1
|
Costa MM, Spínola MP, Prates JAM. Microalgae as an Alternative Mineral Source in Poultry Nutrition. Vet Sci 2024; 11:44. [PMID: 38275926 PMCID: PMC10819150 DOI: 10.3390/vetsci11010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
This review explores the potential of microalgae as a sustainable and nutritionally rich alternative for mineral supplementation in poultry diets, addressing both the opportunities and challenges in this emerging field. Poultry nutrition, pivotal to the health and productivity of birds, traditionally relies on inorganic and organic mineral sources which, while effective, raise environmental and economic concerns. Microalgae offer a promising solution with their high contents of essential minerals, proteins, vitamins, and bioactive compounds. This review delves into the nutritional profiles of various microalgae, highlighting their rich contents of minerals which are crucial for physiological processes in poultry. It examines the bioavailability of these minerals and their impact on poultry health and productivity. Furthermore, it evaluates the environmental sustainability of microalgae cultivation and acknowledges the challenges in using microalgae in poultry diets, particularly in terms of the economic viability of large-scale production and the consistency of nutrient composition. It discusses the importance of rigorous safety assessments and regulatory compliance, given the potential risks of toxins and heavy metals. Overall, this analysis aims to provide a clear understanding of the role microalgae could play in poultry nutrition and address sustainability challenges in animal agriculture while also considering future perspectives and advancements needed in this field.
Collapse
Affiliation(s)
- Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.M.C.); (M.P.S.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Maria P. Spínola
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.M.C.); (M.P.S.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.M.C.); (M.P.S.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Mago Y, Sharma Y, Thakran Y, Mishra A, Tewari S, Kataria N. Next-Generation Organic Beauty Products Obtained from Algal Secondary Metabolites: A Sustainable Development in Cosmeceutical Industries. Mol Biotechnol 2023:10.1007/s12033-023-00841-9. [PMID: 37603213 DOI: 10.1007/s12033-023-00841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Algae lay over most of the earth's habitats, and it is said that there are more algal cells in water than there are stars in the sky. They are among the wealthiest marine resources that are to be deemed harmless, with hardly any deleterious consequences. Recently, they have received a lot of consideration to be used in cosmeceuticals. Cosmetics encompass synthetic concoctions that are extremely toxic to the environment. Due to their higher molecular size, synthetic cosmetic items induce undesirable side effects and inadequate absorption rates. Consequently, utilizing algae or their secondary metabolites in cosmetics has won multiple votes. Various secondary metabolites synthesized from algae are known to provide skin advantages, such as ultraviolet protection and reduction of skin flaccidity, rough texture, and wrinkles. The tangent drawn here using algae reduces the inorganic/organic chemicals used in the industry that are known to accumulate and affect other organisms and thus opens a pandora's box of ways to a less-polluted environment. The alga is indeed very intriguing. According to the reported studies, algal cells provide biosorption, bio-assimilation, biotransformation, and biodegradation, making them suitable for the eradication of chronic and harmful contaminants from the environment. Another rapid innovation is the product's sustainability. While presenting and marketing new algal products, cosmetics producers have greatly highlighted that they are eco-friendly. This review thus accentuates the significance of using algae and their secondary metabolites in cosmetics to produce extensive variety of products that include sunscreens, moisturizers, anti-aging creams, colorants, and hair care items and extensive insight on the possible remedial capacities of algae species against environmentally dangerous substances in the context of cosmetic chemicals.
Collapse
Affiliation(s)
- Yashika Mago
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Yashita Sharma
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Yashika Thakran
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Anurag Mishra
- Department of Science and Technology, New Delhi, 110030, India
| | - Sakshi Tewari
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India.
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India.
| |
Collapse
|
3
|
Cyanobacteria and Algal-Based Biological Life Support System (BLSS) and Planetary Surface Atmospheric Revitalizing Bioreactor Brief Concept Review. Life (Basel) 2023; 13:life13030816. [PMID: 36983971 PMCID: PMC10057978 DOI: 10.3390/life13030816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Exploring austere environments required a reimagining of resource acquisition and utilization. Cyanobacterial in situ resources utilization (ISRU) and biological life support system (BLSS) bioreactors have been proposed to allow crewed space missions to extend beyond the temporal boundaries that current vehicle mass capacities allow. Many cyanobacteria and other microscopic organisms evolved during a period of Earth’s history that was marked by very harsh conditions, requiring robust biochemical systems to ensure survival. Some species work wonderfully in a bioweathering capacity (siderophilic), and others are widely used for their nutritional power (non-siderophilic). Playing to each of their strengths and having them grow and feed off of each other is the basis for the proposed idea for a series of three bioreactors, starting from regolith processing and proceeding to nutritional products, gaseous liberation, and biofuel production. In this paper, we discuss what that three reactor system will look like, with the main emphasis on the nutritional stage.
Collapse
|
4
|
Wang S, Li Y, Qu Y, Guo D, Luo S, Wang J, Peng C, Zhang X, Jiang H. Enhancing effects of 60Co irradiation on the extraction and activities of phenolic components in edible Citri Sarcodactylis Fructus. Food Chem 2023; 417:135919. [PMID: 36924721 DOI: 10.1016/j.foodchem.2023.135919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
In this study, the impact of 60Co-γ ray irradiation treatment on the content of active chemicals and their functions in Citri Sarcodactylis Fructus (CSF) was assessed. Scanning electron microscopy, Fourier transform infrared spectroscopy, and γ-ray diffraction revealed physical structure changes in CSF powder. According to the findings, the content of total flavonoids in the ethanol extract of CSF increased by 9.5%-21.62%, 7-hydroxycoumarin, hesperidin, 5,7-dimethoxycoumarin, and 5-methoxypsoralen increased by 5.31%-51.8%, 10.07%-99.81%, 6.6%-62.29%, and 3.03%-300%, respectively, when the irradiation dosage was raised, and the antibacterial, anti-inflammatory, antioxidant, and anticancer properties were all raised considerably. These results imply that the principal components and activity changes are proportional to the irradiation dosage. At present, the findings of this study serve as a reference for the use of irradiation technology in assisting extraction and enhancing the effects of functional foods.
Collapse
Affiliation(s)
- Siwei Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yuxin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ying Qu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ding Guo
- Sichuan Traditional Chinese Medicine Group Co. Ltd, Chengdu 610046, PR China
| | - Shuai Luo
- Sichuan Traditional Chinese Medicine Group Co. Ltd, Chengdu 610046, PR China
| | - Jingxia Wang
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China
| | - Chaorong Peng
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China
| | - Xiaobin Zhang
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China.
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
5
|
Jiang X, Wang D, Wu W, Li F. Ecotoxicological effect of enrofloxacin on Spirulina platensis and the corresponding detoxification mechanism. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:85-93. [PMID: 36511301 DOI: 10.1039/d2em00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Enrofloxacin is a widely used antibiotic targeting DNA gyrase and has become the commonly detected micropollutant in aquatic environments. Thus, the potential toxicity of enrofloxacin to Spirulina platensis which is a kind of prokaryote similar to Gram-negative bacteria has been hypothesized. However, little is known about the toxicity and degradation mechanism of enrofloxacin during the growth process of Spirulina platensis. Herein, the biomass accumulation of Spirulina platensis was stimulated to 115% of the control group by 0.1 mg L-1 enrofloxacin (10th day), which could be removed probably through the metabolism. Further increasing the enrofloxacin level to 5.0 mg L-1 almost inhibited the growth and remediation ability of Spirulina platensis for 35 days. Environmental stress also caused the variations of photosynthetic pigments (chlorophyll a and carotenoids) and primary biocomponents (proteins, lipids, and carbohydrates), reflecting the adaptation of Spirulina platensis for handling the negative effects of enrofloxacin. The detoxification mechanism was studied by identifying the degradation products of enrofloxacin, suggesting the occurrence of dealkylation and oxidation reactions primarily at the piperazine group. The decreased antimicrobial activity was confirmed by the reduced binding affinity of degradation products with enzymes. The obtained results could help us understand the role of enrofloxacin in the growth of Spirulina platensis, thus providing great support for employing Spirulina platensis in risk assessment and hazard reduction.
Collapse
Affiliation(s)
- Xiaohua Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dabin Wang
- The State Agriculture Ministry Laboratory of Quality & Safety Risk Assessment for Tobacco, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Weiran Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
6
|
Jiang X, Wang D, Wu W, Li F. The different toxicological effects and removal efficiencies of norfloxacin and sulfadiazine in culturing Arthrospira (Spirulina) platensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114468. [PMID: 36592587 DOI: 10.1016/j.ecoenv.2022.114468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Norfloxacin (NFX) and sulfadiazine (SDZ) are two widely used antibiotics belonging to fluoroquinolone and sulfonamide groups, respectively, and have become the commonly detected micropollutants in aquatic environments. However, only few works have been conducted to investigate the highly probable inhibition of these antibiotic pollutants to Arthrospira platensis, which is an important species of cyanobacteria that is one of primary producers in aquatic ecosystems and should be remarkably sensitive to environmental pollutants due to its prokaryotic characteristics. Hence, the toxicological effects and removal efficiencies of NFX and SDZ in culturing A. platensis were studied by analyzing the biomass growth, photosynthetic pigments, primary biocomponents, and antibiotics concentration. The corresponding variations of these characteristics showed the higher sensitivity of A. platensis to NFX than to SDZ, indicating the specifically targeted effect of NFX on A. platensis, which could be confirmed in silico by the higher binding affinity of NFX with the critical enzyme. The obtained results illustrated the roles of NFX and SDZ on the growth of A. platensis, thus providing the great support in employing A. platensis to reduce hazards from contaminated water and recover biomass resources.
Collapse
Affiliation(s)
- Xiaohua Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dabin Wang
- The State Agriculture Ministry Laboratory of Quality & Safety Risk Assessment for Tobacco, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Weiran Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
7
|
Srivastava A, Kumar A, Biswas S, Kumar R, Srivastava V, Rajaram H, Mishra Y. Gamma (γ)-radiation stress response of the cyanobacterium Anabaena sp. PCC7120: Regulatory role of LexA and photophysiological changes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111529. [PMID: 36332765 DOI: 10.1016/j.plantsci.2022.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
High radioresistance of the cyanobacterium, Anabaena sp. PCC7120 has been attributed to efficient DNA repair, protein recycling, and oxidative stress management. However, the regulatory network involved in these batteries of responses remains unexplored. In the present study, the role of a global regulator, LexA in modulating gamma (γ)-radiation stress response of Anabaena was investigated. Comparison of the cytosolic proteome profiles upon γ-radiation in recombinant Anabaena strains, AnpAM (vector-control) and AnlexA+ (LexA-overexpressing), revealed 41 differentially accumulated proteins, corresponding to 29 distinct proteins. LexA was found to be involved in the regulation of 27 of the corresponding genes based on the presence of AnLexA-Box, EMSA, and/or qRT-PCR studies. The majority of the regulated genes were found to be involved in C-assimilation either through photosynthesis or C-catabolism and oxidative stress alleviation. Photosynthesis, measured in terms of PSII photophysiological parameters and thylakoid membrane proteome was found to be affected by γ-radiation in both AnpAM and AnlexA+ cells, with LexA affecting them even under control growth conditions. Thus, LexA functioned as one of the transcriptional regulators involved in modulating γ-radiation stress response in Anabaena. This study could pave the way for a deeper understanding of the regulation of γ-radiation-responsive genes in cyanobacteria at large.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind Kumar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
8
|
Monaselidze J, Gelagutashvili E, Gogebashvili M, Gorgoshidze M, Gongadze A, Bagdavadze N, Kiziria E. Survival and growth of Spirulina platensis cells and thermodynamic stability of their main proteins after recultivation following irradiation with Cs137 γ doses of 0 to 400 kGy. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Spínola MP, Costa MM, Prates JAM. Digestive Constraints of Arthrospira platensis in Poultry and Swine Feeding. Foods 2022; 11:2984. [PMID: 36230060 PMCID: PMC9562253 DOI: 10.3390/foods11192984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Microalgae have emerged as novel sources for monogastric animals' diets since they are rich in many nutrients, including proteins. Arthrospira platensis is particularly rich in proteins (up to 76% of dry matter), lipids, minerals and pigments. However, its rigid peptidoglycan cell wall interferes with the digestibility, bio-accessibility and bioavailability of nutrients for monogastric animals. The aim of the present study was to evaluate the digestibility, bio-accessibility, bioavailability and protein quality of nutrients from A. platensis for poultry and swine feeding, searching all the studies available in PubMed, Web of Science, Scopus and Google Scholar in June 2022 concerning this subject. Overall, digestibility values of A. platensis proteins or amino acids varying from 66.1 to 68.7% for poultry (microalgae at 1% feed) and from 75.4 to 80.6% for swine (10% feed) have been reported. Therefore, the extraction of microalgae components using mechanical or non-mechanical pre-treatments is required to promote cell disruption and improve digestibility and bio-accessibility. Although A. platensis is a promising feedstuff to support future needs, it is important to perform more investigation concerning digestibility, dietary inclusion level and possible treatments to disrupt microalga cell walls and increase bioavailability of nutrients.
Collapse
Affiliation(s)
- Maria P. Spínola
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
10
|
Jeyaraja S, Palanivel S, Palanimuthu K, Munusamy C. Phycocyanin from Spirulina platensis bio-mimics quantum dots photocatalytic activity: A novel approach for dye degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68280-68292. [PMID: 35536466 DOI: 10.1007/s11356-022-20563-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
In our present study, the photocatalytic degradation of malachite green (MG) an organic dye was carried out using a phycocyanin extract of Spirulina platensis under the irradiation of sunlight. The aim of the present study is to incorporate a simple, novel, an eco-friendly, and cost-effective degradation of dyes without using any harmful metals and chemicals. It was observed that 25 ppm of MG dye got degraded nearly to 100 % at 3 h. The UV absorbance studies indicate the absence of a peak at 620 nm which is a conclusive evidence for MG dye degradation. An optimization study of MG dye degradation was evaluated by Response Surface Methodology using Minitab module 20.4.0.0 statistical software and its percentage of degradation was statistically analyzed using analystat. The FT-IR studies of raw spectra show minimal variation; however, the deconvoluted spectra in the region of 1600-1700 cm-1 indicate the variation in the secondary structure of amide I bands that leads to the dye degradation. The dye degradation study mainly follows the first-order kinetics between the time intervals of 60-180 min. The characteristics of degraded water were assessed by a TOC analyzer. The value of total inorganic carbon (TIC) in MG before treatment was 90 mg/L and seems to be slightly high when compared to MG after treatment which was found to be 87.65 mg/L and the adsorbent-treated water with a low value of 54.25 mg/L. These results well matched with the characteristics of normal water. The presence of phycocyanin in the degraded water was effectively removed by treating with activated carbon and it was confirmed with fluorescence analysis. These results support that the MG dye degradation was exhibited by phycocyanin extract and bio-mimics the quantum dot photocatalytic activity.
Collapse
Affiliation(s)
- Sharmila Jeyaraja
- Department of Chemistry, St. Joseph's College of Engineering, Sholinganallur, Chennai, Tamil Nadu, 600 119, India
| | - Saravanan Palanivel
- Department of Chemistry, St. Joseph's College of Engineering, Sholinganallur, Chennai, Tamil Nadu, 600 119, India
| | - Kowsalya Palanimuthu
- Department of Biotechnology, St. Joseph's College of Engineering, Sholinganallur, Chennai, Tamil Nadu, 600 119, India
| | - Chamundeeswari Munusamy
- Department of Biotechnology, St. Joseph's College of Engineering, Sholinganallur, Chennai, Tamil Nadu, 600 119, India.
| |
Collapse
|
11
|
Tavakoli S, Hong H, Wang K, Yang Q, Gahruie HH, Zhuang S, Li Y, Liang Y, Tan Y, Luo Y. Ultrasonic-assisted food-grade solvent extraction of high-value added compounds from microalgae Spirulina platensis and evaluation of their antioxidant and antibacterial properties. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Kahraman G, Özdemir KS. Effects of black elderberry and spirulina extracts on the chemical stability of cold pressed flaxseed oil during accelerated storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Ernawati, Suryadi H, Mun'im A. Effect of gamma irradiation on the caffeoylquinic acid derivatives content, antioxidant activity, and microbial contamination of Pluchea indica leaves. Heliyon 2021; 7:e07825. [PMID: 34485725 PMCID: PMC8405984 DOI: 10.1016/j.heliyon.2021.e07825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Pluchea indica (L.) Less. leaf has a long history of being used as a food and in traditional medicines. Although gamma irradiation is an effective decontamination method, it must be performed appropriately to preserve the bioactive constituents and biological activities of the plant. This study investigated the influence of gamma irradiation on the caffeoylquinic acid derivatives content, antioxidant capacity, and microbial burden of P. indica leaf. Dried P. indica leaf powder was exposed to gamma rays from cobalt-60 at the absorbed doses of 2.5, 5.0, 7.5, and 10 kGy. After a maceration of P. indica leaf with 70% ethanol, the content of six caffeoylquinic acid derivatives (CQAs) in the extract was assayed using high-performance liquid chromatography. The antioxidant capacity of the ethanolic extract was also determined using the DPPH, ABTS, and ferric reducing antioxidant power (FRAP) methods. The total aerobic bacteria and total yeast and mold counts were investigated using the Petrifilm method at 0 and 3 months after irradiation. Doses of 5–10 kGy significantly increased the CQA level (P < 0.05). The antioxidant activity was enhanced significantly at 2.5–10 kGy (P < 0.05). Doses of 2.5–10 kGy also effectively reduced the microbial load (P < 0.05). Among the irradiation doses, 10 kGy showed the best results. Thus, gamma irradiation at 10 kGy is useful in increasing CQA content and antioxidant capacity as well as reducing the microbial load of P. indica leaf.
Collapse
Affiliation(s)
- Ernawati
- Graduate Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, West Java, Indonesia.,Directorate of Traditional Medicines, Health Supplements and Cosmetics Registration, Indonesian Food and Drug Authority, Jakarta, 10560, DKI Jakarta, Indonesia
| | - Herman Suryadi
- Department of Microbiology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, West Java, Indonesia
| | - Abdul Mun'im
- Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, West Java, Indonesia
| |
Collapse
|
14
|
Li J, Zhang Y, Yang S, Lu Z, Li G, Liu J, Zhou B, Wu D, Wang L. Isolation, Purification, Characterization, and Immunomodulatory Activity Analysis of α-Glucans from Spirulina platensis. ACS OMEGA 2021; 6:21384-21394. [PMID: 34471742 PMCID: PMC8387993 DOI: 10.1021/acsomega.1c02175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/04/2021] [Indexed: 05/08/2023]
Abstract
Crude polysaccharides from Spirulina platensis (SP) were isolated by maceration with a hot alkali solution and further fractionated by DEAE-52 cellulose and Sephadex G-100 chromatography into two purified fractions PSP-1 and PSP-2. The monosaccharide composition analysis indicated that SP was mainly composed of rhamnose and glucose, while PSP-1 and PSP-2 were composed only of glucose. The composition analysis of PSP-1 and PSP-2 by HPLC, FT-IR, and NMR showed that PSP-1 and PSP-2 were branching dextran, and their structures were (1 → 4)-linked-α-D-Glcp as the main chain, and C-6 replaced the single α-D-Glcp as the linear structure of the branch chain. The glucans (SP/PSP-1/PSP-2) can significantly improve the phagocytic ability of macrophages, enhance iNOS activity, promote NO production, and increase IL-6 mRNA expression, so they may possess certain immunomodulatory activity.
Collapse
Affiliation(s)
- Jian Li
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Yaqi Zhang
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
| | - Shen Yang
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Zhenhua Lu
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Guiling Li
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Jingwen Liu
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Bo Zhou
- Department
of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, P. R. China
| | - Daren Wu
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Li Wang
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
| |
Collapse
|
15
|
Effect of gamma irradiation on cytotoxicity, phenolics content and acute toxicity of Cuscuta chinensis L. extract. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Physicochemical Evaluation of Edible Cyanobacterium Arthrospira platensis Collected from the South Atlantic Coast of Morocco: A Promising Source of Dietary Supplements. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3337231. [PMID: 34335805 PMCID: PMC8286187 DOI: 10.1155/2021/3337231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
The cyanobacterium Arthrospira platensis (A. platensis)—a genus of nonheterocystous filamentous cyanobacteria—is used in industrial applications and as a food supply. The current research work aims to study the physicochemical characteristics of A. platensis indigenous to the Moroccan Atlantic coast at Laayoune (Foum El Oued lagoon). The contents of proteins, carbohydrates, vitamins, lipids, minerals, heavy metals, energy value, humidity, ash, pigments, and tannins in A. platensis were investigated using protocols as described in the earlier literature. The values of protein, carbohydrate, and lipid contents in A. platensis were 58.9 ± 0.07, 14.67, and 45.54% respectively. The values of vitamins B2 and B3 dosed in A. platensis were 1.31 ± 0.19 and 30.8 ± 0.001 mg/kg, respectively. The values of heavy metals including lead and chromium were 70 ± 4.5 and 5 ± 0.5 PPB (parts-per-billion), respectively; however, no trace concerning cadmium was detected. The values of energy value, humidity, and ash content were 346.48 ± 0.21, 11.6 ± 0.17%, and 9.1 ± 0.21% kcal/100 g, respectively. The results of pigment content showed the presence of chlorophyll b, chlorophyll a, and carotenoids of 37.506 ± 3.38, 26.066 ± 3.08, and 9.52 ± 0.22 mg/g, respectively. The results obtained revealed that A. platensis indigenous to the Moroccan Atlantic coast at Laayoune was found to be very rich in proteins, carbohydrates, vitamins, minerals, ash, and pigments and lower in heavy metals and saturated fats when compared with species investigated in the literature. Thus, A. platensis indigenous to the Moroccan Atlantic coast at Laayoune fulfills the requirements for being used as dietary supplements.
Collapse
|
17
|
Niccolai A, Bažec K, Rodolfi L, Biondi N, Zlatić E, Jamnik P, Tredici MR. Lactic Acid Fermentation of Arthrospira platensis (Spirulina) in a Vegetal Soybean Drink for Developing New Functional Lactose-Free Beverages. Front Microbiol 2020; 11:560684. [PMID: 33193143 PMCID: PMC7649261 DOI: 10.3389/fmicb.2020.560684] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022] Open
Abstract
The main objective of this study was to evaluate the suitability of Arthrospira platensis F&M-C256 (spirulina) biomass in a vegetal soybean drink or in water, as substrate for lactic acid fermentation by the probiotic bacterium Lactiplantibacillus plantarum ATCC 8014 (LAB8014) and to evaluate the fermented products in terms of bacteria content and organic acids content, biochemical composition, total phenolics, and phycocyanin content, in vitro digestibility, in vitro and in vivo antioxidant activity. After 72 h of fermentation, a bacterial concentration of about 10.5 log CFU mL–1 in the broths containing the soybean drink + spirulina + LAB8014 (SD + S + LAB8014) or water + spirulina + LAB8014 (W + S + LAB8014) was found. Lactic acid concentration reached similar values (about 1.7 g L–1) in the two broths, while a different acetic acid concentration between SD + S + LAB8014 and W + S + LAB8014 broths was observed (7.7 and 4.1 g L–1, respectively). A. platensis biomass was shown to be a suitable substrate for LAB8014 growth. After fermentation, both broths contained a high protein content (>50%). In both broths, total phenolics, in vitro and in vivo antioxidant activity increased after fermentation (+35, +20, and +93% on average, respectively), while phycocyanin content decreased (−40% on average). Digestibility of W + S + LAB8014 broth statistically improved after fermentation. This study highlights the potential of A. platensis F&M-C256 biomass as a substrate for the production of new functional lactose-free beverages.
Collapse
Affiliation(s)
- Alberto Niccolai
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Kaja Bažec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Liliana Rodolfi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy.,Fotosintetica & Microbiologica S.r.l., Florence, Italy
| | - Natascia Biondi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Emil Zlatić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Jamnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mario R Tredici
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| |
Collapse
|
18
|
Silva MBF, Azero EG, Teixeira CMLL, Andrade CT. Influence of culture conditions on the production of extracellular polymeric substances (EPS) by Arthrospira platensis. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00337-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractArthrospira platensis is a cyanobacterium that is of great biotechnological interest, particularly for the food industry, as it possesses a high content of proteins, pigments, lipids and carbohydrates. Cyanobacteria produce extracellular polymeric substances (EPS), which are co-products of secondary metabolism that present thickening or gelling properties. A 3-level factorial design was used to study the combined effect of different nitrate concentrations and photon flux density (PFD) values to evaluate the biomass and EPS production of A. platensis. The best result in terms of biomass production was obtained under condition 6 (2 g L−1 NaNO3 and 600 μE m−2 s−1) yielding a concentration of 1.292 g L−1. However, condition 1 (0.25 g L−1 NaNO3 and 200 μE m−2 s−1) produced the greatest EPS yield (111 mg g−1), followed by condition 9 (2 g L−1 NaNO3 and 1000 μE m−2 s−1). FTIR analyses of EPS samples indicated the presence of carboxylate and sulfate functional groups, and rheological studies of the EPS at 5 and 10 g L−1 revealed a dilute solution behavior.
Collapse
|
19
|
Liu Z, Liu C, Han S, Yang X. Optimization upstream CO 2 deliverable with downstream algae deliverable in quantity and quality and its impact on energy consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136197. [PMID: 31887503 DOI: 10.1016/j.scitotenv.2019.136197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Algae CO2 biofixation provides a promising opportunity due to earn carbon credits and valuable end uses. For balancing technology, energy and economy issues in practical utilization, this approach quantitively interprets the contradictions from upstream CO2 source with a wide range of initial concentration to downstream CO2 biofixation product including edible algae and algal biomass. The influence of upstream CO2 deliverable on algal quantity and quality have been assessed, and the influence of CO2 concentration on CO2 transport mode choice has been also assessed coupling the transportation distance. In downstream algal fixation, quantitively relationship of algal growth have been established. The assessment discovered that direct energy consumptions complied with logarithmic relationship with specific productivities while both direct energy and indirect energy consumption complied with linear relationship with protein content. According to sensitive uncertainty analysis, initial CO2 concentration is a critical parameter to influence significantly energy consumption in upstream CO2 deliverables and algal quality while the contents of protein and specific productivity are the critical sensitive parameters in downstream algae deliverables. Potential modification systems are achieved for significantly reducing energy consumption by improving specific productivity and carbon abundance with low protein content in algae.
Collapse
Affiliation(s)
- Ziyu Liu
- School of Energy and Power Engineering, Energy and Environment International Centre, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, PR China; Centre for Materials Research, University College London, UK
| | - Chaozong Liu
- Centre for Materials Research, University College London, UK
| | - Shujun Han
- School of Energy and Power Engineering, Energy and Environment International Centre, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Xiaoyi Yang
- School of Energy and Power Engineering, Energy and Environment International Centre, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, PR China.
| |
Collapse
|
20
|
Morsy MA, Gupta S, Nair AB, Venugopala KN, Greish K, El-Daly M. Protective Effect of Spirulina platensis Extract against Dextran-Sulfate-Sodium-Induced Ulcerative Colitis in Rats. Nutrients 2019; 11:nu11102309. [PMID: 31569451 PMCID: PMC6836255 DOI: 10.3390/nu11102309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease is a multifactorial inflammatory condition. This study aimed to test the protective effects of Spirulina platensis against ulcerative colitis (UC). UC was induced in thirty-six male Wistar rats by adding dextran sulfate sodium (DSS) to their drinking water, while a control group received only drinking water. UC rats were equally-divided into six groups that received a single oral daily dose of vehicle (DSS), sulfasalazine (SSZ, 50 mg/kg/day), chloroform or the hydroalcoholic extracts of Spirulina platensis (100 or 200 mg/kg/day) for 15 days, and then blood and colon samples were harvested for determination of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), erythrocyte sedimentation rate (ESR), myeloperoxidase (MPO), and histopathology. At the end of the study, compared to time-matched controls, UC rats showed increased TNF-α (1.64-fold), IL-6 (5.73-fold), ESR (3.18-fold), and MPO (1.61-fold), along with loss of body weight (24.73%) and disease activity index (1.767 ± 0.216 vs. 0 ± 0), p < 0.001. These effects were prevented by SSZ treatment (p < 0.001 vs. DSS). The hydroalcoholic extract of Spirulina platensis dose-dependently modulated all DSS-induced inflammatory changes. However, the chloroform extract significantly lowered only IL-6 and ESR, but not TNF-α or MPO levels. The protective effects of the hydroalcoholic extract of Spirulina platensis against experimental UC involved mitigation of DSS-induced inflammation.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt.
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to University), Mullana, Ambala, Haryana 133203, India.
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain.
| | - Mahmoud El-Daly
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| |
Collapse
|
21
|
Abu-Taweel GM, Mohsen G AM, Antonisamy P, Arokiyaraj S, Kim HJ, Kim SJ, Park KH, Kim YO. Spirulina consumption effectively reduces anti-inflammatory and pain related infectious diseases. J Infect Public Health 2019; 12:777-782. [PMID: 31126833 DOI: 10.1016/j.jiph.2019.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/18/2019] [Accepted: 04/28/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Inflammation and pain triggers several pathological illnesses. Synthetic drugs used for the controlling of inflammatory conditions convey significant toxic effects. Global scientific community continually attempt to improve effective, economic and harmless naturally derived remedies against inflammation and pain. The present study aimed to quantify the phytochemical constituents of the freshly cultivated Spirulina and targeted to examining the anti-inflammatory and analgesic activity of Spirulina extract (SE) derived from Arthrospira platensis. METHODS The anti-inflammatory effect of SE was evaluated in animal models including carrageenan-induced rat hind paw oedema, and cotton pellet-induced granuloma formation. Analgesic effects of SE were evaluated by acetic acid induced writhing response and hot plate test. RESULTS Phytochemical quantification guided to identify seven carbohydrates, thirteen amino acids, eleven fatty acids and polyphenolic compounds respectively. The results indicated that SE significantly attenuated carrageenan-induced hind paw oedema, and cotton pellet-induced granuloma. Preliminary molecular mechanistic studies established that SE decreased the productions of TNF-α, IL-1β, IL-6, PGE2 and NO, and suppressed the activities of COX-2 and iNOS. CONCLUSION These results provide a strong scientific foundation for the anti-inflammatory and analgesic activities of SE against different studies in animal models.
Collapse
Affiliation(s)
- Gasem Mohammad Abu-Taweel
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, P.O. Box 2375 , Dammam - 31451, Saudi Arabia
| | - Al-Mutary Mohsen G
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, P.O. Box 2375 , Dammam - 31451, Saudi Arabia
| | - Paulrayer Antonisamy
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, 460 Iksan-daero, Iksan City, Jeonbuk, 570-749, Republic of Korea
| | - Selvaraj Arokiyaraj
- Department of Food Science and Technology, Sejong University, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, 99 Daehak-Ro, Yuseung-Gu, Daejeon, 34134, Republic of Korea
| | - Kyeong Hun Park
- Rural Development Administration, Jeonju, 54875, Republic of Korea
| | - Young Ock Kim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, 99 Daehak-Ro, Yuseung-Gu, Daejeon, 34134, Republic of Korea
| |
Collapse
|
22
|
Morsy MK, Morsy OM, Elbarbary HA, Saad MA. Enhancing of oxidative stability and quality attributes of olive oil using spirulina (Arthrospira platensis) nanoparticles. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Mahmoud YI, Abd El-Ghffar EA. Spirulina ameliorates aspirin-induced gastric ulcer in albino mice by alleviating oxidative stress and inflammation. Biomed Pharmacother 2019; 109:314-321. [DOI: 10.1016/j.biopha.2018.10.118] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/17/2022] Open
|
24
|
Apone F, Barbulova A, Colucci MG. Plant and Microalgae Derived Peptides Are Advantageously Employed as Bioactive Compounds in Cosmetics. FRONTIERS IN PLANT SCIENCE 2019; 10:756. [PMID: 31244874 PMCID: PMC6581726 DOI: 10.3389/fpls.2019.00756] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/24/2019] [Indexed: 05/02/2023]
Abstract
Bioactive peptides (BP) are specific protein fragments that are physiologically important for most living organisms. It is proven that in humans they are involved in a wide range of therapeutic activities as antihypertensive, antioxidant, anti-tumoral, anti-proliferative, hypocholesterolemic, and anti-inflammatory. In plants, BP are involved in the defense response, as well as in the cellular signaling and the development regulation. Most of the peptides used as ingredients in health-promoting foods, dietary supplements, pharmaceutical, and cosmeceutical preparations are obtained by chemical synthesis or by partial digestion of animal proteins. This makes them not fully accepted by the consumers because of the risks associated with solvent contamination or the use of animal derived substances. On the other hand, plant and microalgae derived peptides are known to be selective, effective, safe, and well tolerated once consumed, thus they have got a great potential for use in functional foods, drugs, and cosmetic products. In fact, the interest in the plant and microalgae derived BP is rapidly increasing and in this review, we highlight and discuss the current knowledge about their studies and applications in the cosmetic field.
Collapse
Affiliation(s)
- Fabio Apone
- Arterra Bioscience srl, Naples, Italy
- Vitalab srl, Naples, Italy
| | - Ani Barbulova
- Arterra Bioscience srl, Naples, Italy
- *Correspondence: Ani Barbulova,
| | | |
Collapse
|
25
|
Nouri E, Abbasi H, Rahimi E. Effects of processing on stability of water- and fat-soluble vitamins, pigments (C-phycocyanin, carotenoids, chlorophylls) and colour characteristics of Spirulina platensis. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2018. [DOI: 10.3920/qas2018.1304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- E. Nouri
- Department of Food Science and Technology, College of Agriculture and Natural Resources, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - H. Abbasi
- Department of Food Science and Technology, College of Agriculture and Natural Resources, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - E. Rahimi
- Department of Food Hygiene and Public Health, College of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
26
|
Martínez-Sámano J, Torres-Montes de Oca A, Luqueño-Bocardo OI, Torres-Durán PV, Juárez-Oropeza MA. Spirulina maxima Decreases Endothelial Damage and Oxidative Stress Indicators in Patients with Systemic Arterial Hypertension: Results from Exploratory Controlled Clinical Trial. Mar Drugs 2018; 16:md16120496. [PMID: 30544795 PMCID: PMC6315658 DOI: 10.3390/md16120496] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/28/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Spirulina (Arthrospira) maxima has shown beneficial effects such as being anti-dyslipidemic, antiviral, antioxidant and antihypertensive. However, there are few and limited clinical studies. (2) Methods: a prospective, randomized, parallel pilot study of 4.5 g administration of Spirulinamaxima or placebo for 12 weeks in 16 patients with systemic arterial hypertension (SAH) undergoing treatment with angiotensin-converting enzyme (ACE) inhibitors was performed to assess the effects on endothelial damage and oxidative stress indicators. The blood levels of sICAM-1, sVCAM-1, endothelin-1, and sE-selectin were quantified; the activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and concentrations of reduced glutathione, oxidized glutathione, and thiobarbituric acid reactive substances, were also quantified before and after the treatment period. (3) Results: There were statistically significant (p < 0.05) decreases in systolic blood pressure, sVCAM-1, sE-selectin and endothelin-1 levels, and increases in glutathione peroxidase activity and oxidized glutathione levels. (4) Conclusion: The effects found in the present study agree with antihypertensive and antioxidant effects previously reported for Spirulina maxima. However, this is the first report about the effects on indicators of endothelial damage. More research in this field is necessary to gain an insight into the effects of Spirulina on these indicators.
Collapse
Affiliation(s)
- Jesús Martínez-Sámano
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Adriana Torres-Montes de Oca
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Oscar Ivan Luqueño-Bocardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Patricia V Torres-Durán
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Marco A Juárez-Oropeza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
27
|
Effect of gamma radiation processing on turmeric: Antioxidant activity and curcumin content. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Protective effect of Arthrospira platensis against liver injury induced by copper nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s13596-017-0264-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
da Silva MF, Casazza AA, Ferrari PF, Aliakbarian B, Converti A, Bezerra RP, Porto ALF, Perego P. Recovery of phenolic compounds of food concern from Arthrospira platensis by green extraction techniques. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Esquivel-Hernández DA, Rodríguez-Rodríguez J, Rostro-Alanis M, Cuéllar-Bermúdez SP, Mancera-Andrade EI, Núñez-Echevarría JE, García-Pérez JS, Chandra R, Parra-Saldívar R. Advancement of green process through microwave-assisted extraction of bioactive metabolites from Arthrospira Platensis and bioactivity evaluation. BIORESOURCE TECHNOLOGY 2017; 224:618-629. [PMID: 27838319 DOI: 10.1016/j.biortech.2016.10.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
Bioactivity and functional properties of cyanobacterial extract mostly depends on process of extraction, temperature and solvent used (polar or non-polar). To evaluate these parameters a design of experiment (DOE; using a 2k design) was performed with Arthrospira platensis. Extraction process was optimized through microwave-assisted extraction considering solvent ratio, temperature and time of extraction with polar (PS) and non-polar (NPS). Maximum extract yield obtained was 4.32±0.25% and 5.26±0.11% (w/w) respectively for PS and NPS. Maximum content of bioactive metabolites in PS extracts were thiamine (846.57±14.12μg/g), riboflavin (101.09±1.63μg/g), C-phycocyanin (2.28±0.10μg/g) and A-phycocyanin (4.11±0.03μg/g), while for NPS extracts were α-tocopherol (37.86±0.78μg/g), β-carotene (123.64±1.45μg/g) and 19.44±0.21mg/g of fatty acids. A. platensis PS extracts showed high antimicrobial activity and PS extracts had antioxidant activity of 0.79±0.12μmolTE/g for FRAP assay, while for NPS extracts 1.03±0.08μmol α-TE/g for FRAP assay.
Collapse
Affiliation(s)
- Diego A Esquivel-Hernández
- Tecnologico de Monterrey, Escuela Nacional de Ciencias, Ingenieria y Tecnologia, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - José Rodríguez-Rodríguez
- Tecnologico de Monterrey, Escuela Nacional de Ciencias, Ingenieria y Tecnologia, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Magdalena Rostro-Alanis
- Tecnologico de Monterrey, Escuela Nacional de Ciencias, Ingenieria y Tecnologia, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | | | - Elena I Mancera-Andrade
- Tecnologico de Monterrey, Escuela Nacional de Ciencias, Ingenieria y Tecnologia, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Jade E Núñez-Echevarría
- Tecnologia Ambiental Biomex S.A. de C.V., Volcan Jorullo 5268, Zapopan, Jalisco 45070, Mexico
| | - J Saúl García-Pérez
- Tecnologico de Monterrey, Escuela Nacional de Ciencias, Ingenieria y Tecnologia, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Rashmi Chandra
- Tecnologico de Monterrey, Escuela Nacional de Ciencias, Ingenieria y Tecnologia, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Escuela Nacional de Ciencias, Ingenieria y Tecnologia, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| |
Collapse
|