1
|
Kim YM, Jang CS. Development of molecular markers based on real-time PCR to detect flax and sesame in commercial amaranth products. Food Sci Biotechnol 2024; 33:3313-3322. [PMID: 39328221 PMCID: PMC11422535 DOI: 10.1007/s10068-024-01584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 09/28/2024] Open
Abstract
Amaranthus, Sesamum indicum, and Linum usitatissimum are the most popular oilseed grains worldwide. Protein-rich Amaranthus contains bioactive peptides, is nutritious, and exhibits anti-allergic properties. Sesamum indicum is a primary trigger of anaphylaxis. Linum usitatissimum also displays allergenic properties. A DNA marker assessable using quantitative real-time PCR was developed to detect S. indicum and L. usitatissimum as allergenic contaminants of anti-allergenic Amaranthus. The efficiency of each primer set ranged from 90-98%, and high linear correlation (R2 > 0.99) was obtained between crossover values and the log DNA concentration. We established a Ct value of 0.1% of the binary as a cutoff. The practical application of the designed marker was confirmed by analyzing 20 commercial products. The qPCR system developed for detecting flaxseed and sesame can be applied for regulatory monitoring of allergenic substances in commercial amaranth-containing foods, thus contributing to protecting public health and safety. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01584-2.
Collapse
Affiliation(s)
- Yeon Mi Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
2
|
Ferreira MM, Marins-Gonçalves L, De Souza D. An integrative review of analytical techniques used in food authentication: A detailed description for milk and dairy products. Food Chem 2024; 457:140206. [PMID: 38936134 DOI: 10.1016/j.foodchem.2024.140206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The use of suitable analytical techniques for the detection of adulteration, falsification, deliberate substitution, and mislabeling of foods has great importance in the industrial, scientific, legislative, and public health contexts. This way, this work reports an integrative review with a current analytical approach for food authentication, indicating the main analytical techniques to identify adulteration and perform the traceability of chemical components in processed and non-processed foods, evaluating the authenticity and geographic origin. This work presents results from a systematic search in Science Direct® and Scopus® databases using the keywords "authentication" AND "food", "authentication," AND "beverage", from published papers from 2013 to, 2024. All research and reviews published were employed in the bibliometric analysis, evaluating the advantages and disadvantages of analytical techniques, indicating the perspectives for direct, quick, and simple analysis, guaranteeing the application of quality standards, and ensuring food safety for consumers. Furthermore, this work reports the analysis of natural foods to evaluate the origin (traceability), and industrialized foods to detect adulterations and fraud. A focus on research to detect adulteration in milk and dairy products is presented due to the importance of these products in the nutrition of the world population. All analytical tools discussed have advantages and drawbacks, including sample preparation steps, the need for reference materials, and mathematical treatments. So, the main advances in modern analytical techniques for the identification and quantification of food adulterations, mainly milk and dairy products, were discussed, indicating trends and perspectives on food authentication.
Collapse
Affiliation(s)
- Mariana Martins Ferreira
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo Street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Lorranne Marins-Gonçalves
- Laboratory of Electroanalytical of Food and Environmental Contaminants (LECAA), Chemistry Institute, Uberlândia Federal University, João Naves de Ávila Street, 2121, 1D block, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical of Food and Environmental Contaminants (LECAA), Chemistry Institute, Uberlândia Federal University, João Naves de Ávila Street, 2121, 1D block, Santa Mônica, Uberlândia, MG, 38400-902, Brazil..
| |
Collapse
|
3
|
Chen Y, Huang X, Zuo D, Li Y, Wang Y, Wang Q, Tian X, Ma Y, Wang W. Exploring the influence of different processing conditions on DNA quality of collagen peptides and the feasibility of its raw material traceability. Food Chem 2024; 463:141556. [PMID: 39393113 DOI: 10.1016/j.foodchem.2024.141556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
In this work, we have presented a new method for species origin verification of collagen peptides based on DNA techniques. First, we investigate the changes in DNA during the preparation of collagen peptides including the total amount of collagen peptide DNA and the DNA degradation under different processing conditions. Secondly, we discussed the possibility of using polymerase chain reaction (PCR) for follow-up detection of collagen peptides. The results showed that the total amount of DNA decreased as the treatment intensity increased. The size of the cleaved fragments of DNA are mainly concentrated between 200 and 500 bp. On this basis, the combined PCR results finally determined that trace collagen peptide DNA can be effectively amplified with amplicons of about 300 bp to complete the verification of the species origin of collagen peptide. This study provides a new strategy for determining the authenticity of food labels for bovine collagen peptides.
Collapse
Affiliation(s)
- Yuan Chen
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoli Huang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Doudou Zuo
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yangshuai Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qia Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunhao Ma
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; RandD Centre of Collagen Products, Xingjia Biotechnology Co. LTD., Tianjin 300457, China.
| |
Collapse
|
4
|
Thiruvengadam M, Kim JT, Kim WR, Kim JY, Jung BS, Choi HJ, Chi HY, Govindasamy R, Kim SH. Safeguarding Public Health: Advanced Detection of Food Adulteration Using Nanoparticle-Based Sensors. Crit Rev Anal Chem 2024:1-21. [PMID: 39269682 DOI: 10.1080/10408347.2024.2399202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food adulteration, whether intentional or accidental, poses a significant public health risk. Traditional detection methods often lack the precision required to detect subtle adulterants that can be harmful. Although chromatographic and spectrometric techniques are effective, their high cost and complexity have limited their widespread use. To explore and validate the application of nanoparticle-based sensors for enhancing the detection of food adulteration, focusing on their specificity, sensitivity, and practical utility in the development of resilient food safety systems. This study integrates forensic principles with advanced nanomaterials to create a robust detection framework. Techniques include the development of nanoparticle-based assays designed to improve the detection specificity and sensitivity. In addition, sensor-based technologies, including electronic noses and tongues, have been assessed for their capacity to mimic and enhance human sensory detection, offering objective and reliable results. The use of nanomaterials, including functionalized nanoparticles, has significantly improved the detection of trace amounts of adulterants. Nanoparticle-based sensors demonstrate superior performance in terms of speed, sensitivity, and selectivity compared with traditional methods. Moreover, the integration of these sensors into food safety protocols shows promise for real-time and onsite detection of adulteration. Nanoparticle-based sensors represent a cutting-edge approach for detecting food adulteration, and offer enhanced sensitivity, specificity, and scalability. By integrating forensic principles and nanotechnology, this framework advances the development of more resilient food-safety systems. Future research should focus on optimizing these technologies for widespread application and adapting them to address emerging adulteration threats.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jung-Tae Kim
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration (RDA), Jellabuk-do, Republic of Korea
| | - Won-Ryeol Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ji-Ye Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Bum-Su Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jin Choi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Komal, Sherzada S, Imran M, Khan SA, Wajid A. A multiplex PCR assay to detect mislabelling in fish products. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:198-207. [PMID: 38726701 DOI: 10.1080/19393210.2024.2349606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/26/2024] [Indexed: 08/17/2024]
Abstract
Fish substitution in fish products is an important issue in fish markets, as it is a widespread practice. An authentication protocol for Rohu, Thaila and Tilapia was developed by multiplex PCR. Three species-specific and one degenerate common forward primer were designed using the Cytb gene of the mitochondrial genome. These primers for Labeo rohita, Labeo catla and Oreochromis niloticus showed the fragment size of 235 bp, 186 bp and 506 bp on the agarose gel, respectively. The primers for L. rohita and L. catla were sensitive to 0.1 ng of DNA template, while for O. niloticus this value was 1 ng of DNA template. A total of 230 commercial samples (160 fried and 70 processed fish products) were screened, where 60% mislabeling in fried and 30% mislabeling in processed fish were found. This multiplex PCR protocol could give useful insights for food inspection and enforcement of regulatory food control.
Collapse
Affiliation(s)
- Komal
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shahid Sherzada
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Saeed Akram Khan
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Wajid
- Department of Biotechnology, Faculty of Life Sciences and Informatics, Baluchistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| |
Collapse
|
6
|
Srivastava S, Pandey VK, Singh K, Dar AH, Dash KK, Shams R, Mukarram Shaikh A, Kovács B. Advances in detection technology for authentication of vegetable oils: A comprehensive review. Heliyon 2024; 10:e34759. [PMID: 39170539 PMCID: PMC11336277 DOI: 10.1016/j.heliyon.2024.e34759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Biomarkers are specific indicators that can be used to authenticate vegetable oils by reflecting unique characteristics such as variety or geographical origin. Biomarkers can originate from the primary components of the vegetable oil itself or from contaminants and trace substances linked to processing methods or adulterants. The review highlights the key findings in the identification of novel biomarkers for vegetable oil authentication. Various analytical techniques have proven effective in distinguishing unique biomarkers associated with specific vegetable oil varieties or geographical origins. The use of biomarkers of vegetable oils and associated contaminants or trace substances offers a comprehensive approach to authentication. However, the identification of novel biomarkers holds immense potential for enhancing food safety, preventing fraud, and safeguarding consumer health in the vegetable oil industry. The ongoing research and advancements in biomarker identification represent a promising avenue for addressing authenticity concerns in vegetable oils.
Collapse
Affiliation(s)
- Shivangi Srivastava
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, 121004, Haryana, India
| | - Kunal Singh
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road Barabanki, Uttar Pradesh, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
7
|
Ahamed Z, Seo JK, Eom JU, Yang HS. Volatile Compounds for Discrimination between Beef, Pork, and Their Admixture Using Solid-Phase-Microextraction-Gas Chromatography-Mass Spectrometry (SPME-GC-MS) and Chemometrics Analysis. Food Sci Anim Resour 2024; 44:934-950. [PMID: 38974721 PMCID: PMC11222689 DOI: 10.5851/kosfa.2024.e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 07/09/2024] Open
Abstract
This study addresses the prevalent issue of meat species authentication and adulteration through a chemometrics-based approach, crucial for upholding public health and ensuring a fair marketplace. Volatile compounds were extracted and analyzed using headspace-solid-phase-microextraction-gas chromatography-mass spectrometry. Adulterated meat samples were effectively identified through principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). Through variable importance in projection scores and a Random Forest test, 11 key compounds, including nonanal, octanal, hexadecanal, benzaldehyde, 1-octanol, hexanoic acid, heptanoic acid, octanoic acid, and 2-acetylpyrrole for beef, and hexanal and 1-octen-3-ol for pork, were robustly identified as biomarkers. These compounds exhibited a discernible trend in adulterated samples based on adulteration ratios, evident in a heatmap. Notably, lipid degradation compounds strongly influenced meat discrimination. PCA and PLS-DA yielded significant sample separation, with the first two components capturing 80% and 72.1% of total variance, respectively. This technique could be a reliable method for detecting meat adulteration in cooked meat.
Collapse
Affiliation(s)
- Zubayed Ahamed
- Division of Applied Life Science
(BK21Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Jin-Kyu Seo
- Division of Applied Life Science
(BK21Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Jeong-Uk Eom
- Division of Applied Life Science
(BK21Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Han-Sul Yang
- Division of Applied Life Science
(BK21Four), Gyeongsang National University, Jinju 52828,
Korea
- Institute of Agriculture and Life Science,
Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
8
|
Yin X, Yang L, Sun X, Zheng Q, Piao Y, Hu B, Zhang X, Cao J. Development and validation of sensitive and rapid CRISPR/Cas12-based PCR method to detect hazelnut in unlabeled products. Food Chem 2024; 438:137952. [PMID: 38007952 DOI: 10.1016/j.foodchem.2023.137952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Hazelnut, one of the most popular tree nuts, is widely found in processed food and even very small amounts can trigger severe allergic reactions in susceptible people. Herein, we developed a sensitive and rapid method based on CRISPR and qPCR capable of detecting low-abundance hazelnut in processed food. The assay, known as CRISPR-based nucleic acid test method (Crinac) can detect 1 % of hazelnut in a mixture and allows the species to be identified in a complex processed sample. The detection process can be completed within 60 min. Contributed to amplification via PCR and CRISPR/Cas12a, enables end-fluorescence measurement for the quantification of hazelnut, thus reducing assay time and eliminating the need for costly real-time fluorescence PCR instruments. The assay based on CRISPR/Cas12 and PCR has potential as a sensitive and reliable analytical tool for the detection of food authenticity.
Collapse
Affiliation(s)
- Xinying Yin
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Lili Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xiuyan Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yongzhe Piao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
9
|
Mück F, Scotti F, Mauvisseau Q, Thorbek BLG, Wangensteen H, de Boer HJ. Three-tiered authentication of herbal traditional Chinese medicine ingredients used in women's health provides progressive qualitative and quantitative insight. Front Pharmacol 2024; 15:1353434. [PMID: 38375033 PMCID: PMC10875096 DOI: 10.3389/fphar.2024.1353434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Traditional Chinese Medicine (TCM) herbal products are increasingly used in Europe, but prevalent authentication methods have significant gaps in detection. In this study, three authentication methods were tested in a tiered approach to improve accuracy on a collection of 51 TCM plant ingredients obtained on the European market. We show the relative performance of conventional barcoding, metabarcoding and standardized chromatographic profiling for TCM ingredients used in one of the most diagnosed disease patterns in women, endometriosis. DNA barcoding using marker ITS2 and chromatographic profiling are methods of choice reported by regulatory authorities and relevant national pharmacopeias. HPTLC was shown to be a valuable authentication tool, combined with metabarcoding, which gives an increased resolution on species diversity, despite dealing with highly processed herbal ingredients. Conventional DNA barcoding as a recommended method was shown to be an insufficient tool for authentication of these samples, while DNA metabarcoding yields an insight into biological contaminants. We conclude that a tiered identification strategy can provide progressive qualitative and quantitative insight in an integrative approach for quality control of processed herbal ingredients.
Collapse
Affiliation(s)
- Felicitas Mück
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Francesca Scotti
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, United Kingdom
| | | | | | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | |
Collapse
|
10
|
Yan ZX, Li M, Wei HY, Peng SY, Xu DJ, Zhang B, Cheng X. Characterization and Antioxidant Activity of the Polysaccharide Hydrolysate from Lactobacillus plantarum LPC-1 and Their Effect on Spinach (Spinach oleracea L.) Growth. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04843-w. [PMID: 38194184 DOI: 10.1007/s12010-023-04843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
This study presents a comparison between two hydrolysis systems (MnO2/H2O2 and ascorbic acid (VC)/H2O2) for the depolymerization of exopolysaccharide (EPS) from Lactobacillus plantarum LPC-1. Response surface methodology (RSM) was used to optimize these two degradation systems, resulting in two H2O2-free degradation products, MEPS (MnO2/H2O2-treated EPS) and VEPS (VC/H2O2-treated EPS), where H2O2 residues in the final products and their antioxidant activity were considered vital points. The relationship between the structural variations of two degraded polysaccharides and their antioxidant activity was characterized. Physicochemical tests showed that H2O2 had a notable impact on determining the total and reducing sugars in the polysaccharides, and both degradation systems efficiently eliminated this effect. After optimization, the average molecular weight of EPS was reduced from 265.75 kDa to 135.41 kDa (MEPS) and 113.11 kDa (VEPS), improving its antioxidant properties. Characterization results showed that the two hydrolysis products had similar major functional groups and monosaccharide composition as EPS. The crystal structure, main chain length, and branched chain number were crucial factors affecting the biological activity of polysaccharides. In pot testing, two degraded polysaccharides improved spinach quality more than EPS due to their lower molecular weights, suggesting the advantages of low-molecular-weight polysaccharides. In summary, these two degradation techniques offer valuable insights for further expanding the utilization of microbial resources.
Collapse
Affiliation(s)
- Zu-Xuan Yan
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Min Li
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hong-Yu Wei
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuai-Ying Peng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Duan-Jun Xu
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bao Zhang
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Cheng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
11
|
Uh YR, Kim YM, Kim MJ, Jang CS. Development of real-time PCR-based markers for differentiation of Oplopanax elatus and Aralia cordata in commercial food products. Food Sci Biotechnol 2023; 32:2153-2161. [PMID: 37869529 PMCID: PMC10582000 DOI: 10.1007/s10068-023-01313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 10/24/2023] Open
Abstract
Oplopanax elatus and Aralia cordata, commonly referred to as "Dureub" in Korea, are generally used as medicinal or food raw materials. Although O. elatus, a rare and endangered plant, is typically sold at high prices, the more abundant A. cordata is comparatively inexpensive. Given their common names and morphological root similarities, both plants can easily be confused, thereby providing potential opportunities for fraudulent use in food products. Species-specific molecular markers that can be used for quantitative real-time PCR (qPCR) analysis were developed. Verification of the six primer pairs revealed a correlation coefficient greater than 0.99, with a slope between -3.33 and -3.56. The assay confirmed specificity based on an analysis of 14 non-target plant species and verified its practicality using 10 commercial products with reliability based on a blind test. Thus, qPCR assays can contribute to food safety and protect consumer rights and interests. Supplementary Information The online version of this article contains supplementary material available 10.1007/s10068-023-01313-1.
Collapse
Affiliation(s)
- Yo Ram Uh
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Yeon Mi Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Myeong Jo Kim
- Bioactive Natural Product Chemistry Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
12
|
Li J, Cheng J, Li S, Wu JJ, Li J. Virtual Multiplexing Chamber-Based Digital PCR for Camel Milk Authentication Applications. MICROMACHINES 2023; 14:1619. [PMID: 37630155 PMCID: PMC10456615 DOI: 10.3390/mi14081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
In this work, we proposed a chamber-based digital PCR (cdPCR) microfluidic device that is compatible with fluorescence imaging systems for milk adulteration detection. The device enables the digitalization of PCR reagents, which are loaded into microchambers, and subsequent thermocycling for DNA amplification. Then, fluorescence images of the microchambers are captured and analyzed to obtain the total number of positive chambers, which is used to calculate the copy numbers of the target DNA, enabling accurate quantitative detections to determine intentional milk adulteration from accidental contaminations. The validation of this device is performed by camel milk authentication. We performed 25,600-chamber virtual multiplexing cdPCR tests using 40 × 40 chamber devices for the detection of DNA templates extracted from pure or mixed milk with different dilutions. Then, the cdPCR chip was used to authenticate blind milk samples, demonstrating its efficacy in real biotechnical applications.
Collapse
Affiliation(s)
- Jinchao Li
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Jingmeng Cheng
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shanshan Li
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Junwei Li
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
13
|
Lievens A, Paracchini V, Garlant L, Pietretti D, Maquet A, Ulberth F. Detection and Quantification of Botanical Impurities in Commercial Oregano ( Origanum vulgare) Using Metabarcoding and Digital PCR. Foods 2023; 12:2998. [PMID: 37627997 PMCID: PMC10453138 DOI: 10.3390/foods12162998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
DNA technology for food authentication is already well established, and with the advent of Next Generation Sequencing (NGS) and, more specifically, metabarcoding, compositional analysis of food at the molecular level has rapidly gained popularity. This has led to several reports in the media about the presence of foreign, non-declared species in several food commodities. As herbs and spices are attractive targets for fraudulent manipulation, a combination of digital PCR and metabarcoding by NGS was employed to check the purity of 285 oregano samples taken from the European market. By using novel primers and analytical approaches, it was possible to detect and quantify both adulterants and contaminants in these samples. The results highlight the high potential of NGS for compositional analysis, although its quantitative information (read count percentages) is unreliable, and other techniques are therefore needed to complement the sequencing information for assessing authenticity ('true to the name') of food ingredients.
Collapse
Affiliation(s)
- Antoon Lievens
- European Commission, Joint Research Centre (JRC), B-2440 Geel, Belgium
| | | | - Linda Garlant
- European Commission, Joint Research Centre (JRC), B-2440 Geel, Belgium
| | - Danilo Pietretti
- European Commission, Joint Research Centre (JRC), B-2440 Geel, Belgium
| | - Alain Maquet
- European Commission, Joint Research Centre (JRC), B-2440 Geel, Belgium
| | - Franz Ulberth
- European Commission, Joint Research Centre (JRC), B-2440 Geel, Belgium
| |
Collapse
|
14
|
Pan P, Xing Y, Zhang D, Wang J, Liu C, Wu D, Wang X. A review on the identification of transgenic oilseeds and oils. J Food Sci 2023; 88:3189-3203. [PMID: 37458291 DOI: 10.1111/1750-3841.16705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
Transgenic technology can increase the quantity and quality of vegetable oils worldwide. However, people are skeptical about the safety of transgenic oil-bearing crops and the oils they produce. In order to protect consumers' rights and avoid transgenic oils being adulterated or labeled as nontransgenic oils, the transgenic detection technology of oilseeds and oils needs careful consideration. This paper first summarized the current research status of transgenic technologies implemented at oil-bearing crops. Then, an inspection process was proposed to detect a large number of samples to be the subject rapidly, and various inspection strategies for transgenic oilseeds and oils were summarized according to the process sequence. The detection indicators included oil content, fatty acid, triglyceride, tocopherol, and nucleic acid. The detection technologies involved chromatography, spectroscopy, nuclear magnetic resonance, and polymerase chain reaction. It is hoped that this article can provide crucial technical reference and support for staff engaging in the supervision of transgenic food and for researchers developing fast and efficient monitoring methods in the future.
Collapse
Affiliation(s)
- Pengyuan Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
15
|
Ngai HL, Lee HK, Shaw PC. DNA from herbs can be obtained from air and authenticated by polymerase chain reaction. Heliyon 2023; 9:e18946. [PMID: 37636375 PMCID: PMC10447936 DOI: 10.1016/j.heliyon.2023.e18946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
DNA barcoding of herbs allows accurate species authentication. However, the DNA of herbs are often not easily PCR amplified due to co-extraction of inhibitors. Methods have been developed to improve DNA extraction to reduce contaminants. These methods usually require toxic chemical treatments or expensive commercial kits and are labor intensive. In this report, we collected the air passed from the herbs and directly amplified the DNA obtained. Results showed that DNA could be obtained, and it was PCR amplifiable. Sequencing of the amplified DNA allowed species authentication. This DNA collection method is applicable to herbs from different plant tissues. It has the advantages of reducing the use of toxic substances and more economical.
Collapse
Affiliation(s)
- Hiu-Lam Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- LDS YYC R&D Centre for Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
16
|
Freitas L, Barbosa AJ, Vale BA, Sampaio I, Santos S. Development of rapid and cost-effective multiplex PCR assays to differentiate catfish of the genus Brachyplatystoma (Pimelodidae-Siluriformes) sold in Brazil. PeerJ 2023; 11:e15364. [PMID: 37304874 PMCID: PMC10249622 DOI: 10.7717/peerj.15364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/16/2023] [Indexed: 06/13/2023] Open
Abstract
The catfishes Brachyplatystoma filamentosum (Kumakuma), Brachyplatystoma vaillantii (Laulao catfish), and Brachyplatystoma rousseauxii (gilded catfish) are important fishery resources in Brazil, where they are sold both fresh and in the form of fillets or steaks. These species have morphological similarities, thus, they can be easily misidentified or substituted, especially after processed. Therefore, accurate, sensitive, and reliable methods are needed for the identification of these species to avoid commercial fraud. In the present study, we develop two multiplex PCR assays for the identification of the three catfish species. Each multiplex protocol combined three species-specific forward primers and a universal reverse primer to produce banding patterns able to discriminate the target species unequivocally. The length of the cytochrome C oxidase subunit I (COI) fragments was approximately 254 bp for B. rousseauxii, 405 bp for B. vaillantii, and 466 bp for B. filamentosum, while the control region (CR) assay produced fragments of approximately 290 bp for B. filamentosum, 451 bp for B. vaillantii, and 580 bp for B. rousseauxii. The protocols were sensitive enough to detect the target species at a DNA concentration of 1 ng/µL, with the exception of the CR of B. vaillantii, in which the fragment was only detectable at 10 ng/µL. Therefore, the multiplex assays developed in the present study were sensitive, accurate, efficient, rapid, and cost-effective for the unequivocal identification of the target species of Brachyplatystoma. They can be utilized by fish processing industries to certify their products, or by government agencies to authenticate products and prevent fraudulent commercial substitutions.
Collapse
Affiliation(s)
- Leilane Freitas
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Universidade Federal do Pará, Bragança, PA, Brasil
| | - Andressa J. Barbosa
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Universidade Federal do Pará, Bragança, PA, Brasil
| | - Bianca A. Vale
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Universidade Federal do Pará, Bragança, PA, Brasil
| | - Iracilda Sampaio
- Laboratory of Evolution, Institute of Coastal Studies, Universidade Federal do Pará, Bragança, PA, Brasil
| | - Simoni Santos
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Universidade Federal do Pará, Bragança, PA, Brasil
| |
Collapse
|
17
|
Zhao C, Wang D, Teng J, Yang C, Zhang X, Wei X, Zhang Q. Breed identification using breed-informative SNPs and machine learning based on whole genome sequence data and SNP chip data. J Anim Sci Biotechnol 2023; 14:85. [PMID: 37259083 DOI: 10.1186/s40104-023-00880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/05/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Breed identification is useful in a variety of biological contexts. Breed identification usually involves two stages, i.e., detection of breed-informative SNPs and breed assignment. For both stages, there are several methods proposed. However, what is the optimal combination of these methods remain unclear. In this study, using the whole genome sequence data available for 13 cattle breeds from Run 8 of the 1,000 Bull Genomes Project, we compared the combinations of three methods (Delta, FST, and In) for breed-informative SNP detection and five machine learning methods (KNN, SVM, RF, NB, and ANN) for breed assignment with respect to different reference population sizes and difference numbers of most breed-informative SNPs. In addition, we evaluated the accuracy of breed identification using SNP chip data of different densities. RESULTS We found that all combinations performed quite well with identification accuracies over 95% in all scenarios. However, there was no combination which performed the best and robust across all scenarios. We proposed to integrate the three breed-informative detection methods, named DFI, and integrate the three machine learning methods, KNN, SVM, and RF, named KSR. We found that the combination of these two integrated methods outperformed the other combinations with accuracies over 99% in most cases and was very robust in all scenarios. The accuracies from using SNP chip data were only slightly lower than that from using sequence data in most cases. CONCLUSIONS The current study showed that the combination of DFI and KSR was the optimal strategy. Using sequence data resulted in higher accuracies than using chip data in most cases. However, the differences were generally small. In view of the cost of genotyping, using chip data is also a good option for breed identification.
Collapse
Affiliation(s)
- Changheng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Dan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Jun Teng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Cheng Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xinyi Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xianming Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
18
|
Mahamad P, Dahlan W, Kahong S, So-audon S, Munaowaroh W, Nopponpunth V. Duplex droplet digital PCR (ddPCR) for simultaneous quantification of bovine and porcine gelatin in capsules. Food Sci Biotechnol 2023; 32:803-811. [PMID: 37041814 PMCID: PMC10082860 DOI: 10.1007/s10068-022-01204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Detection of bovine and porcine in gelatin-based products is important as species fraud and product mislabeling may have a detrimental impact on customers who have health, ethical, and religious concerns about animal products. The duplex droplet digital PCR (ddPCR) assay using double-quenched probes has been developed for quantification and detection of porcine and bovine DNA in gelatin capsules. A DNA mixture derived from gelatin was found to have a limit of detection as low as 0.001 ng/µl for porcine samples and 0.01 ng/µl for bovine samples. DNA from 12 other distinct species was tested with the bovine and porcine probes, showing high specificity for this method. The test was validated using fifty-five commercial supplement and pharmaceutical capsules, of which 17 were positive for bovine and/or porcine DNA. This study shows that the duplex ddPCR is reliable for routine analysis in the identification of bovine and porcine origins for gelatin capsules. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01204-x.
Collapse
Affiliation(s)
- Pornpimol Mahamad
- The Halal Science Center, Chulalongkorn University, CU Research Building, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Winai Dahlan
- The Halal Science Center, Chulalongkorn University, CU Research Building, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Saveeyah Kahong
- The Halal Science Center, Chulalongkorn University, CU Research Building, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Sukanya So-audon
- The Halal Science Center, Chulalongkorn University, CU Research Building, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Wila Munaowaroh
- The Halal Science Center, Chulalongkorn University, CU Research Building, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Vanida Nopponpunth
- The Halal Science Center, Chulalongkorn University, CU Research Building, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Science, Chulalongkorn University, 154 Rama I Road, Chula Soi 12, Pathumwan, Bangkok, 10330 Thailand
| |
Collapse
|
19
|
Giusti A, Ricci E, Tinacci L, Verdigi F, Narducci R, Gasperetti L, Armani A. Molecular authentication of mushroom products: First survey on the Italian market. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
20
|
Liu H, Cao T, Chen H, Zhang J, Li W, Zhang Y, Liu H. Two-color lateral flow nucleic acid assay combined with double-tailed recombinase polymerase amplification for simultaneous detection of chicken and duck adulteration in mutton. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
21
|
Uh YR, Jang CS. Establishing DNA markers to differentiate Agastache rugosa and Pogostemon cablin, which are confusedly used as medicinal herbs, using real-time PCR. Food Sci Biotechnol 2023; 32:239-247. [PMID: 36647523 PMCID: PMC9839904 DOI: 10.1007/s10068-022-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 01/19/2023] Open
Abstract
Agastache rugosa and Pogostemon cablin are used as medicinal herbs and aromatic plants and belong to the family Lamiaceae. Despite differences in composition and physicochemical properties, both plants are frequently sold as the medical substance "Kwakhyang" in some Asian countries. Molecular markers were established to distinguish between the two plants using quantitative real-time PCR. Species-specific primers were designed in the nuclear internal transcribed spacer region of ribosomal DNA and in the chloroplast genes matK, rbcL, and rpoB. Six primer sets were tested, the correlation coefficient was higher than 0.99, and the slope was approximately - 3.36 to - 3.58. Efficiency ranged from 90.13 to 98.52%. The developed real-time PCR assay was validated with 14 off-target species, and its reliability was verified through blind testing of 14 commercial products. The assay developed here may help protect consumer rights, and the designed primers can be used to distinguish between the target species. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01176-y.
Collapse
Affiliation(s)
- Yo Ram Uh
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
22
|
Kim YD, Uh YR, Jang CS. Development of real-time PCR based molecular markers for two medicinal herb Artemisia species A. capillaris and A. iwayomogi. Food Sci Biotechnol 2023; 32:59-69. [PMID: 36606092 PMCID: PMC9807703 DOI: 10.1007/s10068-022-01166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 02/01/2023] Open
Abstract
Artemisia capillaris and Artemisia iwayomogi are well-known herbal medicines which are used as hepatotherapeutic drugs. These two herbal species can be confused with each other, owing to their morphological similarity and similar Korean common names of "Injinho" and "Haninjin," respectively. Molecular markers to distinguish between the two plants were developed. Six primer sets were designed and verified, and their efficiencies were found to range from 90.28 to 98.29%. The developed primer sets had significant correlation coefficient values between the cycle threshold values and the logarithm of DNA concentration for their target species (R2 > 0.98), with slopes ranged from - 3.3637 to - 3.5793. The specificity of the quantitative polymerase chain reaction (qPCR) was confirmed with 14 other species. Additionally, 16 commercial medicinal herbs and 40 blind samples were tested to evaluate their reliability. Collectively, the findings indicate that developed qPCR-based target-specific primer sets have potential applicability toward protection of consumers' rights. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01166-0.
Collapse
Affiliation(s)
- Yea Dam Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Yo Ram Uh
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
23
|
Kua JM, Azizi MMF, Abdul Talib MA, Lau HY. Adoption of analytical technologies for verification of authenticity of halal foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1906-1932. [PMID: 36252206 DOI: 10.1080/19440049.2022.2134591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Halal authentication has become essential in the food industry to ensure food is free from any prohibited ingredients according to Islamic law. Diversification of food origin and adulteration issues have raised concerns among Muslim consumers. Therefore, verification of food constituents and their quality is paramount. From conventional methods based on physical and chemical properties, various diagnostic methods have emerged relying on protein or DNA measurements. Protein-based methods that have been used in halal detection including electrophoresis, chromatographic-based methods, molecular spectroscopy and immunoassays. Polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) are DNA-based techniques that possess better accuracy and sensitivity. Biosensors are miniatured devices that operate by converting biochemical signals into a measurable quantity. CRISPR-Cas is one of the latest novel emerging nucleic acid detection tools in halal food analysis as well as quantification of stable isotopes method for identification of animal species. Within this context, this review provides an overview of the various techniques in halal detection along with their advantages and limitations. The future trend and growth of detection technologies are also discussed in this review.
Collapse
Affiliation(s)
- Jay Mie Kua
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Mohd Afendy Abdul Talib
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| | - Han Yih Lau
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Hou Y, Chen S, Zheng Y, Zheng X, Lin JM. Droplet-based digital PCR (ddPCR) and its applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Yin X, Yang H, Piao Y, Zhu Y, Zheng Q, Khan MR, Zhang Y, Busquets R, Hu B, Deng R, Cao J. CRISPR-Based Colorimetric Nucleic Acid Tests for Visual Readout of DNA Barcode for Food Authenticity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14052-14060. [PMID: 36278890 DOI: 10.1021/acs.jafc.2c05974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Food authenticity is a critical issue associated with the economy, religion, and food safety. Herein, we report a label-free and colorimetric nucleic acid assay for detecting DNA barcodes, enabling the determination of food authenticity with the naked eye. This method, termed the CRISPR-based colorimetric DNA barcoding (Cricba) assay, utilizes CRISPR/Cas12a (CRISPR = clustered regularly interspaced short palindromic repeats; Cas = CRISPR associated protein) to specifically recognize the polymerase chain reaction (PCR) products for further trans-cleavaging the peroxidase-mimicking G-quadruplex DNAzyme. Based on this principle, the presence of the cytochrome oxidase subunit I gene could be directly observed with the naked eye via the color change of 3,3',5,5'-tetramethylbenzidine sulfate (TMB). The whole detection process, including PCR amplification and TMB colorimetric analysis, can be completed within 90 min. The proposed assay can detect pufferfish concentrations diluted to 0.1% (w/w) in a raw pufferfish mixture, making it one of the most sensitive methods for food authenticity. The robustness of the assay was verified by testing four common species of pufferfish, including Lagocephalus inermis, Lagocephalus spadiceus, Takifugu bimaculatus, and Takifugu alboplumbeus. The assay is advantageous in easy signal readout, high sensitivity, and general applicability and thus could be a competitive candidate for food authenticity.
Collapse
Affiliation(s)
- Xinying Yin
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yongzhe Piao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yulin Zhu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, U.K
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
26
|
Amalia L, Yuliana ND, Sugita P, Arofah D, Syafitri UD, Windarsih A, Rohman A, Dachriyanus, Abu Bakar NK, Kusnandar F. Volatile compounds, texture, and color characterization of meatballs made from beef, rat, wild boar, and their mixtures. Heliyon 2022; 8:e10882. [PMID: 36247117 PMCID: PMC9558031 DOI: 10.1016/j.heliyon.2022.e10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/07/2022] [Accepted: 09/28/2022] [Indexed: 10/26/2022] Open
Abstract
The purpose of this research was to characterize the volatile compounds, texture, and color profile of meatballs made from beef, rat, wild boar, and their combinations. Volatile compounds were analyzed using SPME/GC-MS and multivariate data analysis (PCA, PLS-DA). Additionally, several textural features such as hardness, gumminess, chewiness, cohesiveness, and colour (L, a∗, b∗, C, and h) were also analyzed. The findings revealed that texture and color characteristics can only be used to differentiate meatballs based on their raw meat materials when meat adulterants are used in high concentrations (≥50%). PLS-DA analysis of volatile data revealed distinct groupings among various types of meatballs, including meatballs adulterated with rat or wild boar meat at the lowest percentage used in this study (20%). By using VIP and correlation coefficient, the strongest markers in beef, rat, and wild boar meatballs were identified as (Z)-2-amino-5-methyl-benzoic acid, 2-heptenal, and cyclobutanol, respectively. Nonanal was consistently found as a significant marker in the meatballs made from a mixture of beef-rat and beef-wild boar at different ratios. This study demonstrated that the volatile profile of meat is more reliable than physicochemical profiles for developing an analytical tool for quickly identifying undesired meat in meat-derived products.
Collapse
Affiliation(s)
- Lia Amalia
- Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia,Djuanda University, Faculty of Halal Food Science, Department of Food Technology and Nutrition, Bogor 16720, Indonesia,The Assessment Institute for Foods, Drugs and Cosmetics. Indonesian Council of Ulama, Bogor 16161, Indonesia
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia,Halal Science Center, IPB University, Bogor 16129, Indonesia,Corresponding author.
| | - Purwantiningsih Sugita
- Department of Chemistry, IPB University, Bogor 16680, Indonesia,Halal Science Center, IPB University, Bogor 16129, Indonesia,The Assessment Institute for Foods, Drugs and Cosmetics. Indonesian Council of Ulama, Bogor 16161, Indonesia
| | - Desi Arofah
- Indonesian Center for Rice Research, Sukamandi, Subang 41256, Indonesia
| | | | - Anjar Windarsih
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia,Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Abdul Rohman
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dachriyanus
- Faculty of Pharmacy, Andalas University, Padang 25175, Indonesia
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Feri Kusnandar
- Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia,Halal Science Center, IPB University, Bogor 16129, Indonesia
| |
Collapse
|
27
|
Lu Z, Handy SM, Zhang N, Quan Z, Xu Q, Ambrose M, Giancaspro G, Sarma ND. Development and Validation of a Species-specific PCR Method for the Identification of Ginseng Species Using Orthogonal Approaches. PLANTA MEDICA 2022; 88:1004-1019. [PMID: 34388833 DOI: 10.1055/a-1478-9143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When testing botanical ingredients of herbal medicines and dietary supplements, the complexity of botanical matrixes often requires the use of orthogonal methods to establish identification procedures suitable for quality control purposes. Genomic-based botanical identification methods are evolving and emerging as useful quality control tools to complement traditional morphological and chemical identification methods. Species-specific polymerase chain reaction methods are being evaluated for botanical quality control and as a cost-effective approach to identify and discriminate between closely related botanical species. This paper describes orthogonal identification of Panax ginseng, P. quinquefolius, and P. notoginseng materials in commerce as an example of the development and validation of a set of species-specific polymerase chain reaction methods to establish botanical identity in ginseng roots. This work also explored the possibility of extending the application of species-specific polymerase chain reaction methods to provide species identity information for processed materials, such as steamed roots and hydroalcoholic extracts, and showed success with this approach. Finally, the paper provides recommendations for an out-of-specification investigation of samples that may pass some of the orthogonal tests and fail others.
Collapse
Affiliation(s)
- Zhengfei Lu
- United States Pharmacopeia (USP) Project Team on Botanical Library for Identification using DNA-based Methods, Rockville, MD, USA
- Herbalife International of America, Inc., Corporate Center of Excellence Quality Laboratory, Torrance, CA, USA
| | - Sara M Handy
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U. S. Food and Drug Administration, College Park, MD, USA
| | - Ning Zhang
- United States Pharmacopeia (USP), Rockville, MD, USA
- Currently at TopEdit Author Services, Gaithersburg, MD, USA
| | - Zheng Quan
- United States Pharmacopeia (USP) Project Team on Botanical Library for Identification using DNA-based Methods, Rockville, MD, USA
- Herbalife International of America, Inc., Corporate Center of Excellence Quality Laboratory, Torrance, CA, USA
| | - Qun Xu
- United States Pharmacopeia (USP), Rockville, MD, USA
| | | | | | | |
Collapse
|
28
|
Yan S, Lan H, Wu Z, Sun Y, Tu M, Pan D. Cleavable molecular beacon-based loop-mediated isothermal amplification assay for the detection of adulterated chicken in meat. Anal Bioanal Chem 2022; 414:8081-8091. [PMID: 36152037 DOI: 10.1007/s00216-022-04342-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
A simple, sensitive, specific and fast method based on the loop-mediated isothermal amplification (LAMP) technique and cleavable molecular beacon (CMB) was developed for chicken authentication detection. LAMP and CMB were used for DNA amplification and amplicon analysis, respectively. Targeting the mitochondrial cytochrome b gene of chickens, five primers and one CMB probe were designed, and their specificity was validated against nine other animal species. The structure of CMB and concentrations of dNTPs, MgSO4, betaine, RNase H2, primers and CMB were optimized. The CMB-LAMP assay was completed within 17 min, and its limit of detection for chicken DNA was 1.5 pg μL-1. Chicken adulteration as low as 0.5% was detected in beef, and no cross-reactivity was observed. Finally, this assay was successfully applied to 20 commercial meat products. When combined with our developed DNA extraction method (the extraction time was 1 min: lysis for 10 s, washing for 20 s and elution for 30 s), the entire process (from DNA extraction to results analysis) was able to be completed within 20 min, which is at least 10 min shorter than other LAMP-based methods. Our method showed great potential for the on-site detection of chicken adulteration in meat.
Collapse
Affiliation(s)
- Song Yan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Hangzhen Lan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China.
| | - Zhen Wu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Yangying Sun
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Maolin Tu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China. .,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China.
| |
Collapse
|
29
|
The suitability of using spectrophotometry to determine the concentration and purity of DNA extracted from processed food matrices. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Hua Z, Jiang C, Song S, Tian D, Chen Z, Jin Y, Zhao Y, Zhou J, Zhang Z, Huang L, Yuan Y. Accurate identification of taxon-specific molecular markers in plants based on DNA signature sequence. Mol Ecol Resour 2022; 23:106-117. [PMID: 35951477 DOI: 10.1111/1755-0998.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
Accurate identification of plants remains a significant challenge for taxonomists and is the basis for plant diversity conservation. Although DNA barcoding methods are commonly used for plant identification, these are limited by the low amplification success and low discriminative power of selected genomic regions. In this study, we developed a k-mer-based approach, the DNA signature sequence (DSS), to accurately identify plant taxon-specific markers, especially at the species level. DSS is a constant-length nucleotide sequence capable of identifying a taxon and distinguishing it from other taxa. In this study, we performed the first large-scale study of DSS markers in plants. DSS candidates of 3,899 angiosperm plant species were calculated based on a chloroplast dataset with 4,356 assemblies. Using Sanger sequencing of PCR amplicons and high-throughput sequencing, DSSs were validated in four and 165 species, respectively. Based on this, the universality of the DSSs was over 79.38%. Several indicators influencing DSS marker identification and detection have also been evaluated, and common criteria for DSS application in plant identification have been proposed.
Collapse
Affiliation(s)
- Zhongyi Hua
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Chao Jiang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Shuhui Song
- China National Center for Bioinformation, 100101, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Dongmei Tian
- China National Center for Bioinformation, 100101, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ziyuan Chen
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Yan Jin
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Yuyang Zhao
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Junhui Zhou
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Zhang Zhang
- China National Center for Bioinformation, 100101, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| |
Collapse
|
31
|
Zhu L, Ma Q, Chen J, Zhao G. Current progress on innovative pest detection techniques for stored cereal grains and thereof powders. Food Chem 2022; 396:133706. [PMID: 35868281 DOI: 10.1016/j.foodchem.2022.133706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
Abstract
For stored grains and their powders, pest infestation has always been a knotty problem and thus comprises a serious threat to global food security. Obviously, timely, rapid and accurate pest detection methods are of extreme importance to protect grains from pest mouth. In facing the defects of traditional methods, such as visual inspection, grain flotation and pest trap, diverse innovative approaches progressed fast alternatively, either targeting pest itself or diagnosing pest-induced changes. The former includes machine vision, metabolite analysis, pest-specific protein techniques, molecular techniques, bioacoustics analysis, conductive roller mill, low-field nuclear magnetic resonance spectroscopy and imaging, while the latter consists of thermal imaging, near-infrared spectroscopy and hyperspectral imaging, impact acoustics analysis, soft X-ray imaging and tomography. The principle, operation procedure, pros and cons and application scenarios were discussed for each method. The results herein hope to promote the technical revolution of pest inspection in stored cereal grains and their powders.
Collapse
Affiliation(s)
- Lijun Zhu
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Qian Ma
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
32
|
Tortajada-Genaro LA, Lucío MI, Maquieira Á. Fast DNA biosensing based on isothermal amplification, unmodified gold nanoparticles, and smartphone detection. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Strategic Priorities of the Scientific Plan of the European Research Infrastructure METROFOOD-RI for Promoting Metrology in Food and Nutrition. Foods 2022; 11:foods11040599. [PMID: 35206075 PMCID: PMC8871520 DOI: 10.3390/foods11040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 01/05/2023] Open
Abstract
The pan-European distributed Research Infrastructure for Promoting Metrology in Food and Nutrition (METROFOOD-RI) has evolved in the frame of the European Strategy Forum on Research Infrastructures (ESFRI) to promote high-quality metrology services across the food chain. The METROFOOD-RI comprises physical facilities and electronic facilities. The former includes Reference Material plants and analytical laboratories (the ‘Metro’ side) and also experimental fields/farms, processing/storage plants and kitchen-labs (the ‘Food’ side). The RI is currently prepared to apply for receiving the European Research Infrastructure Consortium (ERIC) legal status and is organised to fulfil the requirements for operation at the national, European Union (EU) and international level. In this view, the METROFOOD-RI partners have recently reviewed the scientific plan and elaborated strategic priorities on key thematic areas of research in the food and nutrition domain to which they have expertise to contribute to meet global societal challenges and face unexpected emergencies. The present review summarises the methodology and main outcomes of the research study that helped to identify the key thematic areas from a metrological standpoint, to articulate critical and emerging issues and demands and to structure how the integrated facilities of the RI can operate in the first five years of operation as ERIC.
Collapse
|
34
|
Food forensics: techniques for authenticity determination of food products. Forensic Sci Int 2022; 333:111243. [DOI: 10.1016/j.forsciint.2022.111243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
|
35
|
Yu N, Xing R, Wang P, Deng T, Zhang J, Zhao G, Chen Y. A novel duplex droplet digital PCR assay for simultaneous authentication and quantification of Panax notoginseng and its adulterants. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Development of real-time PCR methods for cocoa authentication in processed cocoa-derived products. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Varunjikar MS, Moreno-Ibarguen C, Andrade-Martinez JS, Tung HS, Belghit I, Palmblad M, Olsvik PA, Reyes A, Rasinger JD, Lie KK. Comparing novel shotgun DNA sequencing and state-of-the-art proteomics approaches for authentication of fish species in mixed samples. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Negi A, Lakshmi P, Praba K, Meenatchi R, Pare A. Detection of Food Adulterants in Different Foodstuff. Food Chem 2021. [DOI: 10.1002/9781119792130.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Wu H, Qian S, Peng C, Wang X, Wang T, Zhong X, Chen Y, Yang Q, Xu J, Wu J. Rotary Valve-Assisted Fluidic System Coupling with CRISPR/Cas12a for Fully Integrated Nucleic Acid Detection. ACS Sens 2021; 6:4048-4056. [PMID: 34665590 DOI: 10.1021/acssensors.1c01468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Of late, many nucleic acid analysis platforms have been established, but there is still room for constructing integrated nucleic acid detection systems with high nucleic acid extraction efficiency, low detection cost, and convenient operation. In this work, a simple rotary valve-assisted fluidic chip coupling with CRISPR/Cas12a was established to achieve fully integrated nucleic acid detection. All of the detection reagents were prestored on the fluidic chip. With the aid of the rotary valve and syringe, the liquid flow and stirring can be precisely controlled. The nucleic acid extraction, loop-mediated isothermal amplification (LAMP) reaction, and CRISPR detection could be completed in 80 min. A clean reservoir and an air reservoir on the fluidic chip were designed to effectively remove the remaining ethanol. With Vibrio parahaemolyticus as the targets, the detection sensitivity of the fluidic chip could reach 3.1 × 101 copies of target DNA per reaction. A positive sample could be sensitively detected by CRISPR/Cas12a to produce a green fluorescent signal, while a negative sample generated no fluorescent signal. Further, the fluidic chip was successfully applied for detection of spiked shrimp samples, which showed the same detection sensitivity. A great feasibility for real-sample detection was showed by the fluidic chip. The proposed detection platform did not need expensive centrifugal instruments or pumps, which displayed its potential to become a powerful tool for food safety analysis and clinical diagnostics, especially in the resource-limited areas.
Collapse
Affiliation(s)
- Hui Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Siwenjie Qian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tingzhang Wang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Xiaoping Zhong
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Yanju Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qunqing Yang
- Department of Security and Precaution, Zhejiang Police Vocational Academy, High-Education Park of Xiasha, Hangzhou 310018, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of On Site Processing Equipment for Agricultural Products, Ministry of Agricultural and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
40
|
Oh SH, Kim YD, Jang CS. Development and application of DNA markers to detect adulteration with Scopolia japonica in the medicinal herb Atractylodes lancea. Food Sci Biotechnol 2021; 31:89-100. [DOI: 10.1007/s10068-021-01008-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
|
41
|
Identification of Mammalian and Poultry Species in Food and Pet Food Samples Using 16S rDNA Metabarcoding. Foods 2021; 10:foods10112875. [PMID: 34829156 PMCID: PMC8620145 DOI: 10.3390/foods10112875] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
The substitution of more appreciated animal species by animal species of lower commercial value is a common type of meat product adulteration. DNA metabarcoding, the combination of DNA barcoding with next-generation sequencing (NGS), plays an increasing role in food authentication. In the present study, we investigated the applicability of a DNA metabarcoding method for routine analysis of mammalian and poultry species in food and pet food products. We analyzed a total of 104 samples (25 reference samples, 56 food products and 23 pet food products) by DNA metabarcoding and by using a commercial DNA array and/or by real-time PCR. The qualitative and quantitative results obtained by the DNA metabarcoding method were in line with those obtained by PCR. Results from the independent analysis of a subset of seven reference samples in two laboratories demonstrate the robustness and reproducibility of the DNA metabarcoding method. DNA metabarcoding is particularly suitable for detecting unexpected species ignored by targeted methods such as real-time PCR and can also be an attractive alternative with respect to the expenses as indicated by current data from the cost accounting of the AGES laboratory. Our results for the commercial samples show that in addition to food products, DNA metabarcoding is particularly applicable to pet food products, which frequently contain multiple animal species and are also highly prone to adulteration as indicated by the high portion of analyzed pet food products containing undeclared species.
Collapse
|
42
|
Vafin RR, Galstyan AG, Tyulkin SV, Gilmanov KK, Yurova EA, Semipyatniy VK, Bigaeva AV. Species identification of ruminant milk by genotyping of the κ-casein gene. J Dairy Sci 2021; 105:1004-1013. [PMID: 34802731 DOI: 10.3168/jds.2020-19931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/29/2021] [Indexed: 12/18/2022]
Abstract
The development of molecular genetic and bioinformatic systems for identifying the species of milk and the raw material composition of dairy products is of great scientific and practical importance with the purpose of introducing developments in the system for controlling the turnover of falsified products. The aim of the research is to develop a method of PCR-RFLP analysis for species identification of milk and dairy products from agricultural ruminant animals by the κ-casein gene (CSN3) with the possibility of qualitative and relative quantitative assessment of species-specific DNA of the tested biomaterial. The objects of research were samples of raw milk and milk powder, pasteurized cream, and hard and semi-hard cheeses. The developed method of species identification of milk and dairy products includes sample preparation of the studied samples, nucleic acid extraction, combined PCR-RFLP technique, detection of obtained results by the method of horizontal electrophoresis in agarose gel and their analysis, including using the developed mathematical algorithms and software. The synergistic effect established in combined operation of 2 restriction enzymes ensured their application in a mix with increased performance in an ergonomic way in the context of DNA authentication of cow, goat, and sheep milk and dairy products based on them. The specificity and sensitivity of the proposed method is potentially suitable for implementing the development of a system to control the turnover of falsified and counterfeit goods.
Collapse
Affiliation(s)
- R R Vafin
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316, Moscow, Russia
| | - A G Galstyan
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia
| | - S V Tyulkin
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316, Moscow, Russia
| | - Kh Kh Gilmanov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316, Moscow, Russia
| | - E A Yurova
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia
| | - V K Semipyatniy
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia.
| | - A V Bigaeva
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia
| |
Collapse
|
43
|
Lievens A, Paracchini V, Pietretti D, Garlant L, Maquet A, Ulberth F. DNA Accounting: Tallying Genomes to Detect Adulterated Saffron. Foods 2021; 10:2670. [PMID: 34828951 PMCID: PMC8624925 DOI: 10.3390/foods10112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
The EU General Food Law not only aims at ensuring food safety but also to 'prevent fraudulent or deceptive practices; the adulteration of food; and any other practices which may mislead the consumer'. Especially the partial or complete, deliberate, and intentional substitution of valuable ingredients (e.g., Saffron) for less valuable ones is of concern. Due to the variety of products on the market an approach to detect food adulteration that works well for one species may not be easily applicable to another. Here we present a broadly applicable approach for the detection of substitution of biological materials based on digital PCR. By simultaneously measuring and forecasting the number of genome copies in a sample, fraud is detectable as a discrepancy between these two values. Apart from the choice of target gene, the procedure is identical across all species. It is scalable, rapid, and has a high dynamic range. We provide proof of concept by presenting the analysis of 141 samples of Saffron (Crocus sativus) from across the European market by DNA accounting and the verification of these results by NGS analysis.
Collapse
Affiliation(s)
- Antoon Lievens
- European Commission, Joint Research Centre, B-2440 Geel, Belgium; (D.P.); (L.G.); (A.M.); (F.U.)
| | | | - Danilo Pietretti
- European Commission, Joint Research Centre, B-2440 Geel, Belgium; (D.P.); (L.G.); (A.M.); (F.U.)
| | - Linda Garlant
- European Commission, Joint Research Centre, B-2440 Geel, Belgium; (D.P.); (L.G.); (A.M.); (F.U.)
| | - Alain Maquet
- European Commission, Joint Research Centre, B-2440 Geel, Belgium; (D.P.); (L.G.); (A.M.); (F.U.)
| | - Franz Ulberth
- European Commission, Joint Research Centre, B-2440 Geel, Belgium; (D.P.); (L.G.); (A.M.); (F.U.)
| |
Collapse
|
44
|
DNA-Based Herbal Teas' Authentication: An ITS2 and psbA-trnH Multi-Marker DNA Metabarcoding Approach. PLANTS 2021; 10:plants10102120. [PMID: 34685929 PMCID: PMC8539046 DOI: 10.3390/plants10102120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
Medicinal plants have been widely used in traditional medicine due to their therapeutic properties. Although they are mostly used as herbal infusion and tincture, employment as ingredients of food supplements is increasing. However, fraud and adulteration are widespread issues. In our study, we aimed at evaluating DNA metabarcoding as a tool to identify product composition. In order to accomplish this, we analyzed fifteen commercial products with DNA metabarcoding, using two barcode regions: psbA-trnH and ITS2. Results showed that on average, 70% (44-100) of the declared ingredients have been identified. The ITS2 marker appears to identify more species (n = 60) than psbA-trnH (n = 35), with an ingredients' identification rate of 52% versus 45%, respectively. Some species are identified only by one marker rather than the other. Additionally, in order to evaluate the quantitative ability of high-throughput sequencing (HTS) to compare the plant component to the corresponding assigned sequences, in the laboratory, we created six mock mixtures of plants starting both from biomass and gDNA. Our analysis also supports the application of DNA metabarcoding for a relative quantitative analysis. These results move towards the application of HTS analysis for studying the composition of herbal teas for medicinal plants' traceability and quality control.
Collapse
|
45
|
Villanueva‐Zayas JD, Rodríguez‐Ramírez R, Ávila‐Villa LA, González‐Córdova AF, Reyes‐López MÁ, Hernández‐Sierra D, los Santos‐Villalobos S. Using a COI mini‐barcode and real‐time PCR (qPCR) for sea turtle identification in processed food. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jesús Daniel Villanueva‐Zayas
- Laboratorio de Biotecnología y Trazabilidad Molecular de los Alimentos Instituto Tecnológico de Sonora 5 de Febrero 818 Sur. colonia centro Ciudad Obregon Sonora85000Mexico
| | - Roberto Rodríguez‐Ramírez
- Laboratorio de Biotecnología y Trazabilidad Molecular de los Alimentos Instituto Tecnológico de Sonora 5 de Febrero 818 Sur. colonia centro Ciudad Obregon Sonora85000Mexico
| | - Luz Angélica Ávila‐Villa
- Departamento de Ciencias de la Salud Universidad de Sonora Blvd. Bordo Nuevo s/n Ciudad Obregon Sonora85040Mexico
| | - Aarón F. González‐Córdova
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD) Carrtera Gustavo Enrique Astiazarán Rosas No. 46. Colonia La Victoria Hermosillo Sonora83304Mexico
| | - Miguel Ángel Reyes‐López
- Centro de Biotecnología Genómica Instituto Politécnico Nacional Blvrd del Maestro SN, Narciso Mendoza Reynosa Tamaulipas88710Mexico
| | - Daniel Hernández‐Sierra
- Laboratorio de Biotecnología y Trazabilidad Molecular de los Alimentos Instituto Tecnológico de Sonora 5 de Febrero 818 Sur. colonia centro Ciudad Obregon Sonora85000Mexico
| | - Sergio los Santos‐Villalobos
- Laboratorio de Biotecnología y Trazabilidad Molecular de los Alimentos Instituto Tecnológico de Sonora 5 de Febrero 818 Sur. colonia centro Ciudad Obregon Sonora85000Mexico
| |
Collapse
|
46
|
Development of loop-mediated isothermal amplification (LAMP) assay for rapid screening of skipjack tuna (Katsuwonus pelamis) in processed fish products. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
|
48
|
Mokhtar OM, Attia YA, Wassel AR, Khattab TA. Production of photochromic nanocomposite film via spray-coating of rare-earth strontium aluminate for anti-counterfeit applications. LUMINESCENCE 2021; 36:1933-1944. [PMID: 34323370 DOI: 10.1002/bio.4127] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
New photochromic film was developed toward the preparation of anti-counterfeiting documents utilizing inorganic/organic nanocomposite enclosing a photoluminescent inorganic pigment and a polyacrylic binder polymer. To generate a translucent film from pigment/polyacrylic nanocomposite, the phosphorescent strontium aluminum oxide pigment should be well-dispersed in the solution of the polyacrylic-based binder without agglomeration. The photochromic nanocomposite was applied efficiently onto commercial cellulose paper documents utilizing the effective and economical spray-coating technology followed with thermofixation. A homogeneous photochromic film was immobilized onto cellulose paper surface to introduce a transparent film changing to greenish-yellow upon exposure to ultraviolet light as depicted by CIE coloration measurements. The photochromic effect was monitored at lowest pigment concentration (0.25 wt%). The spray-coated paper documents exhibit two absorbance bands at 256 and 358 nm, and two fluorescence peaks at 433 and 511 nm. The morphologies of the spray-coated documents were explored. The spray-coated paper sheets showed a reversible photochromic effect without fatigue under ultraviolet irradiation. The rheology of the produced photochromic composites as well as the mechanical properties and photostability of the spray-coated documents were studied.
Collapse
Affiliation(s)
- Omnia M Mokhtar
- Department of Laser in Meteorology, Photochemistry and Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Yasser A Attia
- Department of Laser in Meteorology, Photochemistry and Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Ahmed R Wassel
- Electron Microscope and Thin Film Department, Physics Research Division National Research Centre, Giza, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
49
|
Development and Validation of a Multi-Locus PCR-HRM Method for Species Identification in Mytilus Genus with Food Authenticity Purposes. Foods 2021; 10:foods10081684. [PMID: 34441462 PMCID: PMC8391999 DOI: 10.3390/foods10081684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
DNA-based methods using informative markers such as single nucleotide polymorphism (SNPs) are suitable for reliable species identification (SI) needed to enforce compliance with seafood labelling regulations (EU No.1379/2013). We developed a panel of 10 highly informative SNPs to be genotyped by PCR-High resolution melting (HRM) for SI in the Mytilus genus through in silico and in vitro stages. Its fitness for purpose and concordance were assessed by an internal validation process and by the transference to a second laboratory. The method was applicable to identify M. chilensis, M. edulis, M. galloprovincialis and M. trossulus mussels, fresh, frozen and canned with brine, oil and scallop sauce, but not in preserves containing acetic acid (wine vinegar) and tomato sauce. False-positive and negative rates were zero. Sensitivity, expressed as limit of detection (LOD), ranged between 5 and 8 ng/μL. The method was robust against small variations in DNA quality, annealing time and temperature, primer concentration, reaction volume and HRM kit. Reference materials and 220 samples were tested in an inter-laboratory assay obtaining an “almost perfect agreement” (κ = 0.925, p < 0.001). In conclusion, the method was suitable for the intended use and to be applied in the seafood industry.
Collapse
|
50
|
Fanelli V, Mascio I, Miazzi MM, Savoia MA, De Giovanni C, Montemurro C. Molecular Approaches to Agri-Food Traceability and Authentication: An Updated Review. Foods 2021; 10:1644. [PMID: 34359514 PMCID: PMC8306823 DOI: 10.3390/foods10071644] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decades, the demand for molecular tools for authenticating and tracing agri-food products has significantly increased. Food safety and quality have gained an increased interest for consumers, producers, and retailers, therefore, the availability of analytical methods for the determination of food authenticity and the detection of major adulterations takes on a fundamental role. Among the different molecular approaches, some techniques such as the molecular markers-based methods are well established, while some innovative approaches such as isothermal amplification-based methods and DNA metabarcoding have only recently found application in the agri-food sector. In this review, we provide an overview of the most widely used molecular techniques for fresh and processed agri-food authentication and traceability, showing their recent advances and applications and discussing their main advantages and limitations. The application of these techniques to agri-food traceability and authentication can contribute a great deal to the reassurance of consumers in terms of transparency and food safety and may allow producers and retailers to adequately promote their products.
Collapse
Affiliation(s)
- Valentina Fanelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Michele Antonio Savoia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Claudio De Giovanni
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
- Spin off Sinagri s.r.l., University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Institute for Sustainable Plant Protection–Support Unit Bari, National Research Council of Italy (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|