1
|
Niu F, Liu Z, Liu Y, Bai J, Zhang T, Yuan S, Bai X, Zhao C, Zhang F, Sun H, Zhang L, Song X. Comparative transcriptome analysis reveals the impact of daily temperature difference on male sterility in photo-thermo-sensitive male sterile wheat. BMC Genomics 2024; 25:740. [PMID: 39080530 PMCID: PMC11290183 DOI: 10.1186/s12864-024-10627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Photo-thermo-sensitive male sterility (PTMS), which refers to the male sterility triggered by variations in photoperiod and temperature, is a crucial element in the wheat two-line hybrid system. The development of safe production and efficient propagation for male sterile lines holds utmost importance in two-line hybrid wheat. Under the stable photoperiod condition, PTMS is mainly induced by high or low temperatures in wheat, but the effect of daily temperature difference (DTD) on the fertility conversion of PTMS lines has not been reported. Here, three BS type PTMS lines including BS108, BS138, and BS366, as well as a control wheat variety J411 were used to analyze the correlation between fertility and DTD using differentially sowing tests, photo-thermo-control experiments, and transcriptome sequencing. RESULTS The differentially sowing tests suggested that the optimal sowing time for safe seed production of the three PTMS lines was from October 5th to 25th in Dengzhou, China. Under the condition of 12 h 12 °C, the PTMS lines were greatly affected by DTD and exhibited complete male sterility at a temperature difference of 15 °C. Furthermore, under different temperature difference conditions, a total of 20,677 differentially expressed genes (DEGs) were obtained using RNA sequencing. Moreover, through weighted gene co-expression network analysis (WGCNA) and KEGG enrichment analysis, the identified DEGs had a close association with "starch and sucrose metabolism", "phenylpropanoid biosynthesis", "MAPK signaling pathway-plant", "flavonoid biosynthesis", and "cutin, and suberine and wax biosynthesis". qRT-PCR analysis showed the expression levels of core genes related to KEGG pathways significantly decreased at a temperature difference of 15 ° C. Finally, we constructed a transcriptome mediated network of temperature difference affecting male sterility. CONCLUSIONS The findings provide important theoretical insights into the correlation between temperature difference and male sterility, providing guidance for the identification and selection of more secure and effective PTMS lines.
Collapse
Affiliation(s)
- Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zihan Liu
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yongjie Liu
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianfang Bai
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tianbao Zhang
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shaohua Yuan
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiucheng Bai
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Changping Zhao
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Fengting Zhang
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hui Sun
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Liping Zhang
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Engelhardt L, Pöhnl T, Alhussein M, John M, Neugart S. Changes in bioactive compounds and antioxidant activity of three Amaranthus L. genotypes from a model to household processing. Food Chem 2023; 429:136891. [PMID: 37481980 DOI: 10.1016/j.foodchem.2023.136891] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Amaranthus L. leaves are consumed as vegetables and are a rich source of secondary plant metabolites. The phenolic profiles of the three analyzed genotypes by LC-Q-TOF-MS/MS and HPLC-DAD were characterized by high amounts of hydroxycinnamic glucaric and -isocitric acids. 'Gartenfuchsschwanz' (A. hybridus L.) and 'Red Callaloo' (A. tricolor L.) had similar profiles. 'Gemüse-Amaranth' (A. tricolor L.) had a high amount of caffeoylglucaric acid 4, which was isolated, and afterward identified by NMR. Its antioxidant activity, measured by TEAC, DPPH, and TPC, was similar to 5-caffeoylquinic acid, common in many plant species. The antioxidant activity of Amaranthus L. can be explained rather by their different phenolic- and ascorbic acid concentrations than by their species. Household cooking reduces antioxidant activity due to oxidation processes while leaching into cooking water could be neglected. Amaranthus L. baked into a wheat-dough-matrix showed lower phenolic concentrations, presumably due to the formation of phenol-protein-bounds and thermal degradation.
Collapse
Affiliation(s)
- Layla Engelhardt
- Department of Crop Science, Division of Quality and Sensory of Plant Products, Georg-August-University Göttingen, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany.
| | - Tobias Pöhnl
- Department of Crop Science, Division of Quality and Sensory of Plant Products, Georg-August-University Göttingen, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany.
| | - Mohammad Alhussein
- Agricultural Entomology, Department of Crop Sciences, Georg-August-University Göttingen, Grisebachstraße 6, 37077 Göttingen, Germany.
| | - Michael John
- Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.
| | - Susanne Neugart
- Department of Crop Science, Division of Quality and Sensory of Plant Products, Georg-August-University Göttingen, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany.
| |
Collapse
|
3
|
de Araújo LCA, Leite NR, da Rocha PDS, Baldivia DDS, Agarrayua DA, Ávila DS, da Silva DB, Carollo CA, Campos JF, Souza KDP, dos Santos EL. Campomanesia adamantium O Berg. fruit, native to Brazil, can protect against oxidative stress and promote longevity. PLoS One 2023; 18:e0294316. [PMID: 37972127 PMCID: PMC10653513 DOI: 10.1371/journal.pone.0294316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Campomanesia adamantium O. Berg. is a fruit tree species native to the Brazilian Cerrado biome whose fruits are consumed raw by the population. The present study determined the chemical composition of the C. adamantium fruit pulp (FPCA) and investigated its in vitro antioxidant potential and its biological effects in a Caenorhabditis elegans model. The chemical profile obtained by LC-DAD-MS identified 27 compounds, including phenolic compounds, flavonoids, and organic carboxylic acids, in addition to antioxidant lipophilic pigments and ascorbic acid. The in vitro antioxidant activity was analysed by the radical scavenging method. In vivo, FPCA showed no acute reproductive or locomotor toxicity. It promoted protection against thermal and oxidative stress and increased the lifespan of C. elegans. It also upregulated the antioxidant enzymes superoxide dismutase and glutathione S-transferase and activated the transcription factor DAF-16. These results provide unprecedented in vitro and in vivo evidence for the potential functional use of FPCA in the prevention of oxidative stress and promotion of longevity.
Collapse
Affiliation(s)
- Laura Costa Alves de Araújo
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Natasha Rios Leite
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Paola dos Santos da Rocha
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Debora da Silva Baldivia
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Danielle Araujo Agarrayua
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Daiana Silva Ávila
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Denise Brentan da Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
4
|
Domínguez-Hernández E, Gutiérrez-Uribe JA, Domínguez-Hernández ME, Loarca-Piña GF, Gaytán-Martínez M. In search of better snacks: ohmic-heating nixtamalized flour and amaranth addition increase the nutraceutical and nutritional potential of vegetable-enriched tortilla chips. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2773-2785. [PMID: 36598243 DOI: 10.1002/jsfa.12424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nixtamalized flour snacks such as tortilla chips are widely consumed across the world, but they are nutritionally poor and contribute to obesity and other non-communicable diseases. The production of healthy versions of such snacks, by incorporating vegetables and improving the quality of the flours used in their formulation, could help address these nutritional challenges. This study compared the fortification of baked tortilla chips with vegetable leaf powders (kale and wild amaranth at 0%, 4%, 8%, and 16% w/w) and using two types of nixtamalized flour: traditional (TNF) and with ohmic heating (OHF). RESULTS Overall, the use of OHF increased 1.88 times the fibre in enriched and non-enriched snacks with respect to TNF, but the latter had 1.85 times more protein. Addition of 16% of vegetable powders increased protein (kale = 1.4-fold; amaranth = 1.3-fold) and dietary fibre (kale = 1.52-fold; amaranth = 1.7-fold). Amaranth enrichment improved total phenolic content (TPC) and total flavonoid content (TFC) of chips at least 1.2 and 1.63 times, respectively. OHF chips also had higher bound TPC than TNF ones, regardless of vegetable addition. Combinations of OHF with 16% amaranth produced chips 1.74-fold higher in antioxidant capacity than non-enriched ones, due to increased content of phenolics such as ferulic acid. CONCLUSION This work showed that tortilla chips made using nixtamalized flour produced with assisted ohmic heating, alone or in combination with wild amaranth leaf powder, could be used in the production of healthy maize snacks to enhance their prospective antioxidant activity and nutritional value. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elisa Domínguez-Hernández
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Universidad Autónoma de Querétaro, Querétaro, Mexico
- Department of Agricultural Science, Faculty of Higher Studies Cuautitlan, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Martha E Domínguez-Hernández
- Department of Agricultural Science, Faculty of Higher Studies Cuautitlan, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe F Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
5
|
Sun W, Shahrajabian MH. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules 2023; 28:1845. [PMID: 36838831 PMCID: PMC9960276 DOI: 10.3390/molecules28041845] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Phenolic compounds and flavonoids are potential substitutes for bioactive agents in pharmaceutical and medicinal sections to promote human health and prevent and cure different diseases. The most common flavonoids found in nature are anthocyanins, flavones, flavanones, flavonols, flavanonols, isoflavones, and other sub-classes. The impacts of plant flavonoids and other phenolics on human health promoting and diseases curing and preventing are antioxidant effects, antibacterial impacts, cardioprotective effects, anticancer impacts, immune system promoting, anti-inflammatory effects, and skin protective effects from UV radiation. This work aims to provide an overview of phenolic compounds and flavonoids as potential and important sources of pharmaceutical and medical application according to recently published studies, as well as some interesting directions for future research. The keyword searches for flavonoids, phenolics, isoflavones, tannins, coumarins, lignans, quinones, xanthones, curcuminoids, stilbenes, cucurmin, phenylethanoids, and secoiridoids medicinal plant were performed by using Web of Science, Scopus, Google scholar, and PubMed. Phenolic acids contain a carboxylic acid group in addition to the basic phenolic structure and are mainly divided into hydroxybenzoic and hydroxycinnamic acids. Hydroxybenzoic acids are based on a C6-C1 skeleton and are often found bound to small organic acids, glycosyl moieties, or cell structural components. Common hydroxybenzoic acids include gallic, syringic, protocatechuic, p-hydroxybenzoic, vanillic, gentistic, and salicylic acids. Hydroxycinnamic acids are based on a C6-C3 skeleton and are also often bound to other molecules such as quinic acid and glucose. The main hydroxycinnamic acids are caffeic, p-coumaric, ferulic, and sinapic acids.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
6
|
Osei-Kwarteng M, Ayipio E, Moualeu-Ngangue D, Buck-Sorlin G, Stützel H. Interspecific variation in leaf traits, photosynthetic light response, and whole-plant productivity in amaranths (Amaranthus spp. L.). PLoS One 2022; 17:e0270674. [PMID: 35771745 PMCID: PMC9246199 DOI: 10.1371/journal.pone.0270674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic light response curve parameters help us understand the interspecific variation in photosynthetic traits, leaf acclimation status, carbon uptake, and plant productivity in specific environments. These parameters are also influenced by leaf traits which rely on species and growth environment. In accessions of four amaranth species (Amaranthus. hybridus, A. dubius, A. hypochondriacus, and A. cruentus), we determined variations in the net photosynthetic light response curves and leaf traits, and analysed the relationships between maximum gross photosynthetic rate, leaf traits, and whole-plant productivity. Non-rectangular hyperbolae were used for the net photosynthesis light response curves. Maximum gross photosynthetic rate (Pgmax) was the only variant parameter among the species, ranging from 22.29 to 34.21 μmol m–2 s–1. Interspecific variation existed for all the leaf traits except leaf mass per area and leaf inclination angle. Stomatal conductance, nitrogen, chlorophyll, and carotenoid contents, as well as leaf area correlated with Pgmax. Stomatal conductance and leaf nitrogen explained much of the variation in Pgmax at the leaf level. At the plant level, the slope between absolute growth rate and leaf area showed a strong linear relationship with Pgmax. Overall, A. hybridus and A. cruentus exhibited higher Pgmax at the leaf level and light use efficiency at the whole-plant level than A. dubius, and A. hypochondriacus. Thus, A. hybridus and A. cruentus tended to be more efficient with respect to carbon assimilation. These findings highlight the correlation between leaf photosynthetic characteristics, other leaf traits, and whole plant productivity in amaranths. Future studies may explore more species and accessions of Amaranthus at different locations or light environments.
Collapse
Affiliation(s)
- Mildred Osei-Kwarteng
- Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
- Department of Horticulture, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Nyankpala, Tamale, Ghana
- * E-mail: ,
| | - Emmanuel Ayipio
- CSIR-Savannah Agricultural Research Institute, Nyankpala, Ghana
- Auburn University, Department of Horticulture, Auburn, Alabama, United States of America
| | - Dany Moualeu-Ngangue
- Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| | | | - Hartmut Stützel
- Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
7
|
|
8
|
Assumpção CF, Assis RQ, Hermes Poletto VS, Castagna A, Ranieri A, Neugart S, Flôres SH, Oliveira Rios A. Application of supplemental UV‐B radiation in pre‐harvest to enhance health‐promoting compounds accumulation in green and red lettuce. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Renato Queiroz Assis
- Institute of Food Science and Technology Federal University of Rio Grande do Sul Porto Alegre Brazil
| | | | - Antonella Castagna
- Department of Agriculture, Food and Environment University of Pisa Pisa Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment University of Pisa Pisa Italy
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) Großbeeren Germany
| | - Simone Hickmann Flôres
- Institute of Food Science and Technology Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Alessandro Oliveira Rios
- Institute of Food Science and Technology Federal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
9
|
Chen X, Hanschen FS, Neugart S, Schreiner M, Vargas SA, Gutschmann B, Baldermann S. Boiling and steaming induced changes in secondary metabolites in three different cultivars of pak choi (Brassica rapa subsp. chinensis). J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Zhou T, Ringbeck B, Schebb NH, Scherkenbeck J. Isolation, total synthesis and quantification of caffeoylisocitric acid, a characteristic ingredient of the superfood amaranth. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Rajan M, Ferreira Barbosa P, Carvalho Gualberto N, de Oliveira CS, Santos Leite Neta MT, Narain N. Optimization and method validation of determining polyphenolic compounds by UFLC-DAD system using two biphenyl and pentafluorophenylpropyl columns. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1598429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Murugan Rajan
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão Sergipe, Brazil
| | - Paula Ferreira Barbosa
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão Sergipe, Brazil
| | - Nayjara Carvalho Gualberto
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão Sergipe, Brazil
| | | | | | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão Sergipe, Brazil
| |
Collapse
|
12
|
Schröter D, Neugart S, Schreiner M, Grune T, Rohn S, Ott C. Amaranth's 2-Caffeoylisocitric Acid-An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages. Nutrients 2019; 11:E571. [PMID: 30866427 PMCID: PMC6471825 DOI: 10.3390/nu11030571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023] Open
Abstract
For centuries, Amaranthus sp. were used as food, ornamentals, and medication. Molecular mechanisms, explaining the health beneficial properties of amaranth, are not yet understood, but have been attributed to secondary metabolites, such as phenolic compounds. One of the most abundant phenolic compounds in amaranth leaves is 2-caffeoylisocitric acid (C-IA) and regarding food occurrence, C-IA is exclusively found in various amaranth species. In the present study, the anti-inflammatory activity of C-IA, chlorogenic acid, and caffeic acid in LPS-challenged macrophages (RAW 264.7) has been investigated and cellular contents of the caffeic acid derivatives (CADs) were quantified in the cells and media. The CADs were quantified in the cell lysates in nanomolar concentrations, indicating a cellular uptake. Treatment of LPS-challenged RAW 264.7 cells with 10 µM of CADs counteracted the LPS effects and led to significantly lower mRNA and protein levels of inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin 6, by directly decreasing the translocation of the nuclear factor κB/Rel-like containing protein 65 into the nucleus. This work provides new insights into the molecular mechanisms that attribute to amaranth's anti-inflammatory properties and highlights C-IA's potential as a health-beneficial compound for future research.
Collapse
Affiliation(s)
- David Schröter
- Leibniz Institute of Vegetable and Ornamental Crops e.V. (IGZ), 14979 Grossbeeren, Germany.
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany.
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, 20146 Hamburg, Germany.
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops e.V. (IGZ), 14979 Grossbeeren, Germany.
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops e.V. (IGZ), 14979 Grossbeeren, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany.
- Institute of Nutrition, University of Potsdam, 14558 Nuthetal, Germany.
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, 20146 Hamburg, Germany.
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany.
| |
Collapse
|
13
|
Effects of Amaranthus cruentus L. on aflatoxin B1- and oxidative stress-induced DNA damage in human liver (HepG2) cells. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Odongo GA, Schlotz N, Baldermann S, Neugart S, Huyskens-Keil S, Ngwene B, Trierweiler B, Schreiner M, Lamy E. African Nightshade ( Solanum scabrum Mill.): Impact of Cultivation and Plant Processing on Its Health Promoting Potential as Determined in a Human Liver Cell Model. Nutrients 2018; 10:nu10101532. [PMID: 30336641 PMCID: PMC6213403 DOI: 10.3390/nu10101532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022] Open
Abstract
Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB1) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60% reduction of AFB1 induced DNA damage and a 38% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant.
Collapse
Affiliation(s)
- Grace Akinyi Odongo
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Epidemiology, University Medical Center and Faculty of Medicine, University of Freiburg, Breisacher Strasse 115b, 79106 Freiburg, Germany.
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, 20146 Hamburg, Germany.
| | - Nina Schlotz
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Epidemiology, University Medical Center and Faculty of Medicine, University of Freiburg, Breisacher Strasse 115b, 79106 Freiburg, Germany.
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Susanne Huyskens-Keil
- Division Urban Plant Ecophysiology, Faculty of Life Science, Humboldt University Berlin, Lentzeallee 55/57, 14195 Berlin, Germany.
| | - Benard Ngwene
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Bernhard Trierweiler
- Max Rubner-Institut, Federal Research Centre for Nutrition and Food, Institute of Safety and Quality of Fruits and Vegetables, Haid-und-Neu Strasse 9, D-76131 Karlsruhe, Germany.
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Evelyn Lamy
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Epidemiology, University Medical Center and Faculty of Medicine, University of Freiburg, Breisacher Strasse 115b, 79106 Freiburg, Germany.
| |
Collapse
|
15
|
Klopsch R, Baldermann S, Voss A, Rohn S, Schreiner M, Neugart S. Bread Enriched With Legume Microgreens and Leaves-Ontogenetic and Baking-Driven Changes in the Profile of Secondary Plant Metabolites. Front Chem 2018; 6:322. [PMID: 30167432 PMCID: PMC6106399 DOI: 10.3389/fchem.2018.00322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/10/2018] [Indexed: 11/28/2022] Open
Abstract
Flavonoids, carotenoids, and chlorophylls were characterized in microgreens and leaves of pea (Pisum sativum) and lupin (Lupinus angustifolius) as these metabolites change during ontogeny. All metabolites were higher in the leaves for both species. Acylated quercetin and kaempferol sophorotrioses were predominant in pea. Genistein and malonylated chrysoeriol were predominant in lupin. Further, the impact of breadmaking on these metabolites using pea and lupin material of two ontogenetic stages as an added ingredient in wheat-based bread was assessed. In "pea microgreen bread" no decrease of quercetin was found with regard to the non-processed plant material. However kaempferol glycosides showed slight decreases induced by the breadmaking process in "pea microgreen bread" and "pea leaf bread." In "lupin microgreen bread" no decrease of genistein compared to the non-processed plant material was found. Chrysoeriol glycosides showed slight decreases induced by the breadmaking process in "lupin microgreen bread" and "lupin leaf bread." In all breads, carotenoids and chlorophylls were depleted however pheophytin formation was caused. Thus, pea and lupin microgreens and leaves are suitable, natural ingredients for enhancing health-promoting secondary plant metabolites in bread and may even be used to tailor bread for specific consumer health needs.
Collapse
Affiliation(s)
- Rebecca Klopsch
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- NutriAct–Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- Institute of Nutritional Science, Department of Food Chemistry, University of Potsdam, Nuthetal, Germany
| | - Alexander Voss
- NutriAct–Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
- Institute for Food and Environmental Research (ILU) e. V., Nuthetal, Germany
| | - Sascha Rohn
- NutriAct–Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
- Institute for Food and Environmental Research (ILU) e. V., Nuthetal, Germany
- Hamburg School of Food Science, Institute for Food Chemistry, Universität Hamburg, Hamburg, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- NutriAct–Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| |
Collapse
|