Zhu J, Liu P, Cui B, Abd El-Aty AM. Preparation and characterization of octenyl succinylated starch microgels via a water-in-oil (W/O) inverse microemulsion process for loading and releasing epigallocatechin gallate. Food Chem 2021; 355:129661. [PMID: 33848937 DOI: 10.1016/j.foodchem.2021.129661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022]
Abstract
Corn starch (CS), octenyl succinic anhydride modified corn starch (OSCS) and shells (OSCs) microgels have been prepared using water-in-oil (W/O) inverse microemulsions for loading and releasing of epigallocatechin gallate (EGCG). The structural and morphological properties of CS, OSCS, and OSCs microgels were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM), and Thermogravimetric analysis (TGA). The strong hydrogen bonds between starch molecules in the W/O system and interplay between hydroxyl groups of EGCG and oxygen atoms of starch microgels were formed. OSCs microgel showed low average particle size and weak thermal stability with an irregular shape and a typical V-type crystalline structure. Encapsulation efficiency (EE) and clearance rate of 2,2-diphenyl-1-picrylhydrazyl (DPPH) for EGCG were ranged between 41.78 and 63.89% and 75.53-85.37%, respectively, when absorbed into OSCS and OSCs microgels, the values which were higher than that of CS microgel. Further, OS starch microgels (particularly OSCs) modulated the slow release of EGCG into simulated gastrointestinal tract conditions and therefore could be proposed as an encapsulating agent for loading polyphenols.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jie Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
26
|
Yu M, Ji N, Wang Y, Dai L, Xiong L, Sun Q. Starch‐based nanoparticles: Stimuli responsiveness, toxicity, and interactions with food components. Compr Rev Food Sci Food Saf 2020; 20:1075-1100. [DOI: 10.1111/1541-4337.12677] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Mengting Yu
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Na Ji
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Yanfei Wang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Lei Dai
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Liu Xiong
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Qingjie Sun
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| |
Collapse
|
27
|
Ouyang Q, Xiao J, Chen J, Xiao Y, Lin Q, Ding Y. Nanoresistant Particles Based on Chemically Modified Starch as Nanocarriers and Characterization of Structural and Release Properties. STARCH-STARKE 2020. [DOI: 10.1002/star.201900317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qunfu Ouyang
- National Engineering Laboratory for Rice and By‐product Deep Processing Hunan Key Laboratory of Processed Food For Special Medical Purpose Hunan Key Laboratory of Grain‐oil Deep Process and Quality Control College of Food Science and Engineering Central South University of Forestry and Technology Changsha Hunan 410004 China
| | - Jiaqi Xiao
- National Engineering Laboratory for Rice and By‐product Deep Processing Hunan Key Laboratory of Processed Food For Special Medical Purpose Hunan Key Laboratory of Grain‐oil Deep Process and Quality Control College of Food Science and Engineering Central South University of Forestry and Technology Changsha Hunan 410004 China
| | - Jialin Chen
- National Engineering Laboratory for Rice and By‐product Deep Processing Hunan Key Laboratory of Processed Food For Special Medical Purpose Hunan Key Laboratory of Grain‐oil Deep Process and Quality Control College of Food Science and Engineering Central South University of Forestry and Technology Changsha Hunan 410004 China
| | - Yiwei Xiao
- National Engineering Laboratory for Rice and By‐product Deep Processing Hunan Key Laboratory of Processed Food For Special Medical Purpose Hunan Key Laboratory of Grain‐oil Deep Process and Quality Control College of Food Science and Engineering Central South University of Forestry and Technology Changsha Hunan 410004 China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By‐product Deep Processing Hunan Key Laboratory of Processed Food For Special Medical Purpose Hunan Key Laboratory of Grain‐oil Deep Process and Quality Control College of Food Science and Engineering Central South University of Forestry and Technology Changsha Hunan 410004 China
| | - Yongbo Ding
- National Engineering Laboratory for Rice and By‐product Deep Processing Hunan Key Laboratory of Processed Food For Special Medical Purpose Hunan Key Laboratory of Grain‐oil Deep Process and Quality Control College of Food Science and Engineering Central South University of Forestry and Technology Changsha Hunan 410004 China
| |
Collapse
|
28
|
Dual modification of starches by phosphorylation and grafting and their application as adsorbents for the removal of phenol. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02280-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Qin Y, Xue L, Hu Y, Qiu C, Jin Z, Xu X, Wang J. Green fabrication and characterization of debranched starch nanoparticles via ultrasonication combined with recrystallization. ULTRASONICS SONOCHEMISTRY 2020; 66:105074. [PMID: 32224448 DOI: 10.1016/j.ultsonch.2020.105074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
With recent advances in nanotechnology, debranched starch nanoparticle (DBS-NP) materials have attracted considerable interest from the fields of functional food, biomedicine, and material science, thanks to their small size, biodegradability, biocompatibility, sustainability, and non-hazardous effects on health and the environment. In this study, DBS-NP was fabricated using an eco-friendly method involving ultrasonication combined with recrystallization. The effects of ultrasonication and recrystallization times on the morphology, particle size, and crystal structure of the DBS-NPs were systematically investigated. Compared with the DBS-NPs prepared using ultrasonication treatment only, the DBS-NPs formed using ultrasonication combined with recrystallization were uniform in size and well distributed in aqueous solution. Moreover, the maximum encapsulation efficiency and loading capacity of the epigallocatechin gallate (EGCG) in the DBS-NPs with ultrasonication treatment reached 88.35% and 22.75%, respectively. The particle sizes of the EGCG@DBS-NP were more stable at a neutral pH (7.4) than at an acidic pH (2.1). The EGCG in the EGCG@DBS-NP displayed excellent radical scavenging activity and antibacterial effects, and cell assays demonstrated that the EGCG@DBS-NP was non-toxic and highly biocompatible.
Collapse
Affiliation(s)
- Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lin Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
30
|
Gutiérrez G, Morán D, Marefati A, Purhagen J, Rayner M, Matos M. Synthesis of controlled size starch nanoparticles (SNPs). Carbohydr Polym 2020; 250:116938. [PMID: 33049850 DOI: 10.1016/j.carbpol.2020.116938] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 01/27/2023]
Abstract
Starch nanoparticles (SNPs) are a promising choice for the strategic development of new renewable and biodegradable nanomaterials for novel biomedical and pharmaceutical applications when loaded with antibiotics or with anticancer agents as target drug delivery systems. The final properties of the SNPs are strongly influenced by the synthesis method and conditions being a controlled and monodispersed size crucial for these applications. The aim of this work was to synthesize controlled size SNPs through nanoprecipitation and microemulsion methods by modifying main operating parameters regarding the effect of amylose and amylopectin ratio in maize starches. SNPs were characterized by size and shape. SNPs from 59 to 118 nm were obtained by the nanoprecipitation method, registering the higer values when surfactant was added to the aqueous phase. Microemulsion method led to 35-147 nm sizes observing a higher particle formation capacity. The composition of the maize used influenced the final particle size and shape.
Collapse
Affiliation(s)
- G Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - D Morán
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - A Marefati
- Department of Food Technology, Engineering, and Nutrition, Lund University, P.O. Box 124, SE 22100, Lund, Sweden
| | - J Purhagen
- Department of Food Technology, Engineering, and Nutrition, Lund University, P.O. Box 124, SE 22100, Lund, Sweden
| | - M Rayner
- Department of Food Technology, Engineering, and Nutrition, Lund University, P.O. Box 124, SE 22100, Lund, Sweden
| | - M Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain; Department of Food Technology, Engineering, and Nutrition, Lund University, P.O. Box 124, SE 22100, Lund, Sweden.
| |
Collapse
|
31
|
Resistant starch nanoparticles prepared from debranched starch by medium-temperature recrystallization. Int J Biol Macromol 2020; 155:598-604. [DOI: 10.1016/j.ijbiomac.2020.03.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 02/02/2023]
|
32
|
Fabrication and characterization of starch beads formed by a dispersion-inverse gelation process for loading polyphenols with improved antioxidation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105565] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Qiu C, Wang C, Gong C, McClements DJ, Jin Z, Wang J. Advances in research on preparation, characterization, interaction with proteins, digestion and delivery systems of starch-based nanoparticles. Int J Biol Macromol 2020; 152:117-125. [PMID: 32068064 DOI: 10.1016/j.ijbiomac.2020.02.156] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
Starch-based nanoparticles (SNPs) have attracted great interest for their ability to encapsulate, protect, and orally deliver bioactive components because of their diverse functionality, high biocompatibility, and environmental friendliness. SNPs can be synthesized with a broad range of particle sizes, ranging from a few nanometers to a few hundred nanometers (approximately 8-448 nm), which is comparable to the dimensions of proteins (1-10 nm), nucleic acids (2 nm wide, 5-100 nm long), viruses (10-500 nm), and cell organelles (5-100 mm). The ability to tune the dimensions and properties of SNPs allows them to be used to construct complexes with various biological entities, thereby altering their functional performance. SNPs can also be used to enhance the solubility of hydrophobic substances and to improve the nutritional attributes of bioactives. For instance, SNPs can be designed to increase the bioavailability of bioactives or to target their delivery to specific regions of the gastrointestinal tract. In this review, we provide an overview of the methods available for preparing SNPs, the application of SNPs for encapsulating and delivering bioactives, and the potential gastrointestinal fate of SNPs.
Collapse
Affiliation(s)
- Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Chenxi Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chen Gong
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing 401331, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
34
|
Kumari S, Yadav BS, Yadav RB. Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: A review. Food Res Int 2020; 128:108765. [DOI: 10.1016/j.foodres.2019.108765] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/02/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023]
|
35
|
Mechanical properties and antibacterial activities of novel starch-based composite films incorporated with salicylic acid. Int J Biol Macromol 2019; 155:1350-1358. [PMID: 31743704 DOI: 10.1016/j.ijbiomac.2019.11.110] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/09/2023]
Abstract
To control food contamination and meet the growing demand for high quality food, a novel and excellent starch composite film as packing material with optimized physical, mechanical properties and antimicrobial activity was produced in this paper. Starch-based composite films incorporated with salicylic acid (SA) and waxy maize starch nanoparticles/κ-carrageenan (WMSNs/KC) were used to achieve antimicrobial activity and improve the mechanical properties. WMSNs were fabricated through enzymolysis and recrystallisation method, followed by individually adding KC to form WMSNs/KC by self-assembly, and used as a nanofiller and stabilizer to be incorporated into hydroxypropyl tapioca starch-based films at a concentration of 0-9%. Characterization of macromorphology and scanning electron microscope indicated the starch composite films with WMSNs/KC were smooth, uniform, and transparent. X-ray diffraction pattern and Thermogravimetric analysis also showed strong interactions such as hydrogen bond formation among films, WMSNs/KC and SA. Compared with the pure starch-based films, the composite films reinforced by the addition of WMSNs/KC significantly increased the tensile strength, water vapor barrier and thermal stability, while the transparency and elongation at break decreased slightly. Moreover, the starch composite films showed excellent antimicrobial activity for three typical undesired microorganisms in foods, Escherichia coli, Staphylococcus aureus, and Bacillus subtilis.
Collapse
|
36
|
Calliope S, Wagner J, Samman N. Physicochemical and Functional Characterization of Potato Starch (
Solanum Tuberosum ssp. Andigenum
) from the
Quebrada De Humahuaca
, Argentina. STARCH-STARKE 2019. [DOI: 10.1002/star.201900069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sonia Calliope
- Facultad de IngenieríaUniversidad Nacional de Jujuy. CIITED‐CONICET Ítalo Palanca Nº 10 4600 Jujuy Argentina
| | - Jorge Wagner
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes 1876 Buenos Aires Argentina
| | - Norma Samman
- Facultad de IngenieríaUniversidad Nacional de Jujuy. CIITED‐CONICET Ítalo Palanca Nº 10 4600 Jujuy Argentina
| |
Collapse
|
37
|
A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Qiu C, McClements DJ, Jin Z, Wang C, Qin Y, Xu X, Wang J. Development of nanoscale bioactive delivery systems using sonication: Glycyrrhizic acid-loaded cyclodextrin metal-organic frameworks. J Colloid Interface Sci 2019; 553:549-556. [DOI: 10.1016/j.jcis.2019.06.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 11/30/2022]
|
39
|
Castro-Villarreal P, Ramírez JE. Stochastic curvature of enclosed semiflexible polymers. Phys Rev E 2019; 100:012503. [PMID: 31499867 DOI: 10.1103/physreve.100.012503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Indexed: 11/07/2022]
Abstract
The conformational states of a semiflexible polymer enclosed in a compact domain of typical size a are studied as stochastic realizations of paths defined by the Frenet equations under the assumption that stochastic "curvature" satisfies a white noise fluctuation theorem. This approach allows us to derive the Hermans-Ullman equation, where we exploit a multipolar decomposition that allows us to show that the positional probability density function is well described by a telegrapher's equation whenever 2a/ℓ_{p}>1, where ℓ_{p} is the persistence length. We also develop a Monte Carlo algorithm for use in computer simulations in order to study the conformational states in a compact domain. In addition, the case of a semiflexible polymer enclosed in a square domain of side a is presented as an explicit example of the formulated theory and algorithm. In this case, we show the existence of a polymer shape transition similar to the one found by Spakowitz and Wang [Phys. Rev. Lett. 91, 166102 (2003)PRLTAO0031-900710.1103/PhysRevLett.91.166102] where in this case the critical persistence length is ℓ_{p}^{*}≃a/8 such that the mean-square end-to-end distance exhibits an oscillating behavior for values ℓ_{p}>ℓ_{p}^{*}, whereas for ℓ_{p}<ℓ_{p}^{*} it behaves monotonically increasing.
Collapse
Affiliation(s)
- Pavel Castro-Villarreal
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Carretera Emiliano Zapata, Km. 8, Rancho San Francisco, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - J E Ramírez
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado Postal 165, 72000 Puebla, Puebla, Mexico.,Departamento de Física de Partículas, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
40
|
Advances in chemical modifications of starches and their applications. Carbohydr Res 2019; 476:12-35. [DOI: 10.1016/j.carres.2019.02.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 11/23/2022]
|
41
|
Yan X, Chang Y, Wang Q, Fu Y, Ren L, Zhou J. Influence of Precipitation Conditions on Crystallinity of Amylose Nanoparticles. STARCH-STARKE 2018. [DOI: 10.1002/star.201700213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoxia Yan
- Key Laboratory of Bionic Engineering (Ministry of Education) College of Biological and Agricultural Engineering Jilin University; Changchun 130022 China
| | - Yanjiao Chang
- Key Laboratory of Bionic Engineering (Ministry of Education) College of Biological and Agricultural Engineering Jilin University; Changchun 130022 China
| | - Qian Wang
- Key Laboratory of Bionic Engineering (Ministry of Education) College of Biological and Agricultural Engineering Jilin University; Changchun 130022 China
| | - Youjia Fu
- Key Laboratory of Bionic Engineering (Ministry of Education) College of Biological and Agricultural Engineering Jilin University; Changchun 130022 China
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education) College of Biological and Agricultural Engineering Jilin University; Changchun 130022 China
| | - Jiang Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education) College of Biological and Agricultural Engineering Jilin University; Changchun 130022 China
| |
Collapse
|
42
|
Sabahi H, Khorami M, Rezayan AH, Jafari Y, Karami MH. Surface functionalization of halloysite nanotubes via curcumin inclusion. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Wang T, Wu C, Fan G, Li T, Gong H, Cao F. Ginkgo biloba extracts-loaded starch nano-spheres: Preparation, characterization, and in vitro release kinetics. Int J Biol Macromol 2017; 106:148-157. [PMID: 28780415 DOI: 10.1016/j.ijbiomac.2017.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/17/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
Ginkgo as a promising edible material and herbal medicine has received much attention due to its abundant starch contents and functional ingredient ginkgo biloba extracts (GBEs). Many foreign scholars suggest that GBEs can effectively ameliorate the symptoms of mild memory impairment and Alzheimer's dementia. However, an insurmountable problem with application of the GBEs is its low bioavailability, which restricts its application in vivo. Considering the biocompatibility between GBEs and starch, we have prepared ginkgo and corn starch-based nano-carriers, and thereby loaded GBEs onto starch nano-spheres (SNPs) by nanoprecipitation. Compared with unloaded SNPs (201-250nm), the mean sizes of the monodispersed and spherical GBEs-loaded SNPs were 255-396nm. Moreover, the loading amounts of GBEs onto ginkgo, and corn SNPs were 0.661-1.045, and 0.560mg/mg, respectively. In addition, in artificial gastric and intestinal juices, the GBEs-loaded SNPs exhibited a better sustained release than free GBEs.
Collapse
Affiliation(s)
- Tao Wang
- College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China; Department of Chemistry Engineering, Xuzhou College of Industrial Technology, Xuzhou, Jiangsu Province, 221140, China
| | - Caie Wu
- College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China; Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China.
| | - Gongjian Fan
- College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China; Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
| | - Tingting Li
- College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China; Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
| | - Hao Gong
- College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
| | - Fuliang Cao
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
| |
Collapse
|
44
|
Li X, Ge S, Yang J, Chang R, Liang C, Xiong L, Zhao M, Li M, Sun Q. Synthesis and study the properties of StNPs/gum nanoparticles for salvianolic acid B-oral delivery system. Food Chem 2017; 229:111-119. [DOI: 10.1016/j.foodchem.2017.02.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 12/23/2022]
|
45
|
Yan X, Chang Y, Wang Q, Fu Y, Zhou J. Effect of drying conditions on crystallinity of amylose nanoparticles prepared by nanoprecipitation. Int J Biol Macromol 2017; 97:481-488. [DOI: 10.1016/j.ijbiomac.2017.01.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/11/2016] [Accepted: 01/15/2017] [Indexed: 10/20/2022]
|