1
|
Luo P, Ai J, Wang Q, Lou Y, Liao Z, Giampieri F, Battino M, Sieniawska E, Bai W, Tian L. Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice. Food Chem 2024; 469:142555. [PMID: 39708646 DOI: 10.1016/j.foodchem.2024.142555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Collapse
Affiliation(s)
- Peihuan Luo
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian Ai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiongyao Wang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yihang Lou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhiwei Liao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Francesca Giampieri
- Department of Clinical Science, Polytechnic University of Marche, Ancona 60130, Italy; Research Group on Foods, Nutritional Biochemistry and Health, European University of Atlantico, Isabel Torres 21, Santander 39011, Spain
| | - Maurizio Battino
- Department of Clinical Science, Polytechnic University of Marche, Ancona 60130, Italy; Research Group on Foods, Nutritional Biochemistry and Health, European University of Atlantico, Isabel Torres 21, Santander 39011, Spain
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, Poland
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Seify M, Abedpour N, Talebi SF, Hazari V, Mehrara M, Koohestanidehaghi Y, Shoorei H, Bhandari RK. Impacts of Acrylamide on testis and spermatozoa. Mol Biol Rep 2024; 51:739. [PMID: 38874886 DOI: 10.1007/s11033-024-09677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
Acrylamide (ACR) is an industrial chemical used to produce polyacrylamide, a synthetic polymer with a wide range of applications. Depending on the dosage, its presence in occupational and environmental sources poses potential health risks to humans and animals. ACR can be formed in starchy foods cooked at high temperatures. Its effects on human sperm are not well understood. Animal studies indicate that ACR induces toxicity in the male reproductive system through oxidative stress mechanisms. Exposure to ACR alters the normal structure of testicular tubules, leading to congestion, interstitial edema, degeneration of spermatogenic cells, formation of abnormal spermatid giant cells, and necrosis and apoptosis. It also disrupts the balance of important biomarkers such as malondialdehyde, nitric oxide, superoxide dismutase, catalase, and glutathione. ACR has a negative impact on mitochondrial function, antioxidant enzymes, ATP production, and sperm membrane integrity, resulting in decreased sperm quality. Furthermore, it interferes with the expression of steroidogenic genes associated with testosterone biosynthesis. This review explores the detrimental effects of ACR on sperm and testicular function and discusses the potential role of antioxidants in mitigating the adverse effects of ACR on male reproduction.
Collapse
Affiliation(s)
- Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Neda Abedpour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | | | - Vajihe Hazari
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehrdad Mehrara
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Koohestanidehaghi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Shoorei
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Zang Z, Li Y, Chou S, Tian J, Si X, Wang Y, Tan H, Gao N, Shu C, Li D, Chen W, Chen Y, Wang L, He Y, Li B. Polyphenol nanoparticles based on bioresponse for the delivery of anthocyanins. Food Res Int 2024; 184:114222. [PMID: 38609214 DOI: 10.1016/j.foodres.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Anthocyanin (AN) has good antioxidant and anti-inflammatory bioactivities, but its poor biocompatibility and low stability limit the application of AN in the food industry. In this study, core-shell structured carriers were constructed by noncovalent interaction using tannic acid (TA) and poloxamer 188 (F68) to improve the biocompatibility, stability and smart response of AN. Under different treatment conditions, TA-F68 and AN were mainly bound by hydrophobic interaction. The PDI is less than 0.1, and the particle size of nanoparticles (NPs) is uniform and concentrated. The retention of the complex was 15.50 % higher than that of AN alone after 9 d of light treatment. After heat treatment for 180 min, the retention rate after loading was 13.87 % higher than that of AN alone. The carrier reduce the damage of AN by the digestive environment, and intelligently and sustainedly release AN when the esterase is highly expressed. In vitro studies demonstrated that the nanocarriers had good biocompatibility and significantly inhibited the overproduction of reactive oxygen species induced by oxidative stress. In addition, AN-TA-F68 has great potential for free radical scavenging at sites of inflammation. In conclusion, the constructed nano-delivery system provides a potential application for oral ingestion of bioactive substances for intervention in ulcerative colitis.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuan Li
- China Agricultural university. Beijing 311800, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ningxuan Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Chen
- Nanchang University, State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi 330031, China
| | - Liang Wang
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Ying He
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
4
|
Zheng M, Zhang W, Lu S. The characterization of the pectin/alginate nanoparticle for encapsulation of hydroxypropyl-β-cyclodextrin-complexed naringin and its effects on cellular uptake and oxidative stress in Caco-2 cells. Int J Biol Macromol 2024; 263:130398. [PMID: 38403221 DOI: 10.1016/j.ijbiomac.2024.130398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Naringin (NR) and hydroxypropyl-β-cyclodextrin (HPCD) can form a water-soluble complex, but it is unstable. This study aimed to investigate the characterization of the pectin/alginate hydrogel nanoparticles (HNPs) loading HPCD-complexed naringin. The encapsulation efficiency and loading capacity of the HNPs for NR were found to be 79.23 % ± 1.31 % and 23.79 % ± 0.67 %, respectively. HNPs had an average diameter of 409.5 ± 8.5 nm, a PDI of 0.237 ± 0.014, and a zeta-potential of -33.5 ± 0.2. FTIR, XRD, and DSC analysis confirmed that the NR-HPCD complex was embedded into the HNPs. In simulated gastrointestinal digestion, the HNPs exhibited a lower cumulative release rate compared to free NR. In Caco-2 cells, the HNPs were more efficiently transported into the cells. Consequently, the HNPs resulted in a greater decrease in ROS levels, more recovery of mitochondrial membrane potential and higher content of glutathione. This study provided a carrier for encapsulating NR, making it possible for use in food or functional food.
Collapse
Affiliation(s)
- Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits of Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Wenjuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits of Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits of Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
5
|
Jiang Y, Li X, Zhang Y, Wu B, Li Y, Tian L, Sun J, Bai W. Mechanism of action of anthocyanin on the detoxification of foodborne contaminants-A review of recent literature. Compr Rev Food Sci Food Saf 2024; 23:e13259. [PMID: 38284614 DOI: 10.1111/1541-4337.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
Foodborne contaminants refer to substances that are present in food and threaten food safety. Due to the progress in detection technology and the rising concerns regarding public health, there has been a surge in research focusing on the dangers posed by foodborne contaminants. These studies aim to explore and implement strategies that are both safe and efficient in mitigating the associated risks. Anthocyanins, a class of flavonoids, are abundantly present in various plant species, such as blueberries, grapes, purple sweet potatoes, cherries, mulberries, and others. Numerous epidemiological and nutritional intervention studies have provided evidence indicating that the consumption of anthocyanins through dietary intake offers a range of protective effects against the detrimental impact of foodborne contaminants. The present study aims to differentiate between two distinct subclasses of foodborne contaminants: those that are generated during the processing of food and those that originate from the surrounding environment. Furthermore, the impact of anthocyanins on foodborne contaminants was also summarized based on a review of articles published within the last 10 years. However, further investigation is warranted regarding the mechanism by which anthocyanins target foodborne contaminants, as well as the potential impact of individual variations in response. Additionally, it is important to note that there is currently a dearth of clinical research examining the efficacy of anthocyanins as an intervention for mitigating the effects of foodborne pollutants. Thus, by exploring the detoxification effect and mechanism of anthocyanins on foodborne pollutants, this review thereby provides evidence, supporting the utilization of anthocyanin-rich diets as a means to mitigate the detrimental effects of foodborne contaminants.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- The Sixth Affiliated Hospital, Jinan University, Dongguan, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Biyu Wu
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
6
|
Bao T, Karim N, Ke H, Tangpong J, Chen W. Polysaccharide isolated from wax apple suppresses ethyl carbamate-induced oxidative damage in human hepatocytes. J Zhejiang Univ Sci B 2023; 24:574-586. [PMID: 37455135 PMCID: PMC10350369 DOI: 10.1631/jzus.b2200629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 06/27/2023]
Abstract
Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:3.94:4.45:8.56:8.86:30.82:39.78:1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)-Araf-(1→, →3)-Galp-(1→, →3)-Araf-(1→, and →6)-Galp-(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.
Collapse
Affiliation(s)
- Tao Bao
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Naymul Karim
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
7
|
Bovine serum albumin plays an important role in the removal of acrylamide by us strains. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Akhter S, Arman MSI, Tayab MA, Islam MN, Xiao J. Recent advances in the biosynthesis, bioavailability, toxicology, pharmacology, and controlled release of citrus neohesperidin. Crit Rev Food Sci Nutr 2022; 64:5073-5092. [PMID: 36416093 DOI: 10.1080/10408398.2022.2149466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neohesperidin (hesperetin 7-O-neohesperidoside), a well-known flavanone glycoside widely found in citrus fruits, exhibits a variety of biological activities, with potential applications ranging from food ingredients to therapeutics. The purpose of this manuscript is to provide a comprehensive overview of the chemical, biosynthesis, and pharmacokinetics profiles of neohesperidin, as well as the therapeutic effects and mechanisms of neohesperidin against potential diseases. This literature review covers a wide range of pharmacological responses elicited by Neohesperidin, including neuroprotective, anti-inflammatory, antidiabetic, antimicrobial, and anticancer activities, with a focus on the mechanisms of those pharmacological responses. Additionally, the mechanistic pathways underlying the compound's osteoporosis, antiulcer, cardioprotective, and hepatoprotective effects have been outlined. This review includes detailed illustrations of the biosynthesis, biopharmacokinetics, toxicology, and controlled release of neohesperidine. Neohesperidin demonstrated a broad range of therapeutic and biological activities in the treatment of a variety of complex disorders, including neurodegenerative, hepato-cardiac, cancer, diabetes, obesity, infectious, allergic, and inflammatory diseases. Neohesperidin is a promising therapeutic candidate for the management of various etiologically complex diseases. However, further in vivo and in vitro studies on mechanistic potential are required before clinical trials to confirm the safety, bioavailability, and toxicity profiles of neohesperidin.
Collapse
Affiliation(s)
- Saima Akhter
- Department of Pharmacy, International Islamic University, Chittagong, Bangladesh
| | | | - Mohammed Abu Tayab
- Department of Pharmacy, International Islamic University, Chittagong, Bangladesh
| | | | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
9
|
Maqsood M, Anam Saeed R, Sahar A, Khan MI. Mulberry plant as a source of functional food with therapeutic and nutritional applications: A review. J Food Biochem 2022; 46:e14263. [PMID: 35642132 DOI: 10.1111/jfbc.14263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants from the family Moraceae have diverse applications in agriculture, cosmetics, food, and the pharmaceutical industry. Their extensive spectrum of pharmacological activity for treating numerous inflammatory illnesses, cancer, cardiovascular diseases, and gastrointestinal problems reflects their biological and therapeutic value. This article summarizes the molecular mechanisms related to the biological implications of mulberry extracts, fractions, and isolated bioactive compounds from different parts in various health-related ailments. Additionally, the food industry and animal nutrition applications are summarized. Phytochemicals such as steroids, saponins, alkaloids, glycosides, polysaccharides, and phenolic compounds including terpenoids, flavonoids, anthocyanins, and tannins are found in this medicinal plant. The aqueous, ethanolic, and methanolic extracts, as well as bioactive compounds, have anti-oxidative, hypoglycemic, nephroprotective, antimicrobial, neuroprotective, anti-mutagenic, hepatoprotective, anthelmintic, immune-modulatory, cardioprotective, and skin protecting activities. Mulberry supplementation in food products improves the stability of phenolics, sensory properties, antioxidant activity, and antimicrobial properties. Mulberry leaves in animal feed increase the nutrient digestibility, growth parameters, antimicrobial, and antioxidant properties. PRACTICAL APPLICATIONS: This review summarized the in vivo and in vitro biological activities of the mulberry and isolated constituents in various health conditions. In addition, the food uses such as antioxidant potential, antimicrobial, and physicochemical properties were discussed. Furthermore, in vivo studies revealed mulberry as a significant protein source and its flavonoids as potential animal foliage.
Collapse
Affiliation(s)
- Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
10
|
Mulberry Anthocyanins Ameliorate DSS-Induced Ulcerative Colitis by Improving Intestinal Barrier Function and Modulating Gut Microbiota. Antioxidants (Basel) 2022; 11:antiox11091674. [PMID: 36139747 PMCID: PMC9496020 DOI: 10.3390/antiox11091674] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Mulberry has attracted wide attention due to its substantial nutritional values. This work first studied the protective effect of mulberry anthocyanins (MAS) on dextran sulfate sodium (DSS)-induced colitis. The mice experiment was designed as four groups including normal mice (Control), dextran sodium sulfate (DSS)-fed mice, and DSS plus 100 mg/kg·bw MAS-fed mice (LMAS-DSS) or DSS plus 200 mg/kg·bw MAS-fed mice (HMAS-DSS). Mice were given MAS by gavage for 1 week, and then DSS was added to the drinking water for 7 days. MAS was administered for a total of 17 days. The results showed that oral gavage of MAS reduced the disease activity index (DAI), prevented colon shortening, attenuated colon tissue damage and inflammatory response, suppressed colonic oxidative stress and restored the protein expression of intestinal tight junction (TJ) protein (ZO-1, occludin and claudin-3) in mice with DSS-induced colitis. In addition, analysis of 16S rRNA amplicon sequences showed that MAS reduced the DSS-induced intestinal microbiota dysbiosis, including a reduction in Escherichia-Shigella, an increase in Akkermansia, Muribaculaceae and Allobaculum. Collectively, MAS alleviates DSS-induced colitis by maintaining the intestinal barrier, modulating inflammatory cytokines, and improving the microbial community.
Collapse
|
11
|
Kovár M, Navrátilová A, Kolláthová R, Trakovická A, Požgajová M. Acrylamide-Derived Ionome, Metabolic, and Cell Cycle Alterations Are Alleviated by Ascorbic Acid in the Fission Yeast. Molecules 2022; 27:molecules27134307. [PMID: 35807551 PMCID: PMC9268660 DOI: 10.3390/molecules27134307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Acrylamide (AA), is a chemical with multiple industrial applications, however, it can be found in foods that are rich in carbohydrates. Due to its genotoxic and cytotoxic effects, AA has been classified as a potential carcinogen. With the use of spectrophotometry, ICP-OES, fluorescence spectroscopy, and microscopy cell growth, metabolic activity, apoptosis, ROS production, MDA formation, CAT and SOD activity, ionome balance, and chromosome segregation were determined in Schizosaccharomyces pombe. AA caused growth and metabolic activity retardation, enhanced ROS and MDA production, and modulated antioxidant enzyme activity. This led to damage to the cell homeostasis due to ionome balance disruption. Moreover, AA-induced oxidative stress caused alterations in the cell cycle regulation resulting in chromosome segregation errors, as 4.07% of cells displayed sister chromatid non-disjunction during mitosis. Ascorbic acid (AsA, Vitamin C), a strong natural antioxidant, was used to alleviate the negative impact of AA. Cell pre-treatment with AsA significantly improved AA impaired growth, and antioxidant capacity, and supported ionome balance maintenance mainly due to the promotion of calcium uptake. Chromosome missegregation was reduced to 1.79% (44% improvement) by AsA pre-incubation. Results of our multiapproach analyses suggest that AA-induced oxidative stress is the major cause of alteration to cell homeostasis and cell cycle regulation.
Collapse
Affiliation(s)
- Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.N.); (A.T.)
| | - Renata Kolláthová
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Anna Trakovická
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.N.); (A.T.)
| | - Miroslava Požgajová
- AgroBioTech Research Center, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Correspondence: ; Tel.: +421-37-641-4919
| |
Collapse
|
12
|
Hashem MM, Abo-EL-Sooud K, Abd El-Hakim YM, Abdel-hamid Badr Y, El-Metwally AE, Bahy-EL-Dien A. The impact of long-term oral exposure to low doses of acrylamide on the hematological indicators, immune functions, and splenic tissue architecture in rats. Int Immunopharmacol 2022; 105:108568. [DOI: 10.1016/j.intimp.2022.108568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 01/01/2023]
|
13
|
Zhang X, Xin L, Wang C, Sun S, Lyu Y. Short‐term hypobaric treatment enhances chilling tolerance in peaches. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xuedan Zhang
- Shandong Institute of Pomology Tai'an P.R. China
| | - Li Xin
- Shandong Institute of Pomology Tai'an P.R. China
| | - Chao Wang
- College of Horticulture Science and Engineering Shandong Agricultural University Tai'an P.R. China
| | - Shan Sun
- Shandong Institute of Pomology Tai'an P.R. China
| | - Yanhui Lyu
- College of Horticulture Science and Engineering Shandong Agricultural University Tai'an P.R. China
| |
Collapse
|
14
|
Mao XT, Xu RX, Gao Y, Li HY, Liu JS, Yang WD. Allelopathy of Alexandrium pacificum on Thalassiosira pseudonana in laboratory cultures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112123. [PMID: 33721666 DOI: 10.1016/j.ecoenv.2021.112123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Alexandrium pacificum is a toxin-producing dinoflagellate with allelopathic effects. The elucidation of allelopathic mechanism of A. pacificum is of great significance for understanding A. pacificum blooms. To this end, using the model diatom Thalassiosira pseudonana as a target species, we observed changes in physiological, biochemical and gene transcription of T. pseudonana upon being co-cultured with A. pacificum. We found reciprocal effects between A. pacificum and T. pseudonana, and corroborated A. pacificum's allelopathy on T. pseudonana by observing inhibitory effects of filtrate from A. pacificum culture on the growth of T. pseudonana. We also found that co-culturing with A. pacificum, the expression of T. pseudonana genes related to photosynthesis, oxidative phosphorylation, antioxidant system, nutrient absorption and energy metabolism were drastically influenced. Coupled with the alterations in Fv/Fm (the variable/maximum fluorescence ratio), activity of superoxide dismutase, contents of malondialdehyde, neutral lipid and total protein in T. pseudonana co-cultured with A. pacificum, we propose that A. pacificum allelopathy could reduce the efficiency of photosynthesis and energy metabolism of T. pseudonana and caused the oxidative stress, while the nutrient absorption was also affected by allelopathic effects. The resultant data potentially uncovered the allelopathic molecular mechanism of A. pacificum to model alga T. pseudonana. The changes in nutrient uptake and even energy metabolism in T. pseudonana, as an adaptation to environmental conditions, may prevent it from stress-related injuries. Our finding might advance the understanding of allelopathic mechanism of A. pacificum.
Collapse
Affiliation(s)
- Xiao-Tong Mao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rui-Xia Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Gao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
15
|
Shen Y, Zhao S, Liu Q, Jiang Y, Dong H, Feng W, Liu T, Xu H, Shao M. Investigation on the interaction of acrylamide with soy protein isolate: Exploring the binding mechanism in vitro. J Food Sci 2021; 86:2766-2777. [PMID: 33931852 DOI: 10.1111/1750-3841.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
Acrylamide (AA), which is a carcinogen in humans, has been a research focus in terms of food risk assessment. However, few published studies have explored protein strategies to reduce the health risks of AA. The objective of this study was to investigate the binding of AA with soy protein isolate (SPI) and elucidate the binding mechanism. The results showed that AA could bind with nontreated, heat-treated, high-pressure homogenization-treated, and ultrasound-treated SPI in vitro. Fourier-transform infrared spectroscopy suggested that secondary structure of SPI changed significantly after binding with AA in the nontreated and different treated groups. Moreover, fluorescence quenching experiments suggested that the quenching of SPI by AA was static quenching and hydrogen bonds, hydrophobic interactions, and van der Waals forces were involved in this process. PRACTICAL APPLICATION: The study of SPI and AA binding could provide a new perspective for reducing the bioaccessibility of AA in human body by using protein. The results showed that SPI could potentially be used as a novel health strategy to reduce the harm of AA in the human body.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Sijia Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qingbo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Heliang Dong
- Heilongjiang Institute of Quality Supervision and Testing, Harbin, China
| | - Wenxiao Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Tianxu Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Honghua Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Meili Shao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Hong Z, Minghua W, Bo N, Chaoyue Y, Haiyang Y, Haiqing Y, Chunyu X, Yan Z, Yuan Y. Rosmarinic acid attenuates acrylamide induced apoptosis of BRL-3A cells by inhibiting oxidative stress and endoplasmic reticulum stress. Food Chem Toxicol 2021; 151:112156. [PMID: 33781805 DOI: 10.1016/j.fct.2021.112156] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/20/2022]
Abstract
Acrylamide (AA) is a common endogenous contaminant in food, with a complex toxicity mechanism. The study on liver damage to experimental animals caused by AA has aroused a great attention. Rosmarinic acid (RosA) as a natural antioxidant shows excellent protective effects against AA-induced hepatotoxicity, but the potential mechanism is still unclear. In the current study, the protective effect of RosA on BRL-3A cell damage induced by AA was explored. RosA increased the activity of SOD and GSH, reduced the content of ROS and MDA, and significantly reduced the oxidative stress (OS) damage of BRL-3A cells induced by AA. RosA pretreatment inhibited the MAPK signaling pathway activated by AA, and down-regulated the phosphorylation of JNK, ERK and p38. RosA pretreatment also reduced the production of calcium ions caused by AA. In addition, the key proteins p-IRE1α, XBP-1s, TRAF2 of the IRE1 pathway, and the expression of endoplasmic reticulum stress (ERS) characteristic proteins GRP78, p-ASK1, Caspase-12 and CHOP were also down-regulated by RosA. NAC blocked the activation of the MAPK signaling pathway and inhibited the ERS pathway. RosA reduced the rate of apoptosis and down-regulated the expression of Bax/Bcl-2 and Caspase-3, thereby inhibiting AA-induced apoptosis. In conclusion, RosA reduced the OS and ERS induced by AA in BRL-3A cells, thereby inhibiting cell apoptosis, and it could be used as a potential protective agent against AA toxicity.
Collapse
Affiliation(s)
- Zhuang Hong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Wang Minghua
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Nan Bo
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yang Chaoyue
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yan Haiyang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Ye Haiqing
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Xi Chunyu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Zhang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
17
|
Xu Y, Ke H, Li Y, Xie L, Su H, Xie J, Mo J, Chen W. Malvidin-3- O-Glucoside from Blueberry Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Transcription Factor EB-Mediated Lysosomal Function and Activating the Nrf2/ARE Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4663-4673. [PMID: 33787249 DOI: 10.1021/acs.jafc.0c06695] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a universal health issue, whereas there is still a lack of widely accepted therapy until now. Clinical research studies have shown that blueberry could effectively regulate the lipid metabolism, thereby improving obesity-related metabolic syndromes; however, the specific active substances and mechanisms remain unclear. Herein, the effects of the major 10 kinds of anthocyanins from blueberry against NAFLD were investigated using an free fatty acid (FFA)-induced cell model. Among these anthocyanins, malvidin-3-O-glucoside (M3G) and malvidin-3-O-galactoside (M3Ga) could remarkably ameliorate FFA-induced lipid accumulation. Besides, M3G and M3Ga also inhibited oxidative stress via suppressing reactive oxygen species and superoxide anion overproduction, increasing glutathione levels, and enhancing activities of antioxidant enzymes. Further studies unveiled that the representative anthocyanin M3G-upregulated transcription factor EB (TFEB)-mediated lysosomal function possibly interacted with TFEB and activated the Nrf2/ARE (antioxidant responsive element) signaling pathway. Overall, this study enriched the knowledge about the health-promoting effects of blueberry anthocyanins against NAFLD and provided ideas for the development of functional foods of blueberry anthocyanins.
Collapse
Affiliation(s)
- Yang Xu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Hongming Su
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
18
|
Sarion C, Codină GG, Dabija A. Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4332. [PMID: 33921874 PMCID: PMC8073677 DOI: 10.3390/ijerph18084332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Acrylamide is a contaminant as defined in Council Regulation (EEC) No 315/93 and as such, it is considered a chemical hazard in the food chain. The toxicity of acrylamide has been acknowledged since 2002, among its toxicological effects on humans being neurotoxicity, genotoxicity, carcinogenicity, and reproductive toxicity. Acrylamide has been classified as carcinogenic in the 2A group, with human exposure leading to progressive degeneration of the peripheral and central nervous systems characterized by cognitive and motor abnormalities. Bakery products (bread, crispbread, cakes, batter, breakfast cereals, biscuits, pies, etc.) are some of the major sources of dietary acrylamide. The review focuses on the levels of acrylamide in foods products, in particular bakery ones, and the risk that resulting dietary intake of acrylamide has on human health. The evolving legislative situation regarding the acrylamide content from foodstuffs, especially bakery ones, in the European Union is discussed underlining different measures that food producers must take in order to comply with the current regulations regarding the acrylamide levels in their products. Different approaches to reduce the acrylamide level in bakery products such as the use of asparginase, calcium salts, antioxidants, acids and their salts, etc., are described in detail.
Collapse
Affiliation(s)
| | - Georgiana Gabriela Codină
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (C.S.); (A.D.)
| | | |
Collapse
|
19
|
Zhang L, Fu M, Chen J, Fan B, Cao L, Sun Y, Li L, Li S, Lu C, Wang F. Supplementation with embryo chicken egg extract improves exercise performance and exerts anti-fatigue effects via AMPK/mTOR signalling pathway in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1411-1418. [PMID: 32835411 DOI: 10.1002/jsfa.10754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Embryo chicken egg is a nutritional supplement that has been used to enhance physical fitness and promote wound healing according to traditional Chinese medicine for many years. In this study, we evaluated the effects of embryo chicken egg extract (ECE) on the exercise performance and fatigue in mice and the underlying mechanisms. RESULTS The results indicated that ECE can prolong the exhaustive swimming time, decrease lactic acid, blood urea nitrogen, creatine kinase, and malondialdehyde levels, and increase superoxide dismutase, glutathione peroxidase, and glycogen levels. Additionally, ECE can also regulate the balance of oxidative stress via the adenosine monophosphate activated protein kinase/mammalian target of rapamycin signalling pathway. CONCLUSION Taken together, these results showed that ECE can improve exercise performance and reduce physical fatigue in mice, which indicates that ECE can be used as a potential supplement to reduce physical fatigue. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lijing Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mai Fu
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jilan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanyan Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuying Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Lu
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Mehmood A, Zhao L, Wang Y, Pan F, Hao S, Zhang H, Iftikhar A, Usman M. Dietary anthocyanins as potential natural modulators for the prevention and treatment of non-alcoholic fatty liver disease: A comprehensive review. Food Res Int 2021; 142:110180. [PMID: 33773656 DOI: 10.1016/j.foodres.2021.110180] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to a metabolic syndrome linked with type 2 diabetes mellitus, obesity, and cardiovascular diseases. It is characterized by the accumulation of triglycerides in the hepatocytes in the absence of alcohol consumption. The prevalence of NAFLD has abruptly increased worldwide, with no effective treatment yet available. Anthocyanins (ACNs) belong to the flavonoid subclass of polyphenols, are commonly present in various edible plants, and possess a broad array of health-promoting properties. ACNs have been shown to have strong potential to combat NAFLD. We critically assessed the literature regarding the pharmacological mechanisms and biopharmaceutical features of the action of ACNs on NAFLD in humans and animal models. We found that ACNs ameliorate NAFLD by improving lipid and glucose metabolism, increasing antioxidant and anti-inflammatory activities, and regulating gut microbiota dysbiosis. In conclusion, ACNs have potential to attenuate NAFLD. However, further mechanistic studies are required to confirm these beneficial impacts of ACNs on NAFLD.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Fei Pan
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shuai Hao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huimin Zhang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
21
|
|
22
|
You S, Shi X, Yu D, Zhao D, An Q, Wang D, Zhang J, Li M, Wang C. Fermentation of Panax notoginseng root extract polysaccharides attenuates oxidative stress and promotes type I procollagen synthesis in human dermal fibroblast cells. BMC Complement Med Ther 2021; 21:34. [PMID: 33446178 PMCID: PMC7807718 DOI: 10.1186/s12906-020-03197-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Panax notoginseng is one of the most valuable traditional Chinese medicines. Polysaccharides in P. notoginseng has been shown to significantly reduce the incidence of human diseases. However the application of fermentation technology in Panax notoginseng is not common, and the mechanism of action of P. notoginseng polysaccharides produced by fermentation is still unclear. The specific biological mechanisms of fermented P. notoginseng polysaccharides (FPNP) suppresses H2O2-induced apoptosis in human dermal fibroblast (HDF) and the underlying mechanism are not well understood. METHODS In this study, the effects of water extracted and fermentation on concentration of polysaccharides in P. notoginseng extracts were analyzed. After the H2O2-induced HDF model of oxidative damage was established, and then discussed by the expression of cell markers, including ROS, MDA, SOD, CAT, GSH-Px and MMP-1, COL-I, ELN, which were detected by related ELISA kits. The expression of TGF-β/Smad pathway markers were tested by qRT-PCR to determine whether FPNP exerted antioxidant activity through TGF-β signaling in HDF cells. RESULTS The polysaccharide content of Panax notoginseng increased after Saccharomyces cerevisiae CGMCC 17452 fermentation. In the FPNP treatment group, ROS and MDA contents were decreased, reversed the down-regulation of the antioxidant activity and expression of antioxidant enzyme (CAT, GSH-Px and SOD) induced by H2O2. Furthermore, the up-regulation in expression of TGF-β, Smad2/3 and the down-regulation in the expression of Smad7 in FPNP treated groups revealed that FPNP can inhibit H2O2-induced collagen and elastin injury by activating TGF-β/Smad signaling pathway. CONCLUSION It was shown that FPNP could inhibit the damage of collagen and elastin induced by H2O2 by activating the TGF-β/Smad signaling pathway, thereby protecting against the oxidative damage induced by hydrogen peroxide. FPNP may be an effective attenuating healing agent that protects the skin from oxidative stress and wrinkles.
Collapse
Affiliation(s)
- Shiquan You
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
- Chemistry and Materials Engineering, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
| | - Xiuqin Shi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
- Chemistry and Materials Engineering, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
| | - Dan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
- Chemistry and Materials Engineering, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
| | - Dan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
- Chemistry and Materials Engineering, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd, Kunming, 650000, China
| | - Dongdong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
- Chemistry and Materials Engineering, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
| | - Jiachan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
- Chemistry and Materials Engineering, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
| | - Meng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China.
- Chemistry and Materials Engineering, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China.
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China.
| | - Changtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China.
- Chemistry and Materials Engineering, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China.
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
23
|
Li Y, Xu Y, Xie J, Chen W. Malvidin-3-O-arabinoside ameliorates ethyl carbamate-induced oxidative damage by stimulating AMPK-mediated autophagy. Food Funct 2020; 11:10317-10328. [PMID: 33215619 DOI: 10.1039/d0fo01562h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ethyl carbamate (EC) is an environmental toxin, commonly present in various fermented foods and beverages, as well as tobacco and polluted ambient air. However, studies on the effects of EC-induced toxicity on the intestines and potential protection methods are limited. In this study, we show that EC could cause severe toxicity in intestinal epithelial cells (IECs) triggering the induction of decreased cell viability, ROS accumulation and glutathione (GSH) depletion in a dose-dependent manner. Based on these results, we established an EC-treated IEC model to screen the potential protective effects of 12 kinds of anthocyanins extracted from blueberry. Interestingly, we found that malvidin-3-O-arabinoside (M3A) significantly reversed the oxidative damage caused by EC exposure by stimulating autophagy flux, which was determined by the LC3-II level and GFP-RFP-LC3 transfection experiment. Enhancement of autophagy was mainly ascribed to the regulation of lysosomes. M3A pretreatment remarkably upregulated LAMP-1 expression, which indicated elevated lysosomal mass. Besides, M3A also successfully restored lysosomal acidity and subsequently strengthened lysosomal functions. Furthermore, M3A stimulated phosphorylation of AMP-activated protein kinase (AMPK), a master regulator of autophagy. Furthermore, our study indicated the possibility of EC-caused oxidative damage to the intestines and unveiled the remarkably protective benefits of M3A-induced AMPK-mediated autophagy against this toxicity.
Collapse
Affiliation(s)
- Yuting Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
24
|
Hu D, Bao T, Lu Y, Su H, Ke H, Chen W. Polysaccharide from Mulberry Fruit ( Morus alba L.) Protects against Palmitic-Acid-Induced Hepatocyte Lipotoxicity by Activating the Nrf2/ARE Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13016-13024. [PMID: 31537067 DOI: 10.1021/acs.jafc.9b03335] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study was aimed to investigate the protective effects of three different mulberry fruit polysaccharide fractions (MFP-I, MFP-II, and MFP-III) against palmitic acid (PA)-induced hepatocyte lipotoxicity and characterize the functional polysaccharide fraction using gel permeation chromatography, high-performance liquid chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance analyses. MFP-I, MFP-II, and MFP-III were isolated from mulberry fruit by stepwise precipitation with 30, 60, and 90% ethanol, respectively. MFP-II at 0.1 and 0.2 mg/mL dramatically attenuated PA-induced hepatic lipotoxicity, while MFP-I and MFP-III showed weak protection. It was demonstrated that MFP-II not only increased nuclear factor erythroid-2-related factor 2 (Nrf2) phosphorylation and its nuclear translocation, thereby activating the Nrf2/ARE signaling pathway, but also enhanced heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1, and γ-glutamate cysteine ligase gene expressions and promoted catalase and glutathione peroxidase activities, which protected hepatocytes against PA-induced oxidative stress and lipotoxicity. Further investigation indicated that the molecular weight of MFP-II was 115.0 kDa, and MFP-II mainly consisted of galactose (30.5%), arabinose (26.2%), and rhamnose (23.1%). Overall, our research might provide in-depth insight into mulberry fruit polysaccharide in ameliorating lipid metabolic disorders.
Collapse
Affiliation(s)
- Dongwen Hu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yang Lu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hongming Su
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, People's Republic of China
| |
Collapse
|
25
|
Xie L, Xie J, Xu Y, Chen W. Discovery of anthocyanins from cranberry extract as pancreatic lipase inhibitors using a combined approach of ultrafiltration, molecular simulation and spectroscopy. Food Funct 2020; 11:8527-8536. [PMID: 33000849 DOI: 10.1039/d0fo01262a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a chronic disease that has been causing serious problems all over the world. However, there is a lack of available therapeutic approaches to treat obesity. The FDA-approved drug orlistat has severe side effects, such as abdominal pain, flatulence and oily stool. As the therapeutic target of orlistat is pancreatic lipase, there is an urgent need for discovery of new pancreatic lipase inhibitors from natural sources that have reduced side effects compared with orlistat. In this study, ultrafiltration in combination with molecular simulation and spectroscopy was reported as an effective approach for identifying new pancreatic lipase inhibitors from anthocyanin-rich berry sources. Using this approach, four monomeric anthocyanins cyanidin-3-O-arabinoside (C3A), cyanidin-3-O-galactoside (C3Ga), peonidin-3-O-arabinoside (Pn3A) and peonidin-3-O-galactoside (Pn3Ga) from cranberries were discovered as potent pancreatic lipase inhibitors. These four cranberry anthocyanins were shown to form hydrophobic interactions and hydrogen bonds with pocket amino acid residues in molecular docking and molecular dynamics simulations. C3A showed greater impact on secondary structures of the enzyme and showed higher binding capacity with the enzyme compared with C3Ga, Pn3A and Pn3Ga as observed by CD and fluorescence spectroscopy. The structure-activity relationships were then investigated and summarized as both the structures of the B ring and glycosyl group were related to the inhibitory activities of anthocyanins. In short, our results suggested that cranberry anthocyanins could be developed as food supplements to facilitate the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Lianghua Xie
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Jiahong Xie
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Yang Xu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China. and Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
26
|
Wang W, Huang L, Thomas ER, Hu Y, Zeng F, Li X. Notoginsenoside R1 Protects Against the Acrylamide-Induced Neurotoxicity via Upregulating Trx-1-Mediated ITGAV Expression: Involvement of Autophagy. Front Pharmacol 2020; 11:559046. [PMID: 32982756 PMCID: PMC7493052 DOI: 10.3389/fphar.2020.559046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023] Open
Abstract
Acrylamide (ACR) is a common chemical used in various industries and it said to have chronic neurotoxic effects. It is produced during tobacco smoking and is also generated in high-starch foods during heat processing. Notoginsenoside R1 (NR1) is a traditional Chinese medicine, which is used to improve the blood circulation and clotting. The objective of this study was to investigate the mechanism of ACR-triggered neurotoxicity and to identify the protective role of NR1 by upregulating thioredoxin-1 (Trx-1). Our results have shown that NR1 could block the spatial and cognitive impairment caused by ACR administration. Bioinformatics analysis revealed that Trx-1 regulated autophagy via Integrin alpha V (ITGAV). NR1 could resist the ACR-induced neurotoxicity by upregulating thioredoxin-1 in PC12 cells and mice. The autophagy-related proteins like autophagy-related gene (ATG) 4B, Cathepsin D, LC3 II, lysosomal-associated membrane protein 2a (LAMP2a), and ITGAV were restored to normal levels by NR1 treatment in both PC12 cells and mice. Besides, we also found that overexpression of Trx-1 resisted ACR-induced autophagy in PC12 cells and downregulation of Trx-1 triggered autophagy induced by ACR in PC12 cells. Therefore, it could be concluded that Trx-1 was involved in the autophagy pathway. Besides, we also found that ITGAV was an intermediate node linking Trx-1 and the autophagy pathway.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China.,Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Lu Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | | | - Yingying Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Wang C, Wang S, Jiao X, Yang B, Liang S, Luo Z, Mao L. Periodic density as an endpoint of customized plankton community responses to petroleum hydrocarbons: A level of toxic effect should be matched with a suitable time scale. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110723. [PMID: 32485490 DOI: 10.1016/j.ecoenv.2020.110723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
As an endpoint of community response to contaminants, average periodic density of populations (APDP) has been introduced to model species interactions in a community with 4 planktonic species. An ecological model for the community was developed by means of interspecific relationship including competition and predation to calculate the APDP. As a case study, we reported here the ecotoxicological effects of petroleum hydrocarbons (PHC) collected from Bohai oil field on densities of two algae, Platymonas subcordiformis and Isochrysis galbana, a rotifer, Brachionus plicatilis, and of a cladocera, Penilia avirostris, in single species and a microcosm experiment. Time scales expressing toxic effect increased with increasing levels of toxic effect from molecule to community. Remarkable periodic changes in densities were found during the tests in microcosm experiment, revealing a strong species reaction. The minimum time scale characterizing toxic effect at a community level should be the common cycle of population densities of the microcosm. In addition, the cycles of plankton densities shortened in general with increasing PHC, showing an evident toxic effect on the microcosm. Using APDP as the endpoint, a threshold concentration for the modeled microcosm was calculated to be 0.404 mg-PHC L-1. The APDP was found to be more sensitive and reliable than the standing crops of populations as the endpoint. This indicated that the APDP, an endpoint at the community level, could be quantitatively related to the endpoints at the population level, and led to the quantitative concentration-toxic effect relationship at the community level.
Collapse
Affiliation(s)
- Changyou Wang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Siwen Wang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xinming Jiao
- Jiangsu Environmental Monitoring Center, Nanjing, 210036, China
| | - Bin Yang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, 535011, China
| | - Shengkang Liang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zhuhua Luo
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Longjiang Mao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
28
|
Li Y, Hu D, Qi J, Cui S, Chen W. Lysosomal Reacidification Ameliorates Vinyl Carbamate-Induced Toxicity and Disruption on Lysosomal pH. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8951-8961. [PMID: 32806125 DOI: 10.1021/acs.jafc.0c00534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ethyl carbamate (EC) is a carcinogen toxicant, commonly found in fermented foods and beverages. The carcinogenic and toxic possibility of EC is thought to be related to its metabolite vinyl carbamate (VC). However, we found interesting mechanisms underlying VC-induced toxicity in this study, which were greatly different from EC. We first conducted a simple synthesis procedure for VC and found that VC possessed higher toxicity but failed to regulate levels of reactive oxygen species, glutathione, and autophagy. Notably, VC treatment resulted in upregulation of lysosomal pH, which was responsible for its cytotoxicity. Cyclic adenosine monophosphate (cAMP) pretreatment could enhance restoration of lysosomal acidity and ameliorate VC-induced damage. Inhibition of protein kinase A and cystic fibrosis transmembrane conductance regulator can block cAMP-induced cytoprotection. Together, our results provided the evidence for novel mechanisms of toxicity and possible protection method under VC exposure, which might give new perspectives on the study of EC-induced toxicity.
Collapse
Affiliation(s)
- Yuting Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Dongwen Hu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Jifeng Qi
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
29
|
Chu Q, Chen W, Jia R, Ye X, Li Y, Liu Y, Jiang Y, Zheng X. Tetrastigma hemsleyanum leaves extract against acrylamide-induced toxicity in HepG2 cells and Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122364. [PMID: 32114136 DOI: 10.1016/j.jhazmat.2020.122364] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Acrylamide (ACR), as a raw material of polyacrylamide that used in water purification, was verified to possess various toxicity. Tetrastigma hemsleyanum (TH) is a medicinal plant widely used to anti-inflammation and anti-tumor in Chinese folks. However, more researches focused on the biological activities in tubers and the leaves were ignored. Thus, the protective effect of Tetrastigma hemsleyanum leaves extract (THLE) against ACR-induced toxicity in HepG2 cells and Caenorhabditis elegans (C. elegans) was explored in this study. In vitro, we observed that THLE attenuated ACR-induced toxicity in HepG2 cell via regulating Akt/mTOR/FOXO1/MAPK signaling pathway. Further research proved that 5-caffeoylquinic acid (5-CA) plays a major role in THLE's amelioration effect of ACR toxicity. In vivo, it was found that THLE possesses the same protective effect in ACR-treated wild-type N2 C. elegans and daf-2 (-) (deficit in DAF-2) mutants. However, the anti-ACR toxicity effect of THLE in daf-16 (-) mutants (deficit in DAF-16 that homologous to FOXO family in human) was weakened. Our results indicated that THLE exhibited protective effects against ACR-induced toxicity both in HepG2 cells and C. elegans, while DAF-16/FOXO gene is involved in THLE' protective effect via regulating the expression levels of downstream antioxidant genes.
Collapse
Affiliation(s)
- Qiang Chu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wen Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ruoyi Jia
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiang Ye
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yonglu Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yangyang Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yong Jiang
- Shanghai Zhengyue Enterprise Management Co., Ltd., 19th Floor, Block B, Xinchengkonggu Building, NO.388 Zhongjiang Road, Putuo District, Shanghai, 600062, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
30
|
In vitro study of bioaccessibility, antioxidant, and α-glucosidase inhibitory effect of pelargonidin-3-O-glucoside after interacting with beta-lactoglobulin and chitosan/pectin. Int J Biol Macromol 2020; 154:380-389. [DOI: 10.1016/j.ijbiomac.2020.03.126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/17/2022]
|
31
|
Phenolic profile of bayberry followed by simulated gastrointestinal digestion and gut microbiota fermentation and its antioxidant potential in HepG2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103987] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
32
|
Li Y, Zhou A, Cui X, Zhang Y, Xie J. 6'"-p-Coumaroylspinosin protects PC12 neuronal cells from acrylamide-induced oxidative stress and apoptosis. J Food Biochem 2020; 44:e13321. [PMID: 32592426 DOI: 10.1111/jfbc.13321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/29/2022]
Abstract
6'"-p-coumaroylspinosin (P-CS) is a flavonoid isolated from Ziziphi Spinosae Semen (ZSS), whereas, the antioxidative activity has not been reported. Oxidative stress is believed to be one of the main causes of neurodegenerative disorders. In this study, the antioxidative effect of P-CS on PC12 cells was determined. The cells were treated with acrylamide (AA) in the absence or presence of P-CS, and cell apoptosis was analyzed. Interestingly, P-CS pretreatment of the cells could significantly prevent AA-induced cell death, glutathione (GSH) contents decrease, and reactive oxygen species (ROS) overproduction. Further investigation of the molecular mechanism underlying the effect of P-CS on cell apoptosis revealed that P-CS was able to suppress the expression of Bax and Bim induced by AA and inhibit the JNKs pathway. Our findings support a role of P-CS in preventing neuronal cell apoptosis induced by AA, suggesting its therapeutic potential for the treatment of neurodegenerative disorders as a medicinal supplement. PRACTICAL APPLICATIONS: Oxidative stress is believed to cause damage in subcellular organelles, nucleic acids, and alteration in protein aggregation as well as disruption of the signaling cascades associated with aging and apoptosis. A small molecule, non-poisonous natural antioxidant is needed to protect the brain from oxidative stress. Compared with western medicine, natural products carry less risk of adverse effects and are not too expensive, especially for the third-world countries. Furthermore, ZSS could be used to produce or prepare antioxidants, such as P-CS, which has been reported significant anti-oxidative activity in this study.
Collapse
Affiliation(s)
- Yaxin Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,Tianjin Key Laboratory of Food Biotechnology, Tianjin, China
| | - Aimin Zhou
- Department of Chemistry and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH, USA
| | - Xusheng Cui
- Shijiazhuang Yiling pharmaceutical Co. Ltd, Hebei, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,Tianjin Key Laboratory of Food Biotechnology, Tianjin, China
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
33
|
Kunnel SG, Subramanya S, Satapathy P, Sahoo I, Zameer F. Acrylamide Induced Toxicity and the Propensity of Phytochemicals in Amelioration: A Review. Cent Nerv Syst Agents Med Chem 2020; 19:100-113. [PMID: 30734688 DOI: 10.2174/1871524919666190207160236] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/19/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
Acrylamide is widely found in baked and fried foods, produced in large amount in industries and is a prime component in toxicity. This review highlights various toxicities that are induced due to acrylamide, its proposed mode of action including oxidative stress cascades and ameliorative mechanisms using phytochemicals. Acrylamide formation, the mechanism of toxicity and the studies on the role of oxidative stress and mitochondrial dysfunctions are elaborated in this paper. The various types of toxicities caused by Acrylamide and the modulation studies using phytochemicals that are carried out on various type of toxicity like neurotoxicity, hepatotoxicity, cardiotoxicity, immune system, and skeletal system, as well as embryos have been explored. Lacunae of studies include the need to explore methods for reducing the formation of acrylamide in food while cooking and also better modulators for alleviating the toxicity and associated dysfunctions along with identifying its molecular mechanisms.
Collapse
Affiliation(s)
- Shinomol George Kunnel
- Department of Biotechnology, Dayananda Sagar College of Engineering (An Autonomous Institute Affiliated to VTU, Belagavi), Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru - 560 078, Karnataka, India
| | - Sunitha Subramanya
- Department of Biotechnology, Dayananda Sagar College of Engineering (An Autonomous Institute Affiliated to VTU, Belagavi), Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru - 560 078, Karnataka, India
| | - Pankaj Satapathy
- Department of Biological Sciences, School of Basic and Applied Sciences, Dayananda Sagar University, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560 078, Karnataka, India
| | - Ishtapran Sahoo
- Molecular Biology, Thermo Fisher Scientific, Bangalore- 560066, India
| | - Farhan Zameer
- Department of Biological Sciences, School of Basic and Applied Sciences, Dayananda Sagar University, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560 078, Karnataka, India
| |
Collapse
|
34
|
Xie L, Mo J, Ni J, Xu Y, Su H, Xie J, Chen W. Structure-based design of human pancreatic amylase inhibitors from the natural anthocyanin database for type 2 diabetes. Food Funct 2020; 11:2910-2923. [DOI: 10.1039/c9fo02885d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Malvidin 3-O-arabinoside is identified as a novel human pancreatic amylase inhibitor from the natural anthocyanin database with a structure-based design approach.
Collapse
Affiliation(s)
- Lianghua Xie
- Department of Food Science and Nutrition
- National Engineering Laboratory of Intelligent Food Technology and Equipment
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang University
- Hangzhou 310058
| | - Jianling Mo
- Department of Traditional Chinese Medicine
- Sir Run Run Shaw Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310016
| | - Jingdan Ni
- Department of Traditional Chinese Medicine
- Sir Run Run Shaw Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310016
| | - Yang Xu
- Department of Food Science and Nutrition
- National Engineering Laboratory of Intelligent Food Technology and Equipment
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang University
- Hangzhou 310058
| | - Hongming Su
- Department of Food Science and Nutrition
- National Engineering Laboratory of Intelligent Food Technology and Equipment
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang University
- Hangzhou 310058
| | - Jiahong Xie
- Department of Food Science and Nutrition
- National Engineering Laboratory of Intelligent Food Technology and Equipment
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang University
- Hangzhou 310058
| | - Wei Chen
- Department of Food Science and Nutrition
- National Engineering Laboratory of Intelligent Food Technology and Equipment
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang University
- Hangzhou 310058
| |
Collapse
|
35
|
Wang C, Jiao X, Liu G. A toxic effect at molecular level can be expressed at community level: A case study on toxic hierarchy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133573. [PMID: 31374497 DOI: 10.1016/j.scitotenv.2019.07.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
This study demonstrated hierarchical toxicity and addressed the relevance and differences of toxic effects at the molecular, individual, population, and community levels. Superoxide dismutase (SOD) activity, photosynthetic oxygen production, filtration rate, life span and densities of Platymonas helgolandica var. tsingtaoensis, Isochrysis galbana, and Brachionus plicatilis in single-species tests and customized community tests were examined in response to a concentration gradient of aniline ranging from 0 to 50.0 mg L-1. The SOD activity was the most sensitive endpoint with the fastest response to aniline according to the calculated no-detection of toxic effect concentration (NDEC) and the EC50. The individual- and population-level endpoints, showing a lower response to aniline, could be constructed from the SOD activity in a stepwise manner. A multi-scale hierarchical model with endpoints at 4 levels was used to characterize toxic effects, at the scales of time and size. Linkage of SOD activity to toxic effects at a community level was established level by level to express the change in the customized community with the concentration of aniline. The calculated threshold concentration of aniline for the customized community was nearly equal to the minimum NDEC, demonstrating as great an impact on interactions by the toxic effect at subpopulation-level as that at the community level. However, we identified a trend of higher sensitivities of measured endpoints at sub-population level, decreasing sensitivity at higher levels but a great variety of sensitivities at community level. Although the characteristics of toxic effects are different at different levels, the structure and process of endpoints at adjacent levels are related to and interact with each other. The resulted indirect effects, together with direct effect, determine the toxic effect at every levels of biological complexity. The toxic effects at adjacent levels should be studied at the same time to better understand the ecological risk of contaminants.
Collapse
Affiliation(s)
- Changyou Wang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Research Center for Ocean Survey Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Xinming Jiao
- Jiangsu Environmental Monitoring Center, Nanjing 210036, China
| | - Gang Liu
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Research Center for Ocean Survey Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
36
|
Silymarin Ameliorates Acrylamide-Induced Hyperlipidemic Cardiomyopathy in Male Rats. BIOMED RESEARCH INTERNATIONAL 2019. [DOI: 10.1155/2019/4825075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Acrylamide (AA) is a well-known potent carcinogen and neurotoxin that has been recently linked to atherosclerotic pathogenesis. The present study is aimed at investigating the protective effect of silymarin (SIL) as an antioxidant against AA-induced hyperlipidemic cardiomyopathy in male rats. The obtained results showed that animals exposed to AA exhibited a significant increase in the levels of cardiac serum markers, serum total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very-low-density lipoprotein cholesterol with a significant decrease in high-density lipoprotein cholesterol. Furthermore, AA intoxication significantly increased the malondialdehyde level (a hallmark of lipid peroxidation) and reduced antioxidant enzyme activities (i.e., superoxide dismutase, catalase, and glutathione peroxidase). SIL administration significantly attenuated all these biochemical perturbations in AA-treated rats, except for the decreased high-density lipoprotein cholesterol. Our results were confirmed by histopathological assessment of the myocardium. In conclusion, this study demonstrated a beneficial effect of SIL therapy in the prevention of AA-induced cardiotoxicity by reversing the redox stress and dyslipidemia in experimental animals.
Collapse
|
37
|
Shishir MRI, Karim N, Gowd V, Xie J, Zheng X, Chen W. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.059] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Chen Y, Chen H, Zhang W, Ding Y, Zhao T, Zhang M, Mao G, Feng W, Wu X, Yang L. Bioaccessibility and biotransformation of anthocyanin monomers following in vitro simulated gastric-intestinal digestion and in vivo metabolism in rats. Food Funct 2019; 10:6052-6061. [PMID: 31486446 DOI: 10.1039/c9fo00871c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anthocyanins (ANCs) are phytochemicals with several health effects and undergo significant degradation and subsequent biotransformation during complex metabolic processes. The aim of the present study was to determine the bioaccessibility and biotransformation of cyanidin-3-glucoside (C3G) during the simulated gastric-intestinal digestion in vitro and the metabolism in rats in vivo. Characterization of C3G and its metabolites was conducted by HPLC-ESI-MS/MS. After gastric-intestinal digestion, C3G was detected with a recovery of 88.31% in the gastric-digestive system, and a small amount of methylated-C3G occurred. In the intestinal-digestive system, C3G occurred with a recovery of 6.05%, and mainly decomposed into protocatechuic acid (PCA) and 2,4,6-trihydroxybenzaldehyde. The pharmacokinetic trial of C3G in rats showed rapid elimination in plasma. In tissues, C3G underwent rapid absorption and metabolism into phenolic acids or their derivatives. C3G and methylated-C3G passed through the blood-brain barrier and caused rapid distribution of C3G in the brain. Understanding the conversion of C3G and its metabolites helps in the future design of dietary interventions and the exploration of biological activities of ACNs.
Collapse
Affiliation(s)
- Yao Chen
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Hui Chen
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Weijie Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yangyang Ding
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Guanghua Mao
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Weiwei Feng
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
39
|
Choi EH, Lee DY, Park HS, Shim SM. Changes in the profiling of bioactive components with the roasting process in Lycium chinense leaves and the anti-obesity effect of its bioaccessible fractions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4482-4492. [PMID: 30868582 DOI: 10.1002/jsfa.9687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/27/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND This study aimed to investigate the profiles of bioactive components in roasted Lycium chinense leaves (LCLs) and its in vitro anti-obesity activity after digestion processes. RESULTS Chlorogenic acid, kaempferol-3-sophoroside-7-glucoside, kaempferol-3-sophoroside, and kaempferol-3-glucoside were discovered as bioactive components in various ratios of ethanol (EtOH) extract in LCLs by using ultra-performance liquid chromatography-electrospray ionization-mass spectrophotometry (UPLC-ESI-MS). The roasting process followed by a 30% EtOH extraction tended to decrease the content of chlorogenic acid and kaempferol-3-glucoside, and enhanced the content of kaempferol-3-sophoroside-7-glucoside. It effectively inhibited pancreatic lipase activity by 62.50 ± 4.81%, which was approximately 1.71 percentage points higher than that of the dried-nonroasted LCL extract (60.79 ± 3.75%). Its bioaccessible fraction obtained from in vitro digestion significantly and dose dependently reduced intracellular lipid accumulation by adipocyte 3T3-L1 compared with a 30% EtOH extraction. At a concentration of 200 μg mL-1 , it inhibited lipid accumulation up to 29.55% in 3T3-L1 cells, which indicated that human digestive enzymes converted kaempferol-3-sophoroside-7-glucoside to kaempferol metabolites that have anti-obesity effects. CONCLUSION This study suggests that the profiling of bioactive components by processing methods and a bioaccessible fraction could be crucial to improve the bioactivity of LCLs, and potentially be a natural anti-obesity ingredient after oral intake. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eun-Hye Choi
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
- R&D Center, Sejongbiotech Corporation, Seoul, Republic of Korea
| | - Da-Yeon Lee
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Hee-Sook Park
- Division of Metabolism and Nutrition, Korea Food Research Institute, Wanju-Gun, Republic of Korea
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Bao T, Li Y, Xie J, Jia Z, Chen W. Systematic evaluation of polyphenols composition and antioxidant activity of mulberry cultivars subjected to gastrointestinal digestion and gut microbiota fermentation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
41
|
Polysaccharide from Rubus chingii Hu affords protection against palmitic acid-induced lipotoxicity in human hepatocytes. Int J Biol Macromol 2019; 133:1063-1071. [DOI: 10.1016/j.ijbiomac.2019.04.176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/06/2023]
|
42
|
Gowd V, Bao T, Chen W. Antioxidant potential and phenolic profile of blackberry anthocyanin extract followed by human gut microbiota fermentation. Food Res Int 2019; 120:523-533. [DOI: 10.1016/j.foodres.2018.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 02/02/2023]
|
43
|
Cyanidin-3-O-glucoside promotes progesterone secretion by improving cells viability and mitochondrial function in cadmium-sulfate-damaged R2C cells. Food Chem Toxicol 2019; 128:97-105. [DOI: 10.1016/j.fct.2019.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/27/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
|
44
|
The Combination of Mulberry Extracts and Silk Amino Acids Alleviated High Fat Diet-Induced Nonalcoholic Hepatic Steatosis by Improving Hepatic Insulin Signaling and Normalizing Gut Microbiome Dysbiosis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8063121. [PMID: 31275421 PMCID: PMC6582910 DOI: 10.1155/2019/8063121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/16/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
Mulberry water extracts (MB) and silk amino acids (SA) are reported to improve oxidative stress and inflammation, respectively. We hypothesized whether the mixture of mulberry water extracts and silk amino acids can alleviate nonalcoholic fatty liver disease (NAFLD) induced by high fat diets. Male Sprague Dawley rats were orally provided with high fat diets containing different ratios of MB and SA (1:3, MS1:3, or 1:5, MS1:5) or cellulose (the disease-control) for 12 weeks. Rats had 200 or 600 mg/kg bw of MS1:3 and MS1:5 (MS1:3-L, MS1:3-H; MS1:5-L, and MS1:5-H). Rats in the normal-control group were fed the 20% fat diet with cellulose. Disease-control rats exhibited much greater triglyceride (TG) deposition in the liver than the normal-control rats along with increased body weight gain, visceral fat mass, serum concentrations of cholesterol, triglyceride and nonesterified fatty acid (NEFA), and insulin resistance. Disease-control rats also had liver damage with increased oxidative stress and inflammation compared to the normal-control rats. MS1:3-H and MS1:5-H were found to have greater hepatic glycogen accumulation and decreased hepatic TG, insulin resistance, and dyslipidemia, with MS1:5-H being similar to the normal-control. MS1:3-H alleviated oxidative stress with lower hepatic lipid peroxide compared to MS1:5-H whereas MS1:5-H ameliorated inflammation and hepatocyte damage better than MS1:3-H. Both MS1:3-H and MS1:5-H potentiated hepatic insulin signaling (pAkt⟶pACC) and reduced the mRNA expression of TG synthesis genes mRNA (FAS and SREBP-1c). In the gut microbiome MS1:3-H elevated the ratio of Bacteroidales to Clostridiales in the cecum better than MS1:5-H but MS1:5-H reduced the proinflammatory Turicibacterales. In conclusion, both MS1:3-H and MS1:5-H prevented liver damage induced by high fat diets, mainly by suppressing oxidative stress and inflammation, respectively. MS1:3 and MS1:5 might be used as therapeutic agent for NAFLD.
Collapse
|
45
|
Encapsulated Mulberry Fruit Extract Alleviates Changes in an Animal Model of Menopause with Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5360560. [PMID: 31182993 PMCID: PMC6512299 DOI: 10.1155/2019/5360560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Abstract
Currently, the therapeutic strategy against metabolic syndrome and its complications is required due to the increasing prevalence and its impact. Due to the benefits of both mulberry fruit extract and encapsulation technology, we hypothesized that encapsulated mulberry fruit extract (MME) could improve metabolic parameters and its complication risk in postmenopausal metabolic syndrome. To test this hypothesis, female Wistar rats were induced experimental menopause with metabolic syndrome by bilateral ovariectomy (OVX) and high-carbohydrate high-fat (HCHF) diet. Then, they were orally given MME at doses of 10, 50, and 250 mg/kg BW for 8 weeks and the parameters, such as percentage of body weight gain, total cholesterol, triglycerides, HDL-C, LDL-C, atherogenic index, fasting blood glucose, plasma glucose area under the curve, serum angiotensin-converting enzyme (ACE), oxidative stress status, histology, and protein expression of PPAR-γ, TNF-α, and NF-κB in adipose tissues were determined. MME improved body weight gain, adiposity index, glucose intolerance, lipid profiles, atherogenic index, ACE, oxidative stress status, and protein expression of TNF-α and NF-κB. Moreover, MME attenuated adipocyte hypertrophy and enhanced PPAR-γ expression. Taken altogether, MME decreased metabolic syndrome and its complication via the increased PPAR-γ expression. Therefore, MME is the potential candidate for improving metabolic syndrome and its related complications. However, further research in clinical trial is still necessary.
Collapse
|
46
|
Xie J, Xu Y, Shishir MR, Zheng X, Chen W. Green extraction of mulberry anthocyanin with improved stability using β-cyclodextrin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2494-2503. [PMID: 30379343 DOI: 10.1002/jsfa.9459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Mulberry anthocyanin is reported to possess various biological activities and it is unstable during extraction or food production. The use of organic solvents for extraction of mulberry anthocyanins may cause environmental pollution and safety concerns. Therefore, the aim of this study was to investigate the effect of a green extraction solvent (cyclodextrin) on the recovery of anthocyanin from mulberry fruits, as well as the thermal stability of anthocyanin. RESULTS β-Cyclodextrin (β-CD) or hydroxypropyl-β-cyclodextrin showed better anthocyanin extraction efficiency than water and ethanol aqueous solution for all tested mulberry cultivars. A molecular docking study indicated that anthocyanin (cyanidin-3-O-glucoside) was encapsulated in the cavity of β-CD, thus enhancing the solubility of anthocyanin. The extraction process was subsequently optimized using a Box-Behnken design. The optimal extraction conditions for anthocyanin and antioxidant activity were found at extraction temperature of 20 °C, extraction time of 44.95 min and β-CD concentration of 45 g L-1 . Furthermore, a degradation kinetic study demonstrated that addition of β-CD could significantly improve the thermal stability of anthocyanin during extraction, with the activation energy of anthocyanin degradation increasing from 63.06 to 76.77 kJ mol-1 . CONCLUSIONS Overall, our study suggests that β-CD is an alternative green extraction solvent for the recovery of anthocyanins, and addition of β-CD may potentially increase the thermal stability of anthocyanin during the extraction, which may give guidance for functional beverage production. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiahong Xie
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Mohammad Ri Shishir
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
|
48
|
Li Y, Ye X, Zheng X, Chen W. Transcription factor EB (TFEB)-mediated autophagy protects against ethyl carbamate-induced cytotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:281-292. [PMID: 30384237 DOI: 10.1016/j.jhazmat.2018.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/07/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Ethyl carbamate (EC) is thought to be a toxicant that widely exists in cigarette smoke and polluted air, as well as fermented food and alcoholic beverages. However, the mechanism and approach to treat hepatic damage after EC exposure remain unclear. Here, we first found that EC caused decreased cell viability, reactive oxygen species (ROS) overproduction and glutathione (GSH) depletion in normal human hepatocytes L02 cells. Excessive ROS generation was found to be one of the major reasons for cell cytotoxicity of EC treatment. Furthermore, increased ROS levels also promoted autophagy, a lysosomal degradation process, which was confirmed by detection of LC3-II expression and puncta in GFP-RFP-LC3 transfection assay. Autophagy inhibitor chloroquine (CQ) pretreatment led to decreased cell viability and higher ROS levels compared with EC group, suggesting that autophagy protected EC-treated cells against oxidative stress and cytotoxicity. Notably, we observed increased lysosomal biogenesis and activation of transcription factor EB (TFEB), a master regulator of lysosomal generation, in the process of autophagy. Taken together, we unveiled a novel mechanism of hepatotoxicity and endogenous potent protection of TFEB-mediated autophagy against decreased cell viability and redox disturbance under EC exposure in normal human hepatocytes.
Collapse
Affiliation(s)
- Yuting Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiang Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
49
|
Abstract
Mulberry (Morus alba L.) has been used in East Asia (Korea, China, and Japan) as a medicine because of its various pharmacological effects including the excellent antioxidant properties of its fruit. This study analyzed extracts from 12 varieties of Korean mulberry fruit for flavonoids using ultrahigh-performance liquid chromatography coupled with diode array detection and quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF/MS). Six quercetin derivatives were identified by mass spectrometry (MS) based on the [quercetin + H]+ ion (m/z 303), while four kaempferol derivatives were identified based on the [kaempferol + H]+ ion (m/z 287). Two new compounds (morkotin A and morkotin C, quercetin derivatives) were identified for the first time in mulberry fruit. The total flavonoid contents of the mulberry fruits ranged from 35.0 ± 2.3 mg/100 g DW in the Baek Ok Wang variety (white mulberry) to 119.9 ± 7.0 mg/100 g DW in the Dae Shim variety. This study has, for the first time, evaluated the flavonoid chromatographic profiles of 12 varieties of Korean mulberry fruits in a following quali-quantitative approach, which will contribute to improved utilization of these fruits as health foods.
Collapse
|
50
|
Mulberry Fruit Extract Ameliorates Nonalcoholic Fatty Liver Disease (NAFLD) through Inhibition of Mitochondrial Oxidative Stress in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8165716. [PMID: 30643537 PMCID: PMC6311263 DOI: 10.1155/2018/8165716] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023]
Abstract
Mulberry is known to have pharmacological effects against cholesterol, obesity, and dyslipidemia. Many studies have revealed that mulberry leaf possesses hepatoprotective properties against nonalcoholic fatty liver disease (NAFLD); however, mulberry fruit is less studied in this context. Therefore, this study aimed to investigate the preventive effects of mulberry fruit against high fat diet- (HFD-) induced NAFLD. To evaluate the effects of mulberry fruit on NAFLD, two doses of mulberry fruit ethanol extracts [MB, 100, and 200 mg/kg BW (body weight)] were given to HFD-fed rats for 10 weeks. MB dramatically prevented liver damage as shown by biochemical analysis of the liver injury markers, alanine transaminase, and aspartate transaminase. MB treatment significantly inhibited the increased levels of total cholesterol, triacylglycerol, and low-density lipoprotein-cholesterol but restored the level of high-density lipoprotein-cholesterol in HFD-fed rats. Notably, histological analysis of liver tissues demonstrated that MB substantially ameliorated lipid accumulation. Expression of cholesterol-regulating genes was also suppressed by MB treatment. For its underlying mechanisms, MB suppressed hepatic reactive oxygen species (ROS) overproduction and mitochondrial oxidative stress in HFD-fed rats. MB potentially protects liver tissue against NAFLD by inhibition of mitochondrial oxidative stress, suggesting its possible use as a therapeutic agent for treatment of NAFLD.
Collapse
|