1
|
Maisto M, Piccolo V, Marzocchi A, Maresca DC, Romano B, Summa V, Tenore GC, Ercolano G, Ianaro A. Nutraceutical formulation based on a synergic combination of melatonin and palmitoylethanolamide for the management of allergic events. Front Nutr 2024; 11:1417747. [PMID: 39257610 PMCID: PMC11385308 DOI: 10.3389/fnut.2024.1417747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The management of allergic events is a growing global health issue, especially in industrialized countries. This disease is an immune-mediated process, regulated by the interaction of IgE with an allergen, resulting in mast cell activation, which concerns the release of several immune-inflammatory modulators, i.e., histamine, β-hexosaminidase, COX-2, IL-6, and TNF-α, responsible for the main allergic-reaction associated symptoms. The aim of the present study was the efficacy evaluation of an alternative remedy, an innovative nutraceutical formulation (NF) based on the synergic combination of melatonin (MEL) and palmitoylethanolamide (PEA) for the prevention and treatment of immune disease. At first, the intestinal bioaccessibility of PEA and MEL in NF was assessed at 1.6 and 36%, respectively. Then the MEL and PEA ability to modulate the release of immune-inflammatory modulators in the human mast cell line (HMC-1.2) at their bioaccessible concentration was investigated. Our results underline that NF treatment was able to reduce COX-2 mRNA transcription levels (-30% vs. STIM, p < 0.0001) in stimulated HMC-1.2 and to contract COX-2 enzymatic activity directly (IC50: 152 μg/mL). Additionally, NF showed valuable ability in reducing histamine and β-hexosaminidase release in stimulated HMC-1.2, as well as in decreasing TNF-α and IL-6 mRNA transcription levels and protein production.
Collapse
Affiliation(s)
- Maria Maisto
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vincenzo Piccolo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Adua Marzocchi
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Benedetta Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Shen L, Yang Y, Zhang J, Feng L, Zhou Q. Diacylated anthocyanins from purple sweet potato ( Ipomoeabatatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet. J Zhejiang Univ Sci B 2023; 24:587-601. [PMID: 37455136 PMCID: PMC10350372 DOI: 10.1631/jzus.b2200587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/06/2023] [Indexed: 04/15/2023]
Abstract
Studies have shown that targeting xanthine oxidase (XO) can be a feasible treatment for fructose-induced hyperuricemia and hyperglycemia. This study aimed to evaluate the dual regulatory effects and molecular mechanisms of diacylated anthocyanins from purple sweet potato (diacylated AF-PSPs) on hyperglycemia and hyperuricemia induced by a high-fructose/high-fat diet. The body weight, organ index, serum biochemical indexes, and liver antioxidant indexes of mice were measured, and the kidneys were observed in pathological sections. The relative expression levels of messenger RNAs (mRNAs) of fructose metabolism pathway enzymes in kidney were detected by fluorescent real-time quantitative polymerase chain (qPCR) reaction technique, and the expression of renal transporter protein and inflammatory factor pathway protein was determined by immunohistochemistry (IHC) technique. Results showed that diacylated AF-PSPs alleviated hyperuricemia in mice, and that this effect might be related to the regulation of liver XO activity, lipid accumulation, and relevant renal transporters. Diacylated AF-PSPs reduced body weight and relieved lipid metabolism disorder, liver lipid accumulation, and liver oxidative stress, thereby enhancing insulin utilization and sensitivity, lowering blood sugar, and reducing hyperglycemia in mice. Also, diacylated AF-PSPs restored mRNA levels related to renal fructose metabolism, and reduced kidney injury and inflammation. This study provided experimental evidence for the mechanisms of dual regulation of blood glucose and uric acid (UA) by diacylated AF-PSPs and their utilization as functional foods in the management of metabolic syndrome.
Collapse
Affiliation(s)
- Luhong Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiuliang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lanjie Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Zhou
- Department of Pharmacy, Wuhan City Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| |
Collapse
|
3
|
Kimble R, Jones K, Howatson G. The effect of dietary anthocyanins on biochemical, physiological, and subjective exercise recovery: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2023; 63:1262-1276. [PMID: 34402657 DOI: 10.1080/10408398.2021.1963208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anthocyanins (ACN), the sub-class of (poly)phenols responsible for the red-blue-purple pigmentation of fruit and vegetables, have gained considerable interest in sport and exercise research due to their potential to facilitate exercise recovery. A systematic literature search was performed using PubMed, The Cochrane Library, MEDLINE, SPORTDiscus and CINAHL. Thirty nine studies were included and the standardized mean difference (Hedges g) for creatine kinase (CK), anti-oxidative and inflammatory markers, strength, power and delayed onset muscle soreness (DOMS) indices were pooled in separate meta-analyses; meta-regression was also performed on reported ACN dose. Immediately post-exercise there was an increase in antioxidant capacity (g: 0.56) and reduced C reactive protein (g: -0.24) and tumor necrosis factor α (g: -40); p ≤ 0.02. Strength was improved with ACN at all time points (g: 0.45-0.67). DOMS (g: -0.23) was lower 24 hours post-exercise and power was improved 24 hours (g: 0.62) and 48 hours (g: 0.57) post exercise. The CK was lower 48 hours post-exercise (g: -0.31) and there was a trend for a positive association with ACN dose (p = 0.057). This systematic review provides new data showing ACN-rich foods promote functional and subjective recovery likely due to the antioxidant and anti-inflammatory properties of ACN.
Collapse
Affiliation(s)
- Rachel Kimble
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Moosavian SP, Maharat M, Chambari M, Moradi F, Rahimlou M. Effects of tart cherry juice consumption on cardio-metabolic risk factors: A systematic review and meta-analysis of randomized-controlled trials. Complement Ther Med 2022; 71:102883. [PMID: 36038032 DOI: 10.1016/j.ctim.2022.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tart cherries are rich in bioactive compounds, such as anthocyanins and other phytochemicals known to have antioxidant properties and exert cardiovascular protective effects. However, there is no definitive consensus on this context. The present systematic review and meta-analysis aimed to investigate the effect of tart cherry juice consumption on cardio-metabolic risk factors. METHODS A systematic search was conducted on electronic databases, including PubMed, Web of Science, Scopus, and Google Scholar from inception up to December 2021 to identify eligible RCT studies. A random-effect model was utilized to estimate the weighted mean difference (WMD) and 95% confidence (95% CI). RESULTS Ten RCTs were included in the present meta-analysis. The pooled analysis revealed that tart cherry juice consumption led to a significant reduction in the fasting blood sugar (FBS) levels (WMD = -0.51 mg/dl [95% CI: -0.98, -0.06]). This lowering effect of FBS was robust in subgroups with cross-over studies, participants with age range ≥ 40, duration of follow-up ≤ 4 weeks, and baseline BMI ≥ 30. In contrast, tart cherry juice had no effect on total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), insulin, body mass index (BMI), fat mass, systolic and diastolic blood pressure. However, in the subgroup analysis, some significant effects were observed for insulin, TG, TC, LDL-C, and HDL-C. CONCLUSION In summary, this meta-analysis showed that tart cherry juice mostly had a favorable effect on FBG levels. However, further RCTs with long-term intervention with different doses of administration are needed.
Collapse
Affiliation(s)
- Seyedeh Parisa Moosavian
- Department of Community Nutrition Improvement, Vice-Chancellery for Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Maharat
- Department of Community Nutrition Improvement, Vice-Chancellery for Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahla Chambari
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Fateme Moradi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Rahimlou
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
5
|
Zhang X, Rehman RU, Wang S, Ji Y, Li J, Liu S, Wang H. Blue honeysuckle extracts retarded starch digestion by inhibiting glycosidases and changing the starch structure. Food Funct 2022; 13:6072-6088. [PMID: 35550649 DOI: 10.1039/d2fo00459c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Blue honeysuckle rich in anthocyanins can inhibit starch-digesting enzyme activity. This study evaluated the inhibitory effect and mechanism of blue honeysuckle extract (BHE) on glycosidases (α-amylase and α-glucosidase). BHE was a mixed glycosidase inhibitor with an IC50 of 2.36 ± 0.14 and 0.06 ± 0.01 for α-amylase and α-glucosidase, respectively. Fourier transform infrared (FTIR) spectroscopy, multi-fluorescence spectroscopy, and isothermal titration calorimetry (ITC) confirmed that BHE caused the secondary structure change and static fluorescence quenching of glycosidases, and the interaction was an enthalpy-driven exothermic reaction. Molecular docking proved that the main anthocyanin monomers in BHE interacted with glycosidases through hydrogen bonds and van der Waals forces. Moreover, BHE changed the starch structure and prevented starch from being digested by glycosidases. In vivo, BHE and starch-BHE complexes effectively slowed postprandial hyperglycemia. This research provided a theoretical basis for BHE in antidiabetic healthy food research and development.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Rizwan-Ur Rehman
- Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore 546602, Pakistan
| | - Songxue Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yanglin Ji
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Suwen Liu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Germano TA, de Oliveira MFR, Aziz S, Oliveira AER, da Cruz Saraiva KD, Dos Santos CP, Moura CFH, Costa JH. Transcriptome profiling of cashew apples (Anacardium occidentale) genotypes reveals specific genes linked to firmness and color during pseudofruit development. PLANT MOLECULAR BIOLOGY 2022; 109:83-100. [PMID: 35332428 DOI: 10.1007/s11103-022-01257-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
We found 34 and 71 key genes potentially involved in flavonoid biosynthesis and cell wall disassembly, respectively, which could be associated with specific peel coloration and softening of each genotype. Cashew apple (Anacardium occidentale) has a great economic importance worldwide due to its high nutritional value, peculiar flavor and aroma. During ripening, the peduncle develops different peel color and becomes quickly fragile due to its oversoftening, impacting its consumers' acceptance. In view of this, the understanding about its transcriptional dynamics throughout ripening is imperative. In this study, we performed a transcriptome sequencing of two cashew apple genotypes (CCP 76 and BRS 265), presenting different firmness and color peel, in the immature and ripe stages. Comparative transcriptome analysis between immature and ripe cashew apple revealed 4374 and 3266 differentially expressed genes (DEGs) to CCP 76 and BRS 265 genotypes, respectively. These genes included 71 and 34 GDEs involved in the cell wall disassembly and flavonoid biosynthesis, respectively, which could be associated with firmness loss and anthocyanin accumulation during cashew apple development. Then, softer peduncle of CCP 76 could be justified by down-regulated EXP and up-regulation of genes involved in pectin degradation (PG, PL and PAE) and in cell wall biosynthesis. Moreover, genes related to flavonoid biosynthesis (PAL, C4H and CHS) could be associated with early high accumulation of anthocyanin in red-peel peduncle of BRS 265. Finally, expression patterns of the selected genes were tested by real-time quantitative PCR (qRT-PCR), and the qRT-PCR results were consistent with transcriptome data. The information generated in this work will provide insights into transcriptome responses to cashew apple ripening and hence, it will be helpful for cashew breeding programs aimed at developing genotypes with improved quality traits.
Collapse
Affiliation(s)
- Thais Andrade Germano
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, CEP 60440-554, Brazil
| | - Matheus Finger Ramos de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, CEP 60440-554, Brazil
| | - Shahid Aziz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, CEP 60440-554, Brazil
| | - Antonio Edson Rocha Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, CEP 05508-900, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Ciência e Tecnologia da Paraíba, Instituto Federal de Educação, Campus Princesa Isabel, Princesa Isabel, PB, CEP 58755-000, Brazil
| | - Clesivan Pereira Dos Santos
- Departamento de Química, Universidade Estadual de Ponta Grossa, Campus Uvaranas, Ponta Grossa, PR, CEP 84030-900, Brazil
| | | | - José Hélio Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, CEP 60440-554, Brazil.
| |
Collapse
|
7
|
Polyphenols as Antioxidants for Extending Food Shelf-Life and in the Prevention of Health Diseases: Encapsulation and Interfacial Phenomena. Biomedicines 2021; 9:biomedicines9121909. [PMID: 34944722 PMCID: PMC8698762 DOI: 10.3390/biomedicines9121909] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/23/2023] Open
Abstract
Toxicity caused by the exposure to human-made chemicals and environmental conditions has become a major health concern because they may significantly increase the formation of reactive oxygen species (ROS), negatively affecting the endogenous antioxidant defense. Living systems have evolved complex antioxidant mechanisms to protect cells from oxidative conditions. Although oxidative stress contributes to various pathologies, the intake of molecules such as polyphenols, obtained from natural sources, may limit their effects because of their antioxidant and antimicrobial properties against lipid peroxidation and against a broad range of foodborne pathogens. Ingestion of polyphenol-rich foods, such as fruits and vegetables, help to reduce the harmful effects of ROS, but the use of supramolecular and nanomaterials as delivery systems has emerged as an efficient method to improve their pharmacological and therapeutic effects. Suitable exogenous polyphenolic antioxidants should be readily absorbed and delivered to sites where pathological oxidative damage may take place, for instance, intracellular locations. Many potential antioxidants have a poor bioavailability, but they can be encapsulated to improve their ideal solubility and permeability profile. Development of effective antioxidant strategies requires the creation of new nanoscale drug delivery systems to significantly reduce oxidative stress. In this review we provide an overview of the oxidative stress process, highlight some properties of ROS, and discuss the role of natural polyphenols as bioactives in controlling the overproduction of ROS and bacterial and fungal growth, paying special attention to their encapsulation in suitable delivery systems and to their location in colloidal systems where interfaces play a crucial role.
Collapse
|
8
|
Hillman AR, Chrismas BCR. Thirty Days of Montmorency Tart Cherry Supplementation Has No Effect on Gut Microbiome Composition, Inflammation, or Glycemic Control in Healthy Adults. Front Nutr 2021; 8:733057. [PMID: 34604282 PMCID: PMC8481367 DOI: 10.3389/fnut.2021.733057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
Tart cherries possess properties that may reduce inflammation and improve glycemic control, however human data on supplementation and the gut microbiota is equivocal. Processing (i.e., juice concentrate, dried, frozen) may affect the properties of tart cherries, and therefore alter their efficacious health benefits. Therefore, the purpose of this study was to investigate the effect of 30 days of supplementation with Montmorency tart cherry (MTC) in concentrate or freeze-dried form on the gut microbiome and markers of inflammation and glycemic control. Healthy participants with no known disease (n = 58, age: 28 ± 10 y, height: 169.76 ± 8.55 cm, body mass: 72.2 ± 12.9 kg) were randomly allocated to four groups and consumed either concentrate or freeze-dried capsules or their corresponding placebos for 30 days. Venous blood samples were drawn at baseline, day 7, 14, and 30 and analyzed for inflammatory markers TNF-alpha, uric acid, C-reactive protein, and erythrocyte sedimentation rate and glycemic control markers glycated albumin, glucose and insulin. A fecal sample was provided at baseline, day 14 and 30 for microbiome analysis. TNF-alpha was significantly lower at 30 vs. 14 days (p = 0.01), however there was no other significant change in the inflammatory markers. Insulin was not changed over time (p = 0.16) or between groups (p = 0.24), nor was glycated albumin different over time (p = 0.08) or between groups (p = 0.56), however glucose levels increased (p < 0.001) from baseline (4.79 ± 1.00 mmol·L-1) to 14 days (5.21 ± 1.02 mmol·L-1) and 30 days (5.61 ± 1.22 mmol·L-1) but this was no different between groups (p = 0.33). There was no significant change in composition of bacterial phyla, families, or subfamilies for the duration of this study nor was there a change in species richness. These data suggest that 30 days of MTC supplementation does not modulate the gut microbiome, inflammation, or improve glycemic control in a healthy, diverse group of adults. Clinical Trail Registration:https://clinicaltrials.gov/ct2/show/NCT04467372, identifier: NCT04467372.
Collapse
Affiliation(s)
- Angela R Hillman
- School of Applied Health Sciences and Wellness, Division of Exercise Physiology, Ohio University, Athens, OH, United States
| | - Bryna C R Chrismas
- College of Education, Department of Physical Education, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Bonesi M, Leporini M, Tenuta MC, Tundis R. The Role of Anthocyanins in Drug Discovery: Recent Developments. Curr Drug Discov Technol 2021; 17:286-298. [PMID: 30686260 DOI: 10.2174/1570163816666190125152931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
Natural compounds have always played a key role in drug discovery. Anthocyanins are secondary metabolites belonging to the flavonoids family responsible for the purple, blue, and red colour of many vegetables and fruits. These phytochemicals have attracted the interest of researchers for their important implications in human health and for their use as natural colorants. Many in vitro and in vivo studies demonstrated the potential effects of anthocyanins and anthocyanins-rich foods in the prevention and/or treatment of diabetes, cancer, and cardiovascular and neurodegenerative diseases. This review reports the recent literature data and focuses on the potential role of anthocyanins in drug discovery. Their biological activity, analysis of structure-activity relationships, bioavailability, metabolism, and future prospects of their uses are critically described.
Collapse
Affiliation(s)
- Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Mariarosaria Leporini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Maria C Tenuta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| |
Collapse
|
10
|
Dai Y, Wu H, Liu X, Liu H, Yin L, Wang Z, Xia X, Zhou J. Antioxidant activities and inhibitory effects of blueberry pomace and wine pomace crude extracts on oxidation of oil in water emulsion and fish mince. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yiqiang Dai
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Han Wu
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Xiaoli Liu
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Hui Liu
- College of Food and Biological Engineering Xuzhou University of Technology Xuzhou China
| | - Liqing Yin
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Zhe Wang
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Xiudong Xia
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Jianzhong Zhou
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
11
|
Serina JJC, Castilho PCMF. Using polyphenols as a relevant therapy to diabetes and its complications, a review. Crit Rev Food Sci Nutr 2021; 62:8355-8387. [PMID: 34028316 DOI: 10.1080/10408398.2021.1927977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is currently a worldwide health concern. Hyperglycemia, hypertension, obesity, and oxidative stress are the major risk factors that inevitably lead to all the complications from diabetes. These complications severely impact the quality of life of patients, and they can be managed, reduced, or even reverted by several polyphenols, plant extracts and foods rich in these compounds. The goal of this review is to approach diabetes not as a single condition but rather an interconnected combination of risk factors and complications. This work shows that polyphenols have multi target action and effects and they have been systematically proven to be relevant in the reduction of each risk factor and improvement of associated complication.
Collapse
|
12
|
Li L, Duan Z, Bai D, Lu F, Hao J, Zhu T, Li D. Design, synthesis and lipid-lowering activities of penipyridone derivatives. Bioorg Med Chem 2021; 40:116192. [PMID: 33965838 DOI: 10.1016/j.bmc.2021.116192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023]
Abstract
On the basis of our earlier discovered natural product penipyridone G with potential lipid-lowering utility, 35 penipyridone derivatives were designed, synthesized and characterized. Based on the oleic acid-induced HepG2 cell lipid accumulation model, compounds 12c, 14, 15f, 15k, 15o, 15p and 16f showed potent lipid-lowering activities among the synthetic compounds at 10 μM. In particular, compounds 4, 15k, 15o showed significant activities on inhibiting lipid accumulation in insulin resistant HepG2 cells, and these three compounds were safe and non-toxic within the concentration range of 400 μM. In comparison, 15o possessed the best lipid-lowering activity. Compared with the vehicle group, the triglyceride inhibition rate of 15o was about 30.2%, and the total cholesterol inhibition rate was about 14.8% at 20 μM, which was equipotent to Simvastatin. Our research indicates that 15o may serve as a promising lead compound for the development of hypolipidemic drugs.
Collapse
Affiliation(s)
- Liping Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhongwei Duan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Donghui Bai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Fang Lu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Deihai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China.
| |
Collapse
|
13
|
Xie Z, He M, Zhai Y, Xin F, Yu S, Yu S, Xiao H, Song Y. Inhibitory kinetics and mechanism of oleanolic acid on α-glucosidase. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00920-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Xie J, Cui H, Xu Y, Xie L, Chen W. Delphinidin-3-O-sambubioside: a novel xanthine oxidase inhibitor identified from natural anthocyanins. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyaa038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
This study was conducted to investigate the xanthine oxidase (XO) inhibitory activities of 18 monomeric anthocyanins from berry fruits and roselle, and to illustrate the underlying mechanism of the most active anthocyanin delphinidin-3-O-sambubioside.
Materials and Methods
Eighteen monomeric anthocyanins were prepared and purified in our laboratory. The inhibitory properties of anthocyanins were investigated by in vitro inhibitory activity studies and fluorescence quenching studies; the inhibitory mechanism was explored through kinetic studies, fluorescence quenching studies, circular dichroism analysis and computational docking simulations.
Results
XO inhibitory activities of anthocyanins were related to the structures of B rings and glycosides. Among all the tested anthocyanins, delphinidin-3-O-sambubioside showed the most potent inhibitory activity with an IC50 of 17.1 μM, which was comparable to the positive control allopurinol. Spectroscopic results revealed that delphinidin-3-O-sambubioside could spontaneously interact with XO and induce conformational changes. Computational docking study indicated that delphinidin-3-O-sambubioside could bind to XO with a proper orientation, stably formed π–π interactions and hydrogen bonds with key residues, thus preventing the substrate from entering the active pocket.
Conclusions
In brief, our study identified delphinidin-3-O-sambubioside as a potent XO inhibitor from natural anthocyanins, which is potentially applicable for prevention and treatment of hyperuricemia.
Collapse
|
15
|
Sabou VR, O'Leary MF, Liu Y, Brown PN, Murch S, Bowtell JL. Review of Analytical Methods and Reporting of the Polyphenol Content of Tart Cherry Supplements in Human Supplementation Studies Investigating Health and Exercise Performance Effects: Recommendations for Good Practice. Front Nutr 2021; 8:652094. [PMID: 33842524 PMCID: PMC8032894 DOI: 10.3389/fnut.2021.652094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Tart cherries (TC) are a rich source of polyphenols that elicit antioxidant and anti-inflammatory effects. As a consequence, the effects of TC derived supplements on markers of human health, exercise performance and sleep have been investigated. Supplementation protocols have been highly variable across studies and the dose of bioactive compounds used has often been poorly characterized. Specific and non-specific analytical methods were employed for measuring the total polyphenol and anthocyanin content in TC supplements. This review critically analyses the supplementation protocols and the analytical methods used for the characterization of TC supplements, culminating in recommendations for good practice in the analysis and reporting of the polyphenol content and profile of TC products. A literature search was conducted using PubMed/Medline and Web of Science up to May 4th, 2020, including studies published in all years prior. Only articles written in English that provided a TC dietary supplement as opposed to fresh whole TC were included in this review. Forty-three studies were identified as eligible and included for analysis in this review. The studies investigated the effects of TC supplementation on various aspects of human health, exercise recovery and performance and sleep. Twenty studies conducted an analysis of TC supplement and reported total polyphenol/anthocyanin content. Six studies did not report the polyphenol content of the TC supplement used. Seventeen studies reported the TC supplement polyphenol content but this was derived from previously published studies and presumably different supplement batches. The duration of the supplementation protocol ranged from acute supplementation to 84 days, meanwhile the total polyphenol and anthocyanin dose ranged from 143 to 2,140 mg/day and 15 to 547 mg/day, respectively. Due to the variety of specific and non-specific analytical methods used, the relative efficacy of different doses and polyphenol blends cannot reliably be extrapolated from critical analysis of the literature. Future studies should conduct an analysis of the study supplement batch. In addition to analysis and reporting of total polyphenol content, specific analytical methods such as HPLC UV/MS should be used to quantify total and individual anthocyanin contents.
Collapse
Affiliation(s)
- Vlad R Sabou
- College of Life and Environmental Sciences, Sport and Health Sciences, Exeter University, Exeter, United Kingdom
| | - Mary F O'Leary
- College of Life and Environmental Sciences, Sport and Health Sciences, Exeter University, Exeter, United Kingdom
| | - Ying Liu
- Natural Health and Food Products Research Groups, BC Institute of Technology, Burnaby, BC, Canada
| | - Paula N Brown
- Natural Health and Food Products Research Groups, BC Institute of Technology, Burnaby, BC, Canada
| | - Susan Murch
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Joanna L Bowtell
- College of Life and Environmental Sciences, Sport and Health Sciences, Exeter University, Exeter, United Kingdom
| |
Collapse
|
16
|
Cao Q, Teng J, Wei B, Huang L, Xia N. Phenolic compounds, bioactivity, and bioaccessibility of ethanol extracts from passion fruit peel based on simulated gastrointestinal digestion. Food Chem 2021; 356:129682. [PMID: 33812196 DOI: 10.1016/j.foodchem.2021.129682] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022]
Abstract
Passion fruit peel, a potential source of bioactive compounds, has been used as food stabilizing agent. However, the phenolic composition and bioactivity of passion fruit peel have rarely been reported. The effects of simulated gastrointestinal digestion on the bioactive components, bioactivity and bioaccessibility of passion fruit peel ethanol extracts (PFPE) were investigated using high performance liquid chromatography-tandem mass spectrometry analysis (quasi-targeted metabolomics). Phenols (178) were identified, of which 25 inhibited alpha-glucosidase activity. The stabilities of PFPE phenols were significantly affected by pH changes and digestive enzymes during simulated digestion. The 1,1-diphenyl-2-picrylhydrazyl free radical scavenging capacity and ferric ion reducing antioxidant power were decreased by 32% and 30%, respectively, while 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) free radical scavenging capacity increased by 17%. Alpha-glucosidase inhibition decreased with decreased PFPE phenolic content. Therefore, passion fruit peel could be considered a source of natural antioxidants and alpha-glucosidase inhibitors.
Collapse
Affiliation(s)
- Qiqi Cao
- Department of Food Science and Engineering, Faculty of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530000, China
| | - Jianwen Teng
- Department of Food Science and Engineering, Faculty of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530000, China.
| | - Baoyao Wei
- Department of Food Science and Engineering, Faculty of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530000, China
| | - Li Huang
- Department of Food Science and Engineering, Faculty of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530000, China
| | - Ning Xia
- Department of Food Science and Engineering, Faculty of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530000, China
| |
Collapse
|
17
|
Vunduk J, Kozarski M, Djekic I, Tomašević I, Klaus A. Effect of modified atmosphere packaging on selected functional characteristics of Agaricus bisporus. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03666-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Ben Lagha A, Pellerin G, Vaillancourt K, Grenier D. Effects of a tart cherry (Prunus cerasus L.) phenolic extract on Porphyromonas gingivalis and its ability to impair the oral epithelial barrier. PLoS One 2021; 16:e0246194. [PMID: 33497417 PMCID: PMC7837497 DOI: 10.1371/journal.pone.0246194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 01/04/2023] Open
Abstract
Periodontal diseases, including gingivitis and periodontitis, are a global oral health problem. Porphyromonas gingivalis, a key pathogen involved in the onset of periodontitis, is able to colonize the subgingival epithelium and invade the underlying connective tissue due to the contribution of cysteine proteases known as gingipains. In this study, we investigated the effects of a phenolic extract prepared from tart cherry (Prunus cerasus L.) juice on the growth, adherence, and protease activity of P. gingivalis. We also assessed the protective effect of the tart cherry extract on the disruption of the oral epithelial barrier induced by P. gingivalis. The tart cherry extract that contains procyanidins and quercetin and its derivatives (rutinoside, glucoside) as the most important phenolic compounds attenuated P. gingivalis growth, reduced adherence to an experimental basement membrane matrix model, and decreased the protease activities of P. gingivalis. The tart cherry extract also exerted a protective effect on the integrity of the oral epithelial barrier in an in vitro model infected with P. gingivalis. More specifically, the extract prevented a decrease in transepithelial electrical resistance as well as the destruction of tight junction proteins (zonula occludens-1 and occludin). These results suggest that the tart cherry phenolic extract may be a promising natural product for the treatment of periodontitis through its ability to attenuate the virulence properties of P. gingivalis and curtail the ability of this pathogen to impair the oral epithelial barrier.
Collapse
Affiliation(s)
- Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Geneviève Pellerin
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Katy Vaillancourt
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
- * E-mail:
| |
Collapse
|
19
|
Sarkar D, Christopher A, Shetty K. Phenolic Bioactives From Plant-Based Foods for Glycemic Control. Front Endocrinol (Lausanne) 2021; 12:727503. [PMID: 35116002 PMCID: PMC8805174 DOI: 10.3389/fendo.2021.727503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Plant-based foods containing phenolic bioactives have human health protective functions relevant for combating diet and lifestyle-influenced chronic diseases, including type 2 diabetes (T2D). The molecular structural features of dietary phenolic bioactives allow antioxidant functions relevant for countering chronic oxidative stress-induced metabolic breakdown commonly associated with T2D. In addition to antioxidant properties, phenolic bioactives of diverse plant foods have therapeutic functional activities such as improving insulin sensitivity, reducing hepatic glucose output, inhibiting activity of key carbohydrate digestive enzymes, and modulating absorption of glucose in the bloodstream, thereby subsequently improving post-prandial glycemic control. These therapeutic functional properties have direct implications and benefits in the dietary management of T2D. Therefore, plant-based foods that are rich in phenolic bioactives are excellent dietary sources of therapeutic targets to improve overall glycemic control by managing chronic hyperglycemia and chronic oxidative stress, which are major contributing factors to T2D pathogenesis. However, in studies with diverse array of plant-based foods, concentration and composition of phenolic bioactives and their glycemic control relevant bioactivity can vary widely between different plant species, plant parts, and among different varieties/genotypes due to the different environmental and growing conditions, post-harvest storage, and food processing steps. This has allowed advances in innovative strategies to screen and optimize whole and processed plant derived foods and their ingredients based on their phenolic bioactive linked antioxidant and anti-hyperglycemic properties for their effective integration into T2D focused dietary solutions. In this review, different pre-harvest and post-harvest strategies and factors that influence phenolic bioactive-linked antioxidant and anti-hyperglycemic properties in diverse plant derived foods and derivation of extracts with therapeutic potential are highlighted and discussed. Additionally, novel bioprocessing strategies to enhance bioavailability and bioactivity of phenolics in plant-derived foods targeting optimum glycemic control and associated T2D therapeutic benefits are also advanced.
Collapse
|
20
|
Yang Y, Zhang JL, Zhou Q. Targets and mechanisms of dietary anthocyanins to combat hyperglycemia and hyperuricemia: a comprehensive review. Crit Rev Food Sci Nutr 2020; 62:1119-1143. [PMID: 33078617 DOI: 10.1080/10408398.2020.1835819] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hyperglycemia and hyperuricemia are both metabolic disorders related to excessive amount of metabolites in blood, which are considered as high risk factors for the development of many chronic diseases. Enzymes, cells, tissues and organs, which are relevant to metabolism and excretion of glucose and UA, are usually regarded to be the targets in treatment of hyperglycemia and hyperuricemia. Several drugs have been commonly applied to combat hyperglycemia and hyperuricemia through various targets but with unignorable side effects. Anthocyanins have become promising alternatives against hyperglycemia and hyperuricemia because of their bio-activities with little side effects. Structurally different anthocyanins from berry fruits, cherries and purple sweet potato lead to the diverse functional activity and property. This review is aimed to illustrate the specific targets that are available for anthocyanins from berry fruits, cherries and purple sweet potato in hyperglycemia and hyperuricemia management, as well as discuss the structure-activity relationship, and the underlying mechanisms associated with intracellular signaling pathway, anti-oxidative stress and anti-inflammation. In addition, the relationship of hyperglycemia and hyperuricemia, and the possibly regulative role of anthocyanins against them, along with the effects of anthocyanins in clinical trial are mentioned.
Collapse
Affiliation(s)
- Yang Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiu-Liang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Ministry of Education, Key Laboratory of Environment Correlative Dietology, Wuhan, China
| | - Qing Zhou
- Department of Pharmacy, Wuhan City Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Oloniyo RO, Omoba OS, Awolu OO, Olagunju AI. Orange-fleshed sweet potatoes composite bread: A good carrier of beta (β)-carotene and antioxidant properties. J Food Biochem 2020; 45:e13423. [PMID: 32812248 DOI: 10.1111/jfbc.13423] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 02/02/2023]
Abstract
Orange-fleshed sweet potato (OFSP) is one of the unique varieties of sweet potatoes tuber that has attracted food professionals due to its great health benefits. This study investigates into β-carotene and antioxidant properties of OFSP composite bread. Random Surface Methodology was used for the experimental design. Analysis carried out on the bread includes antioxidant activity, alpha-amylase, and alpha-glycosidase inhibitory activity, protein & β-carotene retention/losses, glycemic index, and sensory evaluation. Total phenol ranged from 7.32 to 21.93 mg GAE/g, total flavonoid ranged between 6.12 and 13.20 mg QE/g and FRAP ranged from 12.31 to 40.36 mg AEE/g. The estimated glycemic index ranged from 51.42% to 72.80%. The value of β-carotene before and after processing ranged from 15.4 to 39.1 mg/100 g and 8.9 to 18.4 mg/100 g, respectively. OFSP composite bread has high antioxidant potential and may be used as functional foods. PRACTICAL APPLICATIONS: Orange-fleshed sweet potatoes (OFSP) is a novel variety of sweet potatoes that have been sight-saw to owe numerous health benefits in terms of vitamins, minerals, β-carotene, antioxidants but it is low in protein. Incorporation of plant protein will help to increase its protein content and enhance its utilization in confectionery industries as a good carrier for antioxidants and other health benefits components.
Collapse
|
22
|
Effects of short-term continuous Montmorency tart cherry juice supplementation in participants with metabolic syndrome. Eur J Nutr 2020; 60:1587-1603. [PMID: 32789528 DOI: 10.1007/s00394-020-02355-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Metabolic Syndrome (MetS) augments the incidence of cardiovascular disease by two-fold and type II diabetes mellitus by five-fold. Montmorency tart cherries are rich in phytochemicals shown to improve biomarkers related to cardio-metabolic health in humans. This study aimed to examine cardio-metabolic responses after 7-days Montmorency tart cherry juice (MTCJ) supplementation and also acute on short-term supplementation responses to a single bolus, in humans with MetS. METHODS In a randomised, single-blind, placebo-controlled, crossover trial, 12 participants with MetS (50 ± 10 years; 6M/6F), consumed MTCJ or placebo (PLA) for 7 days. Blood-based and functional cardio-metabolic biomarkers were measured pre- and post-supplementation, and acute responses measured pre-bolus and up to 5 h post-bolus on the 7th day. RESULTS 24-h ambulatory systolic (P = 0.016), diastolic (P = 0.009) blood pressure and mean arterial pressure (P = 0.041) were significantly lower after 7-days MTCJ supplementation compared to PLA. Glucose (P = 0.038), total cholesterol (P = 0.036), LDL (P = 0.023) concentrations, total cholesterol:HDL ratio (P = 0.004) and respiratory exchange ratio values (P = 0.009) were significantly lower after 6-days MTCJ consumption compared to PLA. CONCLUSIONS This study revealed for the first time in humans that MTCJ significantly improved 24-h BP, fasting glucose, total cholesterol and total cholesterol:HDL ratio, and also lowered resting respiratory exchange ratio compared to a control group. Responses demonstrated clinically relevant improvements on aspects of cardio-metabolic function, emphasising the potential efficacy of MTCJ in preventing further cardio-metabolic dysregulation in participants with MetS. Registered at clinicaltrials.gov (NCT03619941).
Collapse
|
23
|
Xu C, Xia H, Zhang S, Zhao Y, Qi Z, Sun Z, Zhao Y. Isolation, screening, identification and tolerance of yeast in cherry wine lees. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this study, yeast was isolated from cherry wine lees by rose Bengal medium, and its species was identified through three-stage screening, morphological observation and molecular biological identification. Moreover, the tolerance of screened strains was studied. The results showed that 30 strains of yeast were isolated from cherry wine lees, and five strains of yeast were selected, which were named YJN10, YJN16, YJN18, YJN19 and YJN28. After preliminary appraisal, strain YJN10 was Saccharomyces kudriavzevii, strain YJN16 was Saccharomyces paradoxus, and strains YJN18, YJN19, YJN28 were Saccharomyces cerevisiae. In the tolerance study, the tolerable sugar concentrations of the five strains were 650, 650, 550, 600 and 600 g/L. The tolerable alcohol volume fractions were 20, 20, 16, 18 and 18%. The tolerable molar concentration of potassium chloride was 1.8, 1.8, 1.5, 1.5 and 1.5 mol/L. Finally, strains YJN10, YJN16, YJN19 and YJN28 showed good tolerance, which laid a foundation for subsequent application in cherry wine fermentation.
Collapse
Affiliation(s)
- Cheng Xu
- Yantai Institute for Quality Supervision & Inspection of Product, Yantai, Shandong, China
| | - Hui Xia
- Yantai Institute for Quality Supervision & Inspection of Product, Yantai, Shandong, China
| | - Shuwen Zhang
- Yantai Institute for Quality Supervision & Inspection of Product, Yantai, Shandong, China
| | - Yuping Zhao
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Zhiqiang Qi
- Yantai Tongxin Liquor Co., Ltd., Yantai, Shandong, China
| | - Zuli Sun
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Yongfu Zhao
- China National Wine and Spirits Testing Authority, Yantai, Shandong, China
| |
Collapse
|
24
|
The Quality of Freeze-Dried and Rehydrated Blueberries Depending on their Size and Preparation for Freeze-Drying. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2020. [DOI: 10.2478/aucft-2020-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
A significant increase in highbush blueberry plantings has been observed annually. However, there is a problem with the handling of fruit that does not meet the requirements for dessert berries. One of the methods to use the fruit is drying. The research was conducted in the Department of Horticulture at the West Pomeranian University of Technology in Szczecin. The fruit was harvested at a plantation specialising in the production of highbush blueberry from irrigated and non-irrigated plots. This study aimed to assess how cutting or pricking highbush blueberry fruit affects the duration of the sublimation drying process – freeze-drying. The biological value of fresh, freeze-dried, and rehydrated fruit was assessed. The amount of fruit left on bushes depended on the weather prevailing in the growing season, especially during the harvest period. The mass of fruit left on the bushes was approx. 1 to 2 t/ha. Although these fruits were small, they had a very high biological value. After freeze-drying and rehydration, the blueberry fruit retained their colour, high content of polyphenols and showed high antidiabetic activity and antioxidant capacity. The large fruit reached the moisture content of approx. 12%, which ensures safe storage and the appropriate texture, after 46 hours of drying, and the smaller fruit - after 32 hours. Fruit cutting or pricking reduced the drying time by half. Reducing this time decreased drying costs and increased biological value.
Collapse
|
25
|
Liu L, Zhang L, Ren L, Xie Y. Advances in structures required of polyphenols for xanthine oxidase inhibition. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.27] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Liangliang Liu
- Institute of Bast Fiber Crops Chinese Academy of Agricultural Sciences Changsha 410205 China
| | - Li Zhang
- College of Chemistry and Materials Engineering Huaihua University Huaihua 418000 China
| | - Licheng Ren
- Institute of Bast Fiber Crops Chinese Academy of Agricultural Sciences Changsha 410205 China
- Department of Plastic and Cosmetic Surgery Shenzhen University General Hospital Shenzhen 518055 China
| | - Yixi Xie
- Institute of Bast Fiber Crops Chinese Academy of Agricultural Sciences Changsha 410205 China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan 411105 China
| |
Collapse
|
26
|
Jayarathne S, Ramalingam L, Edwards H, Vanapalli SA, Moustaid-Moussa N. Tart Cherry Increases Lifespan in Caenorhabditis elegans by Altering Metabolic Signaling Pathways. Nutrients 2020; 12:E1482. [PMID: 32443669 PMCID: PMC7285199 DOI: 10.3390/nu12051482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/01/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Aging and healthspan are determined by both environmental and genetic factors. The insulin/insulin-like growth factor-1(IGF-1) pathway is a key mediator of aging in Caenorhabditis elegans and mammals. Specifically, DAF-2 signaling, an ortholog of human IGF, controls DAF-16/FOXO transcription factor, a master regulator of metabolism and longevity. Moreover, mitochondrial dysfunction and oxidative stress are both linked to aging. We propose that daily supplementation of tart cherry extract (TCE), rich in anthocyanins with antioxidant properties may exert dual benefits for mitochondrial function and oxidative stress, resulting in beneficial effects on aging in C. elegans. We found that TCE supplementation at 6 μg or 12 μg/mL, increased (p < 0.05) the mean lifespan of wild type N2 worms, respectively, when compared to untreated control worms. Consistent with these findings, TCE upregulated (p < 0.05) expression of longevity-related genes such as daf-16 and aak-2 (but not daf-2 or akt-1 genes) and genes related to oxidative stress such as sod-2. Further, we showed that TCE supplementation increased spare respiration in N2 worms. However, TCE did not change the mean lifespan of daf-16 and aak-2 mutant worms. In conclusion, our findings indicate that TCE confers healthspan benefits in C. elegans through enhanced mitochondrial function and reduced oxidative stress, mainly via the DAF-16 pathway.
Collapse
Affiliation(s)
- Shasika Jayarathne
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (S.J.); (L.R.)
| | - Latha Ramalingam
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (S.J.); (L.R.)
| | - Hunter Edwards
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (H.E.); (S.A.V.)
| | - Siva A. Vanapalli
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (H.E.); (S.A.V.)
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (S.J.); (L.R.)
| |
Collapse
|
27
|
Montmorency tart cherry (Prunus cerasus L.) acts as a calorie restriction mimetic that increases intestinal fat and lifespan in Caenorhabditis elegans. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
28
|
Dai T, Li T, He X, Li X, Liu C, Chen J, McClements DJ. Analysis of inhibitory interaction between epigallocatechin gallate and alpha-glucosidase: A spectroscopy and molecular simulation study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118023. [PMID: 31927512 DOI: 10.1016/j.saa.2019.118023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Alpha-glucosidase is one of the main enzymes responsible for digesting starch. Inhibiting its activity is therefore being targeted as a strategy for tackling diabetes. Certain food components have the potential to act as natural α-glucosidase (SCG) inhibitors, such as the polyphenols found in tea. In this study, epigallocatechin gallate (EGCG) was shown to strongly inhibit SCG activity (IC50 value = 3.7 × 10-5 M). Multi-spectroscopic binding molecular simulations indicated that EGCG spontaneously bound to SCG through a combination of hydrogen bonding and hydrophobic interactions. The hypothesis was supported by the results from intrinsic fluorescence quenching, conformational change, surface hydrophobicity decrease, and molecular docking analysis of the SCG after binding. Molecular docking provided powerful visual insights into the nature of the molecular interactions involved. This research provides important new information about the interaction mechanism of EGCG and SCG, which may be beneficial to the development of functional foods to prevent diabetes.
Collapse
Affiliation(s)
- Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaohong He
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| | | |
Collapse
|
29
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
30
|
Hypolipidemic Activities of Two Pentapeptides (VIAPW and IRWWW) from Miiuy Croaker (Miichthys miiuy) Muscle on Lipid Accumulation in HepG2 Cells through Regulation of AMPK Pathway. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, the hypolipidemic activities of two pentapeptides (VIAPW and IRWWW) from miiuy croaker (Miichthys miiuy) muscle on oleic acid (OA)-induced lipid accumulation in HepG2 cells were investigated. VIAPW and IRWWW could significantly inhibit lipid accumulation induced by OA and decreased intracellular levels of intracellular triglyceride (TG) and total cholesterol (TC) in a dose-effect dependence manner. At the concentration of 100 μm, the TG levels of VIAPW (0.201 ± 0.006 mm) and IRWWW (0.186 ± 0.005 mm) were very (p < 0.01) and extremely (p < 0.001) significantly lower than those (0.247 ± 0.004 mm) of the OA model group; the levels of TC of VIAPW (45.88 ± 0.74 μg/mg protein) and IRWWW (41.02 ± 0.14 μg/mg protein) were very (p < 0.01) and extremely (p < 0.001) significantly lower than that (53.45 ± 0.10μg/mg protein) of the OA model group (p < 0.01). The hypolipidemic mechanisms of VIAPW and IRWWW were to down-regulate the expression levels of genes of SREBP-1c, SREBP-2, FAS, ACC, and HMGR in lipid synthesis and to up-regulate the expression levels of genes of PPARα, ACOX-1, and CPT-1 in lipid oxidation. These results suggested that VIAPW and IRWWW could play their hypolipidemic activities in HepG2 cells through regulation of AMPK pathway and act as hypolipidemic nutrient ingredients applied in public healthy and functional foods.
Collapse
|
31
|
Desai T, Roberts M, Bottoms L. Effects of Montmorency tart cherry supplementation on cardio-metabolic markers in metabolic syndrome participants: A pilot study. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
32
|
Dai T, Chen J, McClements DJ, Li T, Liu C. Investigation the interaction between procyanidin dimer and α-glucosidase: Spectroscopic analyses and molecular docking simulation. Int J Biol Macromol 2019; 130:315-322. [DOI: 10.1016/j.ijbiomac.2019.02.105] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
|
33
|
Collins MW, Saag KG, Singh JA. Is there a role for cherries in the management of gout? Ther Adv Musculoskelet Dis 2019; 11:1759720X19847018. [PMID: 31205513 PMCID: PMC6535740 DOI: 10.1177/1759720x19847018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/28/2019] [Indexed: 01/08/2023] Open
Abstract
Despite the availability of effective urate-lowering therapy (ULT) and anti-inflammatory drugs for the treatment of gout, there is considerable interest in novel treatment approaches. Patients with gout often have a multitude of comorbidities, leading to concern over drug-drug interactions and medication adverse events. The cherry is a small nutrient-rich fruit that has garnered a great deal of attention in recent years as a nonpharmacologic option for the treatment of a multitude of disease manifestations. Perhaps a quarter of patients with gout try cherries or cherry products to treat their gout, which have antioxidant and anti-inflammatory (IL-6, TNF-α, IL-1β, IL-8, COX-I and -II) properties, hypouricemic effects, and the ability to downregulate NFkB-mediated osteoclastogenesis. Based on these properties, cherries may reduce both the acute and chronic inflammation associated with recurrent gout flares and its chronic destructive arthropathy. In this review, we explore the potential benefits of cherries and cherry products as a nonpharmacologic option for the treatment of gout.
Collapse
Affiliation(s)
- Marcum W. Collins
- UAB Hospital, 1720 2nd Avenue South, FOT 839, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
34
|
Martin KR, Coles KM. Consumption of 100% Tart Cherry Juice Reduces Serum Urate in Overweight and Obese Adults. Curr Dev Nutr 2019; 3:nzz011. [PMID: 31037275 PMCID: PMC6483050 DOI: 10.1093/cdn/nzz011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Gout is a frequently occurring, complex rheumatologic form of inflammatory arthritis caused by the accumulation of serum uric acid (sUA) and deposition of uric acid crystals in the joints and tissues of the body. Hyperuricemia is also a significant independent risk factor for all-cause and cardiovascular morbidity and mortality and is associated with hypertension, diabetes, obesity, and osteoarthritis. However, patient adherence to prescribed urate-lowering therapies ranges from 20% to 70%, suggesting that other additional strategies, such as dietary intervention with specific, efficacious foods or beverages, may be necessary to mitigate the risk of arthritis, as well as other comorbidities. Tart cherry juice (TCJ) has been used for decades by some for gout based largely on anecdotal evidence of its efficacy and its antioxidant and anti-inflammatory properties. OBJECTIVES We designed this study to test the effect of TCJ on uricemia, lipidemia, glycemia, and inflammation in at-risk overweight and obese humans with a specific hypothesis that TCJ consumption would reduce sUA concentrations. METHODS In this randomized, placebo-controlled crossover study, we recruited overweight and obese participants with body mass index (BMI) >25.0 kg/m2 (n = 26, 18 women/8 men, 41 ±11 y; BMI 31.3 ± 6.0; 12 obese, 14 overweight) to consume 240 mL/d (8 oz/d) of either TCJ or placebo beverage, for 4 wk each with a 4-wk intervening washout period followed by 4 wk of the alternate beverage. RESULTS TCJ significantly reduced sUA concentration by 19.2% (P < 0.05) and reduced by 19.4% (P = 0.09) and 6.3% (P = 0.08) proinflammatory high-sensitivity C-reactive protein and monocyte chemoattractant protein-1, respectively. The participants in this study displayed risk ratios indicating increased cardiovascular disease risk and insulin resistance but no differences in the pre- and postintervention groups of either placebo or TCJ groups. CONCLUSION Collectively, the data suggest that 100% TCJ reduces sUA concentrations, mitigating hyperuricemia associated with gouty arthritis. This trial was registered at clinicaltrials.gov as NCT03636529.
Collapse
Affiliation(s)
- Keith R Martin
- Center for Nutraceutical and Dietary Supplement Research, University of Memphis, TN
| | - Katie M Coles
- Healthy Lifestyles Research Center, Arizona State University, Phoenix, AZ
| |
Collapse
|
35
|
Jayarathne S, Stull AJ, Miranda A, Scoggin S, Claycombe-Larson K, Kim JH, Moustaid-Moussa N. Tart Cherry Reduces Inflammation in Adipose Tissue of Zucker Fatty Rats and Cultured 3T3-L1 Adipocytes. Nutrients 2018; 10:E1576. [PMID: 30366378 PMCID: PMC6266132 DOI: 10.3390/nu10111576] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Obesity increases adipose tissue inflammation and secretion of pro-inflammatory adipokines, which have systemic effects on the organism's health status. Our objective was to dissect mechanisms of anti-inflammatory effects of tart cherry (TC) in adipose tissue of Zucker fatty rats, and cultured 3T3-L1 adipocytes. Rats were fed either a control diet, or 4% TC powder diets for eight weeks. Body and epididymal fat pad weights were not significantly different between control and TC groups. However, rats fed the TC diet had significantly reduced adipose tissue inflammation (p < 0.05), as determined by reduced mRNA levels of pro-inflammatory markers including interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα), interleukin-1beta (IL-1β), monocyte chemoattractant protein 1 (MCP-1), inducible nitric oxide synthase (iNOS), and CD-11b, and increased mRNA levels of type-1 arginase (Arg-1) anti-inflammatory marker. Consistent with these in vivo results, TC significantly decreased expression of IL-6 mRNA and protein levels in lipopolysaccharide (LPS) stimulated adipocytes compared to those stimulated with LPS, but no TC. Moreover, both in vivo (rat adipose tissue) and in vitro (3T3-L1 adipocytes), phosphorylation of p65-NF-κB subunit was significantly reduced by TC. Additionally, TC decreased mRNA expression of fatty acid synthase (FASN), and increased expression of peroxisome proliferator-activated receptor alpha (PPARα), master regulator of lipid oxidation, and anti-oxidant markers nuclear factor erythroid-derived 2-related factor (NRFs) in both models. In conclusion, our findings indicate that TC downregulates inflammation in part via the nuclear factor kappa B (NF-κB) pathway in adipose tissue. Thus, TC may serve as a potential intervention to reduce obesity-associated inflammation.
Collapse
Affiliation(s)
- Shasika Jayarathne
- Department of Nutritional Sciences, Obesity Research Cluster, Texas Tech University, Lubbock, TX 79409, USA.
| | - April J Stull
- Department of Human Ecology, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| | - Alexandra Miranda
- Department of Nutritional Sciences, Obesity Research Cluster, Texas Tech University, Lubbock, TX 79409, USA.
| | - Shane Scoggin
- Department of Nutritional Sciences, Obesity Research Cluster, Texas Tech University, Lubbock, TX 79409, USA.
| | | | - Jung Han Kim
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Obesity Research Cluster, Texas Tech University, Lubbock, TX 79409, USA.
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|