1
|
Liu C, Chen YQ, Lin H, Shi PY, Song J, Wu WL, Xiao QW, Dai Q. Two flavors in adulterated sesame oil: discovery, confirmation, and content regularity study. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6210-6219. [PMID: 39193637 DOI: 10.1039/d4ay01132e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Exploring and accurately detecting new adulteration markers in sesame oil is an important measure for sesame oil adulteration monitoring. In this study, two endogenous flavors sulfurol and γ-nonalactone which can be used as potential adulteration markers were first discovered in sesame oil and accurately quantified. First, the two endogenous flavors were discovered using gas chromatography-mass spectrometry (GC-MS), and their structures were confirmed by comparing the mass spectrograms with the NIST spectral library. Then the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using direct methanol extraction pretreatment and vanillin-D3 as an internal standard was developed for rapid quantitation and application. The method was successfully validated with recoveries ranging from 88.5% to 102.2% and relative standard deviations between 2.6% and 10.5% (n = 6). The combined method of GC-MS and LC-MS/MS was indicated to be efficient and highly sensitive for detection of sulfurol and γ-nonalactone in edible oil. Subsequently, 31 sesame oils from the market were detected, revealing that 31 samples contained the identified flavors within a relatively consistent range. However, the concentration of these flavor substances in one sample was abnormally high, indicating that there was a potential risk of adulteration. Therefore, the developed method shows good potential for quality evaluation and adulteration screening of sesame oil.
Collapse
Affiliation(s)
- Chuan Liu
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yan-Qiu Chen
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Hao Lin
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Pei-Yu Shi
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Juan Song
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Wen-Lin Wu
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Quan-Wei Xiao
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Qin Dai
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
2
|
Chaji S, Zenasni W, Ouaabou R, Ajal EA, Lahlali R, Fauconnier ML, Hanine H, Černe M, Pasković I, Merah O, Bajoub A. Nutrient and Bioactive Fraction Content of Olea europaea L. Leaves: Assessing the Impact of Drying Methods in a Comprehensive Study of Prominent Cultivars in Morocco. PLANTS (BASEL, SWITZERLAND) 2024; 13:1961. [PMID: 39065489 PMCID: PMC11281108 DOI: 10.3390/plants13141961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
This study explores the potential of olive leaves, long integral to Mediterranean traditional medicine, as a rich source of valuable compounds. The challenge lies in their considerable water content, hindering these compounds' full valorization. Four drying methods (air-drying, oven-drying, freeze-drying and solar-drying) were investigated for their impact on nutrient and bioactive compound content in the leaves of four olive varieties ("Arbequina", "Koroneiki", "Menara" and "Picholine Marocaine") cultivated in Morocco. In their fresh state, "Picholine Marocaine" exhibited the highest protein levels (6.11%), "Arbequina" had the highest phenolic content (20.18 mg gallic acid equivalents/g fresh weight (FW)), and "Koroneiki" and "Menara" were highest in flavonoids (3.28 mg quercetin equivalents/g FW). Specific drying methods proved optimal for different varieties. Oven-drying at 60 °C and 70 °C effectively preserved protein, while phenolic content varied with drying conditions. Air-drying and freeze-drying demonstrated effectiveness for flavonoids. In addition, an analytical approach using high-performance liquid chromatography and diode array detection (HPLC-DAD) was applied to investigate the effects of the different drying methods on the bioactive fraction of the analyzed samples. The results showed qualitative and quantitative differences depending on both the variety and the drying method used. A total of 11 phenolic compounds were tentatively identified, with oleuropein being the most abundant in all the samples analyzed. The freeze-dried samples showed the highest content of oleuropein in the varieties "Arbequina" and "Picholine Marocaine" compared to the other methods analyzed. In contrast, "Koroneiki" and "Menara" had higher oleuropein content when air dried. Overall, the obtained results highlight the importance of tailored drying techniques for the preservation of nutrients and bioactive compounds in olive leaves.
Collapse
Affiliation(s)
- Salah Chaji
- Laboratory of Food and Food By-Products Chemistry and Processing Technology, National School of Agriculture in Meknès, km 10, Haj Kaddour Road, B.P. S/40, Meknès 50001, Morocco (R.L.)
- Laboratory of Bioprocess and Bio-Interfaces, Faculty of Science and Techniques, University Sultan Moulay Slimane, B.P. 523, M’Ghila, Beni Mellal 23000, Morocco
| | - Walid Zenasni
- Laboratory of Food and Food By-Products Chemistry and Processing Technology, National School of Agriculture in Meknès, km 10, Haj Kaddour Road, B.P. S/40, Meknès 50001, Morocco (R.L.)
| | - Rachida Ouaabou
- Laboratory of Research and Development in Engineering Sciences, Faculty of Sciences and Techniques Al Hoceima, Abdelmalek Essaadi University, B.P. 34, Al-Hoceima 32003, Morocco
| | - El Amine Ajal
- UPR of Pharmacognosy, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, B.P. 6203, Rabat 10000, Morocco
| | - Rachid Lahlali
- Laboratory of Food and Food By-Products Chemistry and Processing Technology, National School of Agriculture in Meknès, km 10, Haj Kaddour Road, B.P. S/40, Meknès 50001, Morocco (R.L.)
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro Biotech, University of Liege, 5030 Gembloux, Belgium;
| | - Hafida Hanine
- Laboratory of Bioprocess and Bio-Interfaces, Faculty of Science and Techniques, University Sultan Moulay Slimane, B.P. 523, M’Ghila, Beni Mellal 23000, Morocco
| | - Marko Černe
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.Č.); (I.P.)
| | - Igor Pasković
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.Č.); (I.P.)
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de Recherche Agronomique et Environnement (INRAE), Institut National Polytechnique de Toulouse (INPT), Université de Toulouse, 31030 Toulouse, France
- Département Génie Biologique, Institut Universitaire de Technologie Paul Sabatier, Université Paul Sabatier, 32000 Auch, France
| | - Aadil Bajoub
- Laboratory of Food and Food By-Products Chemistry and Processing Technology, National School of Agriculture in Meknès, km 10, Haj Kaddour Road, B.P. S/40, Meknès 50001, Morocco (R.L.)
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
3
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Hu T, Zhou L, Kong F, Wang S, Hong K, Lei F, He D. Effects of Extraction Strategies on Yield, Physicochemical and Antioxidant Properties of Pumpkin Seed Oil. Foods 2023; 12:3351. [PMID: 37761059 PMCID: PMC10529489 DOI: 10.3390/foods12183351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This study investigated the effects of three extraction methods, including cold pressing (CP), microwave pretreatment pressing (MP), and supercritical fluid extraction (SFE), on the yield, physicochemical properties, bioactive compounds content, and antioxidant properties of pumpkin seed oil (PSO). Furthermore, the correlation between bioactive compounds and the antioxidant properties of PSO was determined. The results revealed that the yield of PSO extracted using the three methods was in the order of SFE > MP > CP. Additionally, the PSO generated by SFE showed the highest unsaturated fatty acid content, followed by MP and CP. Additionally, MP-PSO exhibited the highest acid value and saponification value, while SFE-PSO displayed the highest moisture content, peroxide value, and iodine value. Moreover, the PSO generated by MP demonstrated superior antioxidant properties compared to that of PSOs from CP and SFE in the oxidation induction, DPPH, FRAP, and ABTS tests. Finally, the correlation analysis revealed that specific types of bioactive compounds, such as β-sitosterol and γ-tocopherol, were highly correlated with the antioxidant properties of PSOs. Consequently, this study provides comprehensive knowledge regarding PSO extraction, physicochemical properties, bioactive compound extraction, and the correlated antioxidant properties.
Collapse
Affiliation(s)
- Tianyuan Hu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (T.H.); (L.Z.); (F.K.); (K.H.); (D.H.)
| | - Li Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (T.H.); (L.Z.); (F.K.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
- Grain and Oil Resources Comprehensive Exploitation and Engineering Technology Research Center of State Administration of Grain, Wuhan 430023, China;
| | - Fan Kong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (T.H.); (L.Z.); (F.K.); (K.H.); (D.H.)
| | - Shu Wang
- Grain and Oil Resources Comprehensive Exploitation and Engineering Technology Research Center of State Administration of Grain, Wuhan 430023, China;
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430023, China
| | - Kunqiang Hong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (T.H.); (L.Z.); (F.K.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
- Grain and Oil Resources Comprehensive Exploitation and Engineering Technology Research Center of State Administration of Grain, Wuhan 430023, China;
| | - Fenfen Lei
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (T.H.); (L.Z.); (F.K.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
- Grain and Oil Resources Comprehensive Exploitation and Engineering Technology Research Center of State Administration of Grain, Wuhan 430023, China;
| | - Dongping He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (T.H.); (L.Z.); (F.K.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China
- Grain and Oil Resources Comprehensive Exploitation and Engineering Technology Research Center of State Administration of Grain, Wuhan 430023, China;
| |
Collapse
|
5
|
Bongiorno D, Di Stefano V, Indelicato S, Avellone G, Ceraulo L. Bio-phenols determination in olive oils: Recent mass spectrometry approaches. MASS SPECTROMETRY REVIEWS 2023; 42:1462-1502. [PMID: 34747510 DOI: 10.1002/mas.21744] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 06/07/2023]
Abstract
Extra virgin olive oil (EVOO) is largely used in Mediterranean diet, and it is also worldwide apprised not only for its organoleptic properties but also for its healthy effects mainly attributed to the presence of several naturally occurring phenolic and polyphenolic compounds (bio-phenols). These compounds are characterized by the presence of multiple phenolic groups in more or less complex structures. Their content is fundamental in defining the healthy qualities of EVOO and consequently the analytical methods for their characterization and quantification are of current interest. Traditionally their determination has been conducted using a colorimetric assay based on the reaction of Folin-Ciocalteu (FC) reagent with the functional hydroxy groups of phenolic compounds. Identification and quantification of the bio-phenols in olive oils requires certainly more performing analytical methods. Chromatographic separation is now commonly achieved by HPLC, coupled with spectrometric devices as UV, FID, and MS. This last approach constitutes an actual cutting-edge application for bio-phenol determination in complex matrices as olive oils, mostly on the light of the development of mass analyzers and the achievement of high resolution and accurate mass measurement in more affordable instrument configurations. After a short survey of some rugged techniques used for bio-phenols determination, in this review have been described the most recent mass spectrometry-based methods, adopted for the analysis of the bio-phenols in EVOOs. In particular, the sample handling and the results of HPLC coupled with low- and high-resolution MS and MS/MS analyzers, of ion mobility mass spectrometry and ambient mass spectrometry have been reported and discussed.
Collapse
Affiliation(s)
- David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Giuseppe Avellone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
6
|
Monasterio RP, Trentacoste E, López Appiolaza C, Beiro-Valenzuela MG, Serrano-García I, Olmo-García L, Carrasco-Pancorbo A. Storage Stability of Arauco Virgin Olive Oil: Evolution of Its Quality Parameters and Phenolic and Triterpenic Compounds under Different Conservation Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091826. [PMID: 37176884 PMCID: PMC10181468 DOI: 10.3390/plants12091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The storage conditions are very critical to minimize hydrolytic and oxidative reactions of virgin olive oils (VOOs). These reactions are logically influenced by the composition of the VOO, so that each variety may have a specific behavior. The aim of this study was to evaluate changes in quality parameters and in the phenolic and triterpenic profile of Arauco VOOs, a unique local variety from Argentina, after storage under different conditions. The effects of exposure to light (darkness and light), temperature (24 and 40 °C), packaging material (polyethylene (PET) and dark glass), and headspace (air and N2 atmosphere) were investigated for 76 days. A reduction in total phenolic compounds was observed after storage treatments, but all samples still complied with the EFSA health claim after the different handlings. Overall, the results revealed that the preservation of the oils in PET appears adequate, with improved stability when N2 was used in the headspace, along with darkness and low temperature. The study of phenolic profiles showed that substances previously reported as possible markers of olive oil aging, such as hydroxytyrosol and an isomer of decarboxymethyl oleuropein aglycone, also have a similar behavior during the aging of Arauco variety oil. Interestingly, some evidence was found that another oleuropein-derived compound (oleuropein aglycone isomer 3) could also be used as an aging marker.
Collapse
Affiliation(s)
- Romina P Monasterio
- Instituto de Biología Agrícola de Mendoza (IBAM), UNCuyo-CONICET, Facultad de Ciencias Agrarias, Alt. Brown 500, Mendoza 5505, Argentina
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| | - Eduardo Trentacoste
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria La Consulta, Ex Ruta 40 km 96, Mendoza 5567, Argentina
| | - Carlos López Appiolaza
- Instituto de Biología Agrícola de Mendoza (IBAM), UNCuyo-CONICET, Facultad de Ciencias Agrarias, Alt. Brown 500, Mendoza 5505, Argentina
| | - María Gemma Beiro-Valenzuela
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| | - Irene Serrano-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| | - Lucía Olmo-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| | - Alegría Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
7
|
Lama-Muñoz A, Contreras MDM. Extraction Systems and Analytical Techniques for Food Phenolic Compounds: A Review. Foods 2022; 11:3671. [PMID: 36429261 PMCID: PMC9689915 DOI: 10.3390/foods11223671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Phenolic compounds are highly valuable food components due to their potential utilisation as natural bioactive and antioxidant molecules for the food, cosmetic, chemical, and pharmaceutical industries. For this purpose, the development and optimisation of efficient extraction methods is crucial to obtain phenolic-rich extracts and, for some applications, free of interfering compounds. It should be accompanied with robust analytical tools that enable the standardisation of phenolic-rich extracts for industrial applications. New methodologies based on both novel extraction and/or analysis are also implemented to characterise and elucidate novel chemical structures and to face safety, pharmacology, and toxicity issues related to phenolic compounds at the molecular level. Moreover, in combination with multivariate analysis, the extraction and analysis of phenolic compounds offer tools for plant chemotyping, food traceability and marker selection in omics studies. Therefore, this study reviews extraction techniques applied to recover phenolic compounds from foods and agri-food by-products, including liquid-liquid extraction, solid-liquid extraction assisted by intensification technologies, solid-phase extraction, and combined methods. It also provides an overview of the characterisation techniques, including UV-Vis, infra-red, nuclear magnetic resonance, mass spectrometry and others used in minor applications such as Raman spectroscopy and ion mobility spectrometry, coupled or not to chromatography. Overall, a wide range of methodologies are now available, which can be applied individually and combined to provide complementary results in the roadmap around the study of phenolic compounds.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, s/n, 23071 Jaén, Spain
| |
Collapse
|
8
|
Górnaś P, Baškirovs G, Siger A. Free and Esterified Tocopherols, Tocotrienols and Other Extractable and Non-Extractable Tocochromanol-Related Molecules: Compendium of Knowledge, Future Perspectives and Recommendations for Chromatographic Techniques, Tools, and Approaches Used for Tocochromanol Determination. Molecules 2022; 27:6560. [PMID: 36235100 PMCID: PMC9573122 DOI: 10.3390/molecules27196560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Free and esterified (bound) tocopherols, tocotrienols and other tocochromanol-related compounds, often referred to "tocols", are lipophilic antioxidants of great importance for health. For instance, α-tocopherol is the only tocochromanol with vitamin E activity, while tocotrienols have a positive impact on health and are proposed in the prevention and therapy of so-called modern diseases. Tocopherols, tocotrienols and plastochromanol-8 are the most well-known tocochromanols; in turn, knowledge about tocodienols, tocomonoenols, and other rare tocochromanol-related compounds is limited due to several challenges in analytical chemistry and/or low concentration in plant material. The presence of free, esterified, and non-extractable tocochromanols in plant material as well as their biological function, which may be of great scientific, agricultural and medicinal importance, is also poorly studied. Due to the lack of modern protocols as well as equipment and tools, for instance, techniques suitable for the efficient and simultaneous chromatographical separation of major and minor tocochromanols, the topic requires attention and new solutions, and/or standardization, and proper terminology. This review discusses the advantages and disadvantages of different chromatographic techniques, tools and approaches used for the separation and detection of different tocochromanols in plant material and foodstuffs. Sources of tocochromanols and procedures for obtaining different tocochromanol analytical standards are also described. Finally, future challenges are discussed and perspective green techniques for tocochromanol determination are proposed along with best practice recommendations. The present manuscript aims to present key aspects and protocols related to tocochromanol determination, correct identification, and the interpretation of obtained results.
Collapse
Affiliation(s)
- Paweł Górnaś
- Institute of Horticulture, Graudu 1, LV-3701 Dobele, Latvia
| | | | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| |
Collapse
|
9
|
Simultaneous Determination of Retinols and Tocols in Egg and Milk Products Based on RP-HPLC Linked with Fluorescent and Photodiode Array. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8431662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this paper, we built a method of verifying the 4 retinols of vitamin A and 8 tocopherol isomers of vitamin E in the food industry based on RP-HPLC-PDA-FLR. The effect of laboratory light conditions on the target components was considered for the first time, and it was found that the loss rate of the target components was the smallest in the case of a white laboratory bench with red or LED light in the dark room. There was no finding of extraction recoveries of the target components with a significant difference under different saponification conditions. Meanwhile, it was found that using ethyl acetate/n-hexane mixed solvent as the extraction solvent could ensure the effective extraction of the target components. Finally, baseline separation of 12 components was achieved within 45 min using the C30 column. With the help of methodological verification, we found that the recovery rate ranged from 76.45% to 93.52%, and RSD was between 0.19% and 12.99%; the Limit of Detection minimum value was 0.01 mg/100 g and the Limit of Quantitation minimum value was 0.03 mg/100 g. The detection method was successfully applied to the distribution detection of 4 kinds of retinols and 8 kinds of vitamin E in egg and dairy products and provided technical support for the accurate nutritional evaluation of vitamin A and vitamin E.
Collapse
|
10
|
Sánchez-Arévalo CM, Iborra-Clar A, Vincent-Vela MC, Álvarez-Blanco S. Exploring the extraction of the bioactive content from the two-phase olive mill waste and further purification by ultrafiltration. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Zamljen T, Slatnar A, Hudina M, Veberic R, Medic A. Characterization and Quantification of Capsaicinoids and Phenolic Compounds in Two Types of Chili Olive Oils, Using HPLC/MS. Foods 2022; 11:foods11152256. [PMID: 35954023 PMCID: PMC9367771 DOI: 10.3390/foods11152256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chili olive oil is a popular addition to various foods in many countries. In a detailed study, the content of phenols and capsaicinoids in chili olive oil was determined using chili flakes and whole chilies. A total of 99.8% of the phenols in chili olive oil were secoiridoids, with elenolic acid, oleuropein aglycones, and ligostride aglycones being the most abundant. Chili olive oil with chili flakes contained higher levels of capsaicinoids (+21.6%) compared to whole chili olive oil. Capsaicin and dihydrocapsaicin accounted for about 95% of all capsaicinoids in the chili olive oil. The extraction rate of dry “Cayenne” chili was 7.1% in whole chili olive oil and 9% in chili olive oil with flakes, confirming that chili flakes are better extracted in olive oil. With the determination of 29 individual phenols and five individual capsaicinoids, the study provided a detailed insight into the secondary metabolites of chili olive oil and confirmed that it is a health source.
Collapse
|
12
|
Papadaki E, Tsimidou MZ. Edible oils from olive drupes as a source of bioactive pentacyclic triterpenes. Is there a prospect for a health claim authorization? Food Chem 2022; 381:132286. [PMID: 35123226 DOI: 10.1016/j.foodchem.2022.132286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
Abstract
Virgin olive oil and olive-pomace oil constitute high nutritional value edible oils due to the presence of oleic acid and a variety of bioactives. Among the latter, the group of pentacyclic triterpenes (PcTr) is the least studied. This review provides an insight into the biosynthesis of PcTr in the olive fruit, mainly of oleanane-type, and the factors influencing their transfer to the oil. Particular attention is given to the extraction methods along with the liquid and gas chromatography coupled to mass spectrometry protocols used for the discrimination and determination of PcTr. The in vivo bioactive properties of PcTr through the intake of these oils against cardiovascular diseases, liver dysfunction, obesity and diabetes are presented with a prospect of a future health claim authorization. Gaps in literature are pointed out to support this goal.
Collapse
Affiliation(s)
- Eugenia Papadaki
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Maria Z Tsimidou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
13
|
Rangan P, Maurya R, Singh S. Can omic tools help generate alternative newer sources of edible seed oil? PLANT DIRECT 2022; 6:e399. [PMID: 35774621 PMCID: PMC9219012 DOI: 10.1002/pld3.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
There are three pathways for triacylglycerol (TAG) biosynthesis: De novo TAG biosynthesis, phosphatidylcholine-derived biosynthesis, and cytosolic TAG biosynthesis. Variability in fatty acid composition is mainly associated with phosphatidylcholine-derived TAG pathway. Mobilization of TAG-formed through cytosolic pathway into lipid droplets is yet unknown. There are multiple regulatory checkpoints starting from acetyl-CoA carboxylase to the lipid droplet biogenesis in TAG biosynthesis. Although a primary metabolism, only a few species synthesize oil in seeds for storage, and less than 10 species are commercially exploited. To meet out the growing demand for oil, diversifying into newer sources is the only choice left. The present review highlights the potential strategies targeting species like Azadirachta, Callophyllum, Madhuca, Moringa, Pongamia, Ricinus, and Simarouba, which are not being used for eating but are otherwise high yielding (ranging from 1.5 to 20 tons per hectare) with seeds having a high oil content (40-60%). Additionally, understanding the toxin biosynthesis in Ricinus and Simarouba would be useful in developing toxin-free oil plants. Realization of the importance of cell cultures as "oil factories" is not too far into the future and would soon be a commercially viable option for producing oils in vitro, round the clock.
Collapse
Affiliation(s)
- Parimalan Rangan
- Division of Genomic ResourcesICAR‐National Bureau of Plant Genetic ResourcesNew Delhi‐12India
| | - Rasna Maurya
- Division of Genomic ResourcesICAR‐National Bureau of Plant Genetic ResourcesNew Delhi‐12India
| | - Shivani Singh
- Division of Genomic ResourcesICAR‐National Bureau of Plant Genetic ResourcesNew Delhi‐12India
| |
Collapse
|
14
|
Gabrielle Alves de Carvalho A, Olmo-García L, Rachel Antunes Gaspar B, Carrasco-Pancorbo A, Naciuk Castelo-Branco V, Guedes Torres A. Evolution of the metabolic profile of virgin olive oil during deep-frying: Assessing the transfer of bioactive compounds to the fried food. Food Chem 2022; 380:132205. [DOI: 10.1016/j.foodchem.2022.132205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/22/2023]
|
15
|
Discriminant analysis of vegetable oils by thermogravimetric-gas chromatography/mass spectrometry combined with data fusion and chemometrics without sample pretreatment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Habibi E, Baâti T, Njim L, M’Rabet Y, Hosni K. Antioxidant and protective effects of extra virgin olive oil incorporated with diallyl sulfide against CCl 4-induced acute liver injury in mice. Food Sci Nutr 2021; 9:6818-6830. [PMID: 34925810 PMCID: PMC8645721 DOI: 10.1002/fsn3.2638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
The present study delineates the effects of incorporation of 1% diallyl sulfide (DAS) into extra virgin olive oil (EVOO) on the physico-chemical characteristics, in vitro antioxidant, and in vivo hepatoprotective properties in CCl4-induced acute liver injury in mice. Results showed that the DAS-rich EVOO exhibited good oxidative stability over one-month storage and preserved its original quality-related parameters including major components (oleic acid, linoleic acid, and palmitic acid), and minor components (tocopherols, chlorophylls and carotenoids, tyrosol, hydroxytyrosol, elenolic acid, oleuropein and its aglycone, pinoresinol, vanilic acid, cinnamic acid, ferulic acid, luteolin, apigenin, and sterols). Compared with EVOO or DAS, the DAS-rich EVOO displayed the highest DPPH and ABTS-radical scavenging activities and showed the strongest cellular antioxidant activity (CAA). In connection with its free radical scavenging activity and CAA, DAS-rich EVOO significantly normalized the serum ALT and AST levels and prevented the increase in interleukin-6 in CCl4-intoxicated mice. The manifest anti-inflammatory and hepatoprotective effects of DAS-rich EVOO were further supported by liver histopathological examinations. Overall, the EVOO enrichment with DAS could open up opportunities for the development of novel functional food with improved antioxidant and hepatoprotective properties.
Collapse
Affiliation(s)
- Emna Habibi
- Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico‐chimique (INRAP)Sidi thabetArianaTunisia
- Faculté des Sciences de GabesUniversité de GabesTunisTunisia
| | - Tarek Baâti
- Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico‐chimique (INRAP)Sidi thabetArianaTunisia
| | - Leila Njim
- Service d’Anatomie et de Cytologie PathologiqueCHU Fattouma BourguibaMonastirTunisia
| | - Yassine M’Rabet
- Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico‐chimique (INRAP)Sidi thabetArianaTunisia
| | - Karim Hosni
- Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico‐chimique (INRAP)Sidi thabetArianaTunisia
| |
Collapse
|
17
|
Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Olive oil is considered one of the most valuable vegetable oils and is highly appreciated by consumers for its specific and distinguishable taste and aroma, as well as its nutritional value. Sterols and triterpene diols are important carriers of bioactive properties of olive oil and are responsible for some of the beneficial effects of its consumption on human health, such as lowering serum LDL-cholesterol levels and significantly reducing the risk of cardiovascular diseases. The concentration of total sterols and the proportions of particular sterols and triterpene diols are among the parameters used to verify and prove the authenticity of olive oil in accordance with the EU and other countries’ regulations. Finally, their composition has been shown to have high discrimination potential for ensuring traceability with respect to variety, geographical origin, harvest date, and other factors. For these reasons, the research on sterols and triterpene diols in olive oil is an ever-growing field of scientific interest with great practical importance. This review focuses on all the important aspects of sterols and triterpene diols in olive oil, from their chemical structure, biosynthesis, occurrence and role in plants, health benefits, and their use in official controls of olive oil purity and authenticity, to a conclusive survey on the recent findings about the effects of different factors of influence on their content and composition, with a detailed comparative analysis of studies that investigated the effects of the two most important factors, variety and ripening degree.
Collapse
|
18
|
Mota MFS, Waktola HD, Nolvachai Y, Marriott PJ. Gas chromatography ‒ mass spectrometry for characterisation, assessment of quality and authentication of seed and vegetable oils. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Duan SG, Hong K, Tang M, Tang J, Liu LX, Gao GF, Shen ZJ, Zhang XM, Yi Y. Untargeted metabolite profiling of petal blight in field-grown Rhododendron agastum using GC-TOF-MS and UHPLC-QTOF-MS/MS. PHYTOCHEMISTRY 2021; 184:112655. [PMID: 33540237 DOI: 10.1016/j.phytochem.2021.112655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Petal blight caused by fungi is among the most destructive diseases of Rhododendron, especially Rhododendron agastum. Nonetheless, the metabolite changes that occur during petal blight are unknown. We used untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) to compare the metabolite profiles of healthy and petal blight R. agastum flowers. Using GC-TOF-MS, 571 peaks were extracted, of which 189 metabolites were tentatively identified. On the other hand, 364 and 277 metabolites were tentatively identified in the positive and negative ionization modes of the UHPLC-QTOF-MS/MS, respectively. Principal component analysis (PCA) and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) were able to clearly discriminate between healthy and petal blight flowers. Differentially abundant metabolites were primarily enriched in the biosynthesis of specialized metabolites. 17 accumulated specialized metabolites in petal blight flowers have been reported to have antifungal activity, and literature indicates that 9 of them are unique to plants. 3 metabolites (chlorogenic acid, medicarpin, and apigenin) are reportedly involved in resistance to blight caused by pathogens. We therefore speculate that the accumulation of chlorogenic acid, medicarpin, and apigenin may be involved in the resistance to petal blight. Our results suggest that these metabolites may be used as candidate biocontrol agents for the control fungal petal blight in Rhododendron.
Collapse
Affiliation(s)
- Sheng-Guang Duan
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Kun Hong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Jing Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Lun-Xian Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xi-Min Zhang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China.
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China.
| |
Collapse
|
20
|
Guzmán-Albores JM, Bojórquez-Velázquez E, De León-Rodríguez A, Calva-Cruz ODJ, Barba de la Rosa AP, Ruíz-Valdiviezo VM. Comparison of Moringa oleifera oils extracted with supercritical fluids and hexane and characterization of seed storage proteins in defatted flour. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Mekky RH, Abdel-Sattar E, Segura-Carretero A, Contreras MDM. Metabolic Profiling of the Oil of Sesame of the Egyptian Cultivar 'Giza 32' Employing LC-MS and Tandem MS-Based Untargeted Method. Foods 2021; 10:foods10020298. [PMID: 33540686 PMCID: PMC7913063 DOI: 10.3390/foods10020298] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 01/13/2023] Open
Abstract
Sesame (Sesamum indicum L.) is a global oil crop. Sesame oil has been regarded as functional oil with antioxidant properties in several in vivo studies but little is known about its minor fraction. In this line, this study figures out the profile of the polar fraction of Egyptian cultivar Giza 32 sesame oil (SG32 oil) employing reversed-phase high-performance liquid chromatography coupled with diode array detection and electrospray ionization-quadrupole-time-of-flight-mass spectrometry and tandem MS. The characterization of the sesame oil metabolites depended on the observation of their retention time values, accurate MS, and MS/MS data, with UV spectra, and compared with relevant literature and available standards. Remarkably, 86 metabolites were characterized and sub-grouped into phenolic acids, lignans, flavonoids, nitrogenous compounds, and organic acids. From the characterized metabolites, 72 compounds were previously characterized in SG32 cake, which presented antioxidant properties, and hence it could contribute to SG32 oil antioxidant properties. Further studies are required to state the presence of such phenolics in commercial sesame oils and what of these compounds resist oil refining.
Collapse
Affiliation(s)
- Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt
- Research and Development Functional Food Centre (CIDAF), Bioregiόn Building, Health Science Technological Park, Avenida del Conocimiento s/n, 18016 Granada, Spain;
- Correspondence: (R.H.M.); or (M.d.M.C.); Tel.: +20-100-5720-695 (R.H.M.)
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El Kasr El-Aini Street, Cairo 11562, Egypt;
| | - Antonio Segura-Carretero
- Research and Development Functional Food Centre (CIDAF), Bioregiόn Building, Health Science Technological Park, Avenida del Conocimiento s/n, 18016 Granada, Spain;
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - María del Mar Contreras
- Research and Development Functional Food Centre (CIDAF), Bioregiόn Building, Health Science Technological Park, Avenida del Conocimiento s/n, 18016 Granada, Spain;
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
- Department of Chemical, Environmental and Materials Engineering, Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
- Correspondence: (R.H.M.); or (M.d.M.C.); Tel.: +20-100-5720-695 (R.H.M.)
| |
Collapse
|
22
|
Chromatography-MS based metabolomics applied to the study of virgin olive oil bioactive compounds: Characterization studies, agro-technological investigations and assessment of healthy properties. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Ramos-Escudero F, Morales MT, Ramos Escudero M, Muñoz AM, Cancino Chavez K, Asuero AG. Assessment of phenolic and volatile compounds of commercial Sacha inchi oils and sensory evaluation. Food Res Int 2021; 140:110022. [DOI: 10.1016/j.foodres.2020.110022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/14/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
|
24
|
Polari JJ, Mori M, Wang SC. Virgin Olive Oils from Super‐High‐Density Orchards in California: Impact of Cultivar, Harvest Time, and Crop Season on Quality and Chemical Composition. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Juan J. Polari
- Department of Food Science and Technology University of California Davis One Shields Avenue Davis CA 95616 USA
| | - Mary Mori
- California Olive Ranch 1367 E Lassen Ave Chico CA 95973 USA
| | - Selina C. Wang
- Department of Food Science and Technology University of California Davis One Shields Avenue Davis CA 95616 USA
- Olive Center University of California Davis One Shields Avenue Davis CA 95616 USA
| |
Collapse
|
25
|
Contreras MDM, Gómez-Cruz I, Romero I, Castro E. Olive Pomace-Derived Biomasses Fractionation through a Two-Step Extraction Based on the Use of Ultrasounds: Chemical Characteristics. Foods 2021; 10:111. [PMID: 33430320 PMCID: PMC7825784 DOI: 10.3390/foods10010111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Olive-derived biomass is not only a renewable bioenergy resource but also it can be a source of bioproducts, including antioxidants. In this study, the antioxidant composition of extracted olive pomace (EOP) and a new byproduct, the residual fraction from olive pit cleaning (RFOPC or residual pulp) was characterized and compared to olive leafy biomass, which have been extensively studied as a source of antioxidants and other bioactive compounds with pharmacological properties. The chemical characterization showed that these byproducts contain a high amount of extractives; in the case of EOP, it was even higher (52.9%) than in olive leaves (OL) and olive mill leaves (OML) (35.8-45.1%). Then, ultrasound-assisted extraction (UAE) was applied to recover antioxidants from the extractive fraction of these biomasses. The solubilization of antioxidants was much higher for EOP, correlating well with the extractives content and the total extraction yield. Accordingly, this also affected the phenolic richness of the extracts and the differences between all biomasses were diminished. In any case, the phenolic profile and the hydroxytyrosol cluster were different. While OL, OML, and EOP contained mainly hydroxytyrosol derivatives and flavones, RFOPC presented novel trilignols. Other compounds were also characterized, including secoiridoids, hydroxylated fatty acids, triterpenoids, among others, depending on the bioresource. Moreover, after the UAE extraction step, alkaline extraction was applied recovering a liquid and a solid fraction. While the solid fraction could of interest for further valorization as a biofuel, the liquid fraction contained proteins, sugars, and soluble lignin, which conferred antioxidant properties to these extracts, and whose content depended on the biomass and conditions applied.
Collapse
Affiliation(s)
- María del Mar Contreras
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Irene Gómez-Cruz
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Inmaculada Romero
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
26
|
Kokras N, Poulogiannopoulou E, Sotiropoulos MG, Paravatou R, Goudani E, Dimitriadou M, Papakonstantinou E, Doxastakis G, Perrea DN, Hloupis G, Angelis A, Argyropoulou A, Tsarbopoulos A, Skaltsounis AL, Dalla C. Behavioral and Neurochemical Effects of Extra Virgin Olive Oil Total Phenolic Content and Sideritis Extract in Female Mice. Molecules 2020; 25:molecules25215000. [PMID: 33126727 PMCID: PMC7663189 DOI: 10.3390/molecules25215000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine the cognitive and behavioral effects of extra virgin olive oil total phenolic content (TPC) and Sideritis (SID) extracts in female mice, and identify the associated neurochemical changes in the hippocampus and the prefrontal cortex. All animals received intraperitoneal low or high doses of TPC, SID or vehicle treatment for 7 days and were subjected to the Open Field (OF), Novel Object Recognition (NOR) and Tail Suspension Test (TST). The prefrontal cortex and hippocampus were dissected for analysis of neurotransmitters and aminoacids with high performance liquid chromatography with electrochemical detection (HPLC-ED). Both TPC doses enhanced vertical activity and center entries in the OF, which could indicate an anxiolytic-like effect. In addition, TPC enhanced non-spatial working memory and, in high doses, exerted antidepressant effects. On the other hand, high SID doses remarkably decreased the animals’ overall activity. Locomotor and exploratory activities were closely associated with cortical increases in serotonin turnover induced by both treatments. Cognitive performance was linked to glutamate level changes. Furthermore, TPC reduced cortical taurine levels, while SID reduced cortical aspartate levels. TPC seems to have promising cognitive, anxiolytic and antidepressant effects, whereas SID has sedative effects in high doses. Both extracts act in the brain, but their specific actions and properties merit further exploration.
Collapse
Affiliation(s)
- Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Vas. Sofias Avenue 72–74, 11528 Athens, Greece
| | - Eleni Poulogiannopoulou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Marinos G. Sotiropoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Rafaella Paravatou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Eleni Goudani
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Maria Dimitriadou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Electra Papakonstantinou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - George Doxastakis
- Electronic Devices and Materials Laboratory, Department of Electrical and Electronic Engineering, School of Engineering, University of West Attica, Agiou Spiridonos 28, Egaleo, 12243 Athens, Greece; (G.D.); (G.H.)
| | - Despina N. Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11521 Athens, Greece;
| | - George Hloupis
- Electronic Devices and Materials Laboratory, Department of Electrical and Electronic Engineering, School of Engineering, University of West Attica, Agiou Spiridonos 28, Egaleo, 12243 Athens, Greece; (G.D.); (G.H.)
| | - Apostolis Angelis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (A.A.); (A.-L.S.)
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (A.A.); (A.-L.S.)
| | - Anthony Tsarbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
- Bioanalytical Department, GAIA Research Center, The Goulandris Natural History Museum, Othonos 100, Kifissia, 14562 Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (A.A.); (A.-L.S.)
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
- Correspondence:
| |
Collapse
|
27
|
Evaluating Quality Parameters, the Metabolic Profile, and Other Typical Features of Selected Commercial Extra Virgin Olive Oils from Brazil. Molecules 2020; 25:molecules25184193. [PMID: 32933131 PMCID: PMC7570599 DOI: 10.3390/molecules25184193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 01/18/2023] Open
Abstract
The production of extra virgin olive oil (EVOO) in Brazil developed quite recently, and information on commercial Brazilian EVOO's typical features is very scarce. In just one of the previously published works on Brazilian olive oil, the assessed samples were commercially available. In this study, a comprehensive characterization of EVOO samples acquired at local stores (at Rio de Janeiro and Rio Grande do Sul, from the two most prevalent cultivars, Arbequina and Koroneiki) was carried out considering the most relevant quality parameters, antioxidant capacity, oxidative stability, total phenolic content, fatty acid composition, and minor component metabolic profiling. The latter included: (1) the determination of individual phenolic compounds (belonging to four diverse chemical classes) and triterpenic acids by means of a powerful multi-class reversed-phase LC-MS method; (2) the quantitative profiling of tocopherols, phytosterols, and pigments by normal-phase LC-DAD/fluorescence; and (3) the quantitative appraisal of the volatile pattern of the oils by solid-phase microextraction (SPME)-gas chromatography (GC)-MS. By applying these methods, the concentrations of approximately 70 minor compounds were determined in commercial EVOOs from Brazil. To the best of our knowledge, the content of a very large number of phenolic compounds of those determined in the current report (mainly secoiridoids), the three triterpenic acids (maslinic, betulinic, and oleanolic acids), and the individual chlorophyll derivatives had not been previously evaluated in Brazilian EVOOs. The present work provides a broad picture of the compositional profile and other parameters of relevance of selected commercial Brazilian EVOOs available on local markets, describing their typicity and most particular features, some of which are known to have potential impacts on consumers' health.
Collapse
|
28
|
A strategy for the determination of flavor substances in goat milk by liquid chromatography-high resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122274. [DOI: 10.1016/j.jchromb.2020.122274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 07/12/2020] [Indexed: 11/23/2022]
|
29
|
Concentration of Potentially Bioactive Compounds in Italian Extra Virgin Olive Oils from Various Sources by Using LC-MS and Multivariate Data Analysis. Foods 2020; 9:foods9081120. [PMID: 32823794 PMCID: PMC7466375 DOI: 10.3390/foods9081120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
High quality extra virgin olive oils represent an optimal source of nutraceuticals. The European Union (EU) is the world’s leading olive oil producer, with the Mediterranean region as the main contributor. This makes the EU the greatest exporter and consumer of olive oil in the world. However, small olive oil producers also contribute to olive oil production. Beneficial effects on human health of extra virgin olive oil are well known, and these can be correlated to the presence of vitamin E and phenols. Together with the origin of the olives, extraction technology can influence the chemical composition of extra virgin olive oil. The aim of this study was to investigate the concentration of potentially bioactive compounds in Italian extra virgin olive oils from various sources. For this purpose, vitamin E and phenolic fractions were characterized using high-performance liquid chromatography (HPLC) coupled with fluorescence, photodiode array and mass spectrometry detection in fifty samples of oil pressed at industrial plants and sixty-six samples of oil produced in low-scale mills. Multivariate statistical data analysis was used to determine the applicability of selected phenolic compounds as potential quality indicators of extra virgin olive oils.
Collapse
|
30
|
Application of High Resolution Mass Spectrometric methods coupled with chemometric techniques in olive oil authenticity studies - A review. Anal Chim Acta 2020; 1134:150-173. [PMID: 33059861 DOI: 10.1016/j.aca.2020.07.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
Extra Virgin Olive Oil (EVOO), the emblematic food of the Mediterranean diet, is recognized for its nutritional value and beneficial health effects. The main authenticity issues associated with EVOO's quality involve the organoleptic properties (EVOO or defective), mislabeling of production type (organic or conventional), variety and geographical origin, and adulteration. Currently, there is an emerging need to characterize EVOOs and evaluate their genuineness. This can be achieved through the development of analytical methodologies applying advanced "omics" technologies and the investigation of EVOOs chemical fingerprints. The objective of this review is to demonstrate the analytical performance of High Resolution Mass Spectrometry (HRMS) in the field of food authenticity assessment, allowing the determination of a wide range of food constituents with exceptional identification capabilities. HRMS-based workflows used for the investigation of critical olive oil authenticity issues are presented and discussed, combined with advanced data processing, comprehensive data mining and chemometric tools. The use of unsupervised classification tools, such as Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA), as well as supervised classification techniques, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Partial Least Square Discriminant Analysis (PLS-DA), Orthogonal Projection to Latent Structure-Discriminant Analysis (OPLS-DA), Counter Propagation Artificial Neural Networks (CP-ANNs), Self-Organizing Maps (SOMs) and Random Forest (RF) is summarized. The combination of HRMS methodologies with chemometrics improves the quality and reliability of the conclusions from experimental data (profile or fingerprints), provides valuable information suggesting potential authenticity markers and is widely applied in food authenticity studies.
Collapse
|
31
|
Klikarová J, Česlová L, Kalendová P, Dugo P, Mondello L, Cacciola F. Evaluation of Italian extra virgin olive oils based on the phenolic compounds composition using multivariate statistical methods. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03484-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Uncu O, Ozen B. Importance of some minor compounds in olive oil authenticity and quality. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Lioupi A, Nenadis N, Theodoridis G. Virgin olive oil metabolomics: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1150:122161. [PMID: 32505112 DOI: 10.1016/j.jchromb.2020.122161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Metabolomics involvement in the study of foods is steadily growing. Such a rise is a consequence of the increasing demand in the food sector to address challenges regarding the issues of food safety, quality, and authenticity in a more comprehensive way. Virgin olive oil (VOO) is a key product of the Mediterranean diet, with a globalized consumer interest as it may be associated with various nutritional and health benefits. Despite the strict legislation to protect this high added-value agricultural commodity and offer guarantees to consumers and honest producers, there are still analytical issues needing to be further addressed. Thus, this review aims to present the efforts made using targeted and untargeted metabolomics approaches, namely nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry-based techniques (mainly LC/GC-MS) combined with multivariate statistical analysis. Case-studies focusing on geographical/varietal classification and detection of adulteration are discussed with regards to the identification of possible markers. The advantages and limitations of each of the aforementioned techniques applied to VOO analysis are also highlighted.
Collapse
Affiliation(s)
- Artemis Lioupi
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
| | - Nikolaos Nenadis
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece.
| |
Collapse
|
34
|
Angelis A, Mavros P, Nikolaou PE, Mitakou S, Halabalaki M, Skaltsounis L. Phytochemical analysis of olive flowers' hydroalcoholic extract and in vitro evaluation of tyrosinase, elastase and collagenase inhibition activity. Fitoterapia 2020; 143:104602. [PMID: 32353404 DOI: 10.1016/j.fitote.2020.104602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/16/2022]
Abstract
Olea europaea L. is historically one of the most important trees of the Mediterranean countries. Increasing scientific interest regarding its fruits, leaves and olive oil has led to the elucidation of several phytochemical and biological characteristics. However, the phytochemical and biological studies regarding olive flowers remain limited. The aim of the present study was the phytochemical characterization of olive flowers' hydroalcoholic extract from Greek variety Lianolia, the effective isolation of the major secondary metabolites and evaluation of their inhibition activity against tyrosinase, elastase and collagenase. UPLC-HRMS/MS analysis was used to investigate the chemical composition of hydroalcoholic extract resulting in the identification of sixty-three secondary metabolites witch mainly belong to phenilethanoids, triterpenoids, flavonoids and secoiridoids. The orthogonial combination of Centrifugal Partition Chromatography and preparative HPLC in the same purification process led to the isolation of nine major compounds of the extract including two triterpenic acids, two flavonoid glycosides and five secoiridoid derivatives. From them, oleofloside A and oleofloside B are new natural products. Although, the hydroalcoholic extract and isolated secoiridoids exhibited weak or no inhibition activity towards tyrosinase and elastase, they exhibit remarkable anti-collagenase activity with 2΄-ethoxyoleuropein being the most active compound.
Collapse
Affiliation(s)
- Apostolis Angelis
- Laboratory of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Panagiotis Mavros
- Laboratory of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; PharmaGnose S.A., Papathansiou 24, 34100 Chalkida, Euboea, Greece
| | - Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, School of Pharmacy, University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece
| | - Sofia Mitakou
- Laboratory of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Maria Halabalaki
- Laboratory of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Leandros Skaltsounis
- Laboratory of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece.
| |
Collapse
|
35
|
Determination of the Phenol and Tocopherol Content in Italian High-Quality Extra-Virgin Olive Oils by Using LC-MS and Multivariate Data Analysis. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01721-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Luan H, Zhu W, Li Y, Bu Y, Li X, Xu Y, Yi S, Li J. Preparation and Flavor Characteristics of Alaska Pollock Frame Seasoning Powder by Solid-Phase Maillard Reaction. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1692398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hongwei Luan
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, China
| | - Yue Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, China
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, China
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, China
| |
Collapse
|
37
|
Olmo-García L, Polari JJ, Li X, Bajoub A, Fernández-Gutiérrez A, Wang SC, Carrasco-Pancorbo A. Study of the minor fraction of virgin olive oil by a multi-class GC–MS approach: Comprehensive quantitative characterization and varietal discrimination potential. Food Res Int 2019; 125:108649. [DOI: 10.1016/j.foodres.2019.108649] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 01/18/2023]
|
38
|
Kalogiouri N, Samanidou V. Advances in the Optimization of Chromatographic Conditions for the Separation of Antioxidants in Functional Foods. ACTA ACUST UNITED AC 2019. [DOI: 10.17145/rss.19.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Olmo-García L, Monasterio RP, Sánchez-Arévalo CM, Fernández-Gutiérrez A, Olmo-Peinado JM, Carrasco-Pancorbo A. Characterization of New Olive Fruit Derived Products Obtained by Means of a Novel Processing Method Involving Stone Removal and Dehydration with Zero Waste Generation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9295-9306. [PMID: 31365237 DOI: 10.1021/acs.jafc.9b04376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a result of an innovative olive fruit processing method involving stone removal and dehydration, a new kind of olive oil and olive flour are generated. The main objective of this work was to accomplish the comprehensive characterization of the minor compounds of both products and to evaluate the effect of the dehydration temperature on their composition. To this end, olive oil and flour samples obtained through the novel processing method were analyzed and compared with "conventional" virgin olive oils (VOO). The applied LC-MS methodology allowed the determination of 57 metabolites belonging to different chemical classes (phenolic compounds, pentacyclic trirterpenes, and tocopherols). Both the new oils and flours presented considerable amounts of olive fruit metabolites that are usually absent from VOO. Quantitative differences were found among VOOs and the new oils, probably due to the inhibition of some enzymes caused by the temperature increase or the absence of water during the processing.
Collapse
Affiliation(s)
- Lucía Olmo-García
- Department of Analytical Chemistry, Faculty of Science , University of Granada , Ave. Fuentenueva s/n , 18071 Granada , Spain
| | - Romina Paula Monasterio
- Instituto de Biología Agrícola de Mendoza (IBAM), CONICET , Alt. Brown 500, Chacras de Coria , 5505 Mendoza , Argentina
| | - Carmen María Sánchez-Arévalo
- Department of Analytical Chemistry, Faculty of Science , University of Granada , Ave. Fuentenueva s/n , 18071 Granada , Spain
| | - Alberto Fernández-Gutiérrez
- Department of Analytical Chemistry, Faculty of Science , University of Granada , Ave. Fuentenueva s/n , 18071 Granada , Spain
| | - José María Olmo-Peinado
- Acer Campestres S.L., Almendro , 37 (Pol. Ind. El Cerezo) , 23670 Castillo de Locubín, Jaén , Spain
| | - Alegría Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Science , University of Granada , Ave. Fuentenueva s/n , 18071 Granada , Spain
| |
Collapse
|
40
|
Flavor characteristics of shrimp sauces with different fermentation and storage time. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.091] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Vazquez A, Sanchez-Rodriguez E, Vargas F, Montoro-Molina S, Romero M, Espejo-Calvo JA, Vilchez P, Jaramillo S, Olmo-García L, Carrasco-Pancorbo A, de la Torre R, Fito M, Covas MI, Martínez de Victoria E, Mesa MD. Cardioprotective Effect of a Virgin Olive Oil Enriched with Bioactive Compounds in Spontaneously Hypertensive Rats. Nutrients 2019; 11:nu11081728. [PMID: 31357464 PMCID: PMC6722946 DOI: 10.3390/nu11081728] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023] Open
Abstract
Olive oil and its derivatives have been described to exert beneficial effects on hypertensive states and cardiovascular disease prevention. We studied the effects of chronic consumption of extra virgin olive oil (EVOO), enriched in bioactive compounds from olive fruit and leaves, on blood pressure, endothelial function, oxidative and inflammatory status, and circulating cholesterol levels, in spontaneously hypertensive rats (SHR). Thirty SHR were randomly assigned to three groups: a control untreated SHR group, an SHR group (1 mL/rat/day) of a control olive oil (17.6 mg/kg of phenolic compounds), and an SHR group (1 mL/rat/day) of the enriched EVOO (750 mg/kg of phenolic compounds) for eight weeks. Ten Wistar Kyoto rats (WKY) were included as healthy controls. Long-term administration of the enriched EVOO decreased systolic blood pressure and cardiac hypertrophy, and improved the ex vivo aortic endothelial dysfunction measured in SHR. Moreover, enriched oil supplementation reduced the plasma levels of Angiotensin II and total cholesterol, and the urinary levels of endothelin-1 and oxidative stress biomarkers, while pro-inflammatory cytokines were unaffected. In conclusion, sustained treatment with EVOO, enriched in bioactive compounds from the olive fruit and leaves, may be an effective tool for reducing blood pressure and cholesterol levels alone or in combination with pharmacological anti-hypertensive treatment.
Collapse
Affiliation(s)
- Alejandra Vazquez
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - Estefania Sanchez-Rodriguez
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - Félix Vargas
- Department of Physiology, Phaculty of Medicine, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - Sebastián Montoro-Molina
- Department of Physiology, Phaculty of Medicine, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, Phaculty of Pharmacy, University of Granada, Campus Cartuja s/n, 180710 Armilla, Granada, Spain
| | - Juan Antonio Espejo-Calvo
- Instituto para la Calidad y Seguridad Alimentaria S.L. (ICSA)-TECNOFOOD I+D SOLUCIONES S.L., Avenida de la Hispanidad 17, 18320 Santa Fe, Granada, Spain
| | - Pedro Vilchez
- Laboratorio CM Europa S.L., Polígono Industrial "Cañada de la Fuente", Carretera Fuensanta, s/n, 23600 Martos, Jaén, Spain
| | - Sara Jaramillo
- Vegetable By-Products of Mediterráneo, SL, Cl Isla Menor CEP Jose Maria Blanco SN, 41010 Seville, Spain
- Fat Institute: Department of Food Phytochemistry Campus of the Pablo de Olavide University, Building 46 Ctra. De Utrera, km. 1, 41013 Seville, Spain
| | - Lucía Olmo-García
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| | - Alegría Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| | - Rafael de la Torre
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Montserrat Fito
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), Dr. Aiguader 88, 08003 Barcelona, Spain
- Spanish Biomedical Research Networking Centre, Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - María-Isabel Covas
- NUPROAS Handelsbolag, Nackã, Sweden, NUPROAS HB, Spanish Office: Apartado de Correos 93, 17242 Girona, Spain
| | - Emilio Martínez de Victoria
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Health Technology Park, Avd of Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - Maria Dolores Mesa
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain.
- Biosanitary Research Institute of Granada, 18014 Granada, Spain.
| |
Collapse
|
42
|
Begines P, Biedermann D, Valentová K, Petrásková L, Pelantová H, Maya I, Fernández-Bolaños JG, Křen V. Chemoenzymatic Synthesis and Radical Scavenging of Sulfated Hydroxytyrosol, Tyrosol, and Acetylated Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7281-7288. [PMID: 31198027 DOI: 10.1021/acs.jafc.9b01065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Potential metabolites of bioactive compounds are important for their biological activities and as authentic standards for metabolic studies. The phenolic compounds contained in olive oil are an important part of the human diet, and therefore their potential metabolites are of utmost interest. We developed a convenient, scalable, one-pot chemoenzymatic method using the arylsulfotransferase from Desulfitobacterium hafniense for the sulfation of the natural olive oil phenols tyrosol, hydroxytyrosol, and of their monoacetylated derivatives. Respective monosulfated (tentative) metabolites were fully structurally characterized using LC-MS, NMR, and HRMS. In addition, Folin-Ciocalteu reduction, 1,1-diphenyl-2-picrylhydrazyl radical scavenging, and antilipoperoxidant activity in rat liver microsomes damaged by tert-butylhydroperoxide were measured and compared to the parent compounds. As expected, the sulfation diminished the radical scavenging properties of the prepared compounds. These compounds will serve as authentic standards of phase II metabolites.
Collapse
Affiliation(s)
- Paloma Begines
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - David Biedermann
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Helena Pelantová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Inés Maya
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - José G Fernández-Bolaños
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - Vladimír Křen
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| |
Collapse
|
43
|
The Phenolic Fraction of Italian Extra Virgin Olive Oils: Elucidation Through Combined Liquid Chromatography and NMR Approaches. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01508-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Zhang L, Wang S, Yang R, Mao J, Jiang J, Wang X, Zhang W, Zhang Q, Li P. Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS. Food Chem 2019; 289:313-319. [PMID: 30955618 DOI: 10.1016/j.foodchem.2019.03.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/04/2023]
Abstract
A method was developed to simultaneously determine eight bioactive compounds in edible oil based on ultrasound-assisted saponification, liquid-liquid extraction and liquid chromatography coupled with tandem mass spectrometry. Central composite design was employed to optimize ultrasonic temperature and time of saponification. Sample treatment was conducted by ultrasound-assisted saponification at temperature of 75 °C for 40 min. Limits of detection and limits of quantification ranged from 2.0 to 3.2 and from 6.1 to 10.0 ng/mL, respectively. Linear correlations were obtained (R2 > 0.99) and the recoveries at three spiked levels were between 81.7% and 112.0%. This method was employed to determine eight compounds in camellia oils and olive oils. As results, the contents of stigmasterol, δ-tocopherol, γ-tocopherol, β-carotene and lutein in camellia oils were significantly higher than those in olive oils (p < 0.05). The proposed method can be successfully used to determination of these eight active compounds in camellia oil and other edible oils.
Collapse
Affiliation(s)
- Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Sujun Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Ruinan Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jun Jiang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
45
|
Olmo‐García L, Wendt K, Kessler N, Bajoub A, Fernández‐Gutiérrez A, Baessmann C, Carrasco‐Pancorbo A. Exploring the Capability of LC‐MS and GC‐MS Multi‐Class Methods to Discriminate Virgin Olive Oils from Different Geographical Indications and to Identify Potential Origin Markers. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lucía Olmo‐García
- Faculty of ScienceDepartment of Analytical ChemistryUniversity of GranadaAve. Fuentenueva s/n18071GranadaSpain
| | - Karin Wendt
- Bruker Daltonik GmbHFahrenheitstraße 428359BremenGermany
| | | | - Aadil Bajoub
- Department of Basic SciencesNational School of Agriculturekm 10, Haj Kaddour RoadB.P. S/40MeknèsMorocco
| | - Alberto Fernández‐Gutiérrez
- Faculty of ScienceDepartment of Analytical ChemistryUniversity of GranadaAve. Fuentenueva s/n18071GranadaSpain
| | | | - Alegría Carrasco‐Pancorbo
- Faculty of ScienceDepartment of Analytical ChemistryUniversity of GranadaAve. Fuentenueva s/n18071GranadaSpain
| |
Collapse
|
46
|
Saleh KA, Albinhassan TH, Elbehairi SEI, Alshehry MA, Alfaifi MY, Al-Ghazzawi AM, Al-Kahtani MA, Alasmari ADA. Cell Cycle Arrest in Different Cancer Cell Lines (Liver, Breast, and Colon) Induces Apoptosis under the Influence of the Chemical Content of Aeluropus lagopoides Leaf Extracts. Molecules 2019; 24:E507. [PMID: 30708938 PMCID: PMC6384719 DOI: 10.3390/molecules24030507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/25/2023] Open
Abstract
Natural products, especially secondary metabolites produced by plants under stressed conditions, are shown to have different pharmacological impacts from one to another. Aeluropus lagopoides is one of the common halophyte plants that survive under stressed conditions, and has been used for healing wounds and as a painkiller. The bioactivity and the chemical composition of this plant have been poorly investigated. Consequently, the chemical components of A. lagopoides leaves were extracted using hexane (nonpolar), ethyl acetate (semi-polar), and n-butanol (polar) to extract the most extensive variety of metabolites. The cytotoxicity and anticancer impact of extracted secondary metabolites were evaluated against breast (MCF-7), colon (HCT-116), and liver (HepG2) cancer cell lines using a SulphoRhodamine-B (SRB) test. Their mechanisms of action were verified by observing the appearance of apoptotic bodies using the fluorescent microscope, while their antiproliferative impacts were evaluated using a flow cytometer. Results revealed that secondary metabolites extracted using hexane and ethyl acetate had the highest cytotoxicity and thus the greatest anticancer activity effect on HepG2 with IC50 (24.29 ± 0.85 and 11.22 ± 0.679 µg/mL, respectively). On the other hand, flow cytometer results showed that secondary metabolites could inhibit the cell cycle in the G0/G1 phase. To ascertain the chemical composition⁻function relationship, the extracts were analyzed using LC-MS/MS. Accordingly, A. lagopoides hexane and ethyl acetate extracts may contain agents with anticancer potential.
Collapse
Affiliation(s)
- Kamel A Saleh
- Department of Biology, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Tahani H Albinhassan
- Department of Biology, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Serage Eldin I Elbehairi
- Department of Biology, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Mohammed A Alshehry
- Department of Biology, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Mohammad Y Alfaifi
- Department of Biology, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Adel M Al-Ghazzawi
- Department of Chemistry, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Mohamed A Al-Kahtani
- Department of Biology, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Abdullah D A Alasmari
- Asser Toxicology Center, King Abduallah Street, 61441, P.O. Box 1988 Abha, Saudi Arabia.
| |
Collapse
|
47
|
Unravelling the Distribution of Secondary Metabolites in Olea europaea L.: Exhaustive Characterization of Eight Olive-Tree Derived Matrices by Complementary Platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules 2018; 23:molecules23102419. [PMID: 30241383 PMCID: PMC6222318 DOI: 10.3390/molecules23102419] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
In order to understand the distribution of the main secondary metabolites found in Olea europaea L., eight different samples (olive leaf, stem, seed, fruit skin and pulp, as well as virgin olive oil, olive oil obtained from stoned and dehydrated fruits and olive seed oil) coming from a Picudo cv. olive tree were analyzed. All the experimental conditions were selected so as to assure the maximum coverage of the metabolome of the samples under study within a single run. The use of LC and GC with high resolution MS (through different ionization sources, ESI and APCI) and the annotation strategies within MetaboScape 3.0 software allowed the identification of around 150 compounds in the profiles, showing great complementarity between the evaluated methodologies. The identified metabolites belonged to different chemical classes: triterpenic acids and dialcohols, tocopherols, sterols, free fatty acids, and several sub-types of phenolic compounds. The suitability of each platform and polarity (negative and positive) to determine each family of metabolites was evaluated in-depth, finding, for instance, that LC-ESI-MS (+) was the most efficient choice to ionize phenolic acids, secoiridoids, flavonoids and lignans and LC-APCI-MS was very appropriate for pentacyclic triterpenic acids (MS (−)) and sterols and tocopherols (MS (+)). Afterwards, a semi-quantitative comparison of the selected matrices was carried out, establishing their typical features (e.g., fruit skin was pointed out as the matrix with the highest relative amounts of phenolic acids, triterpenic compounds and hydroxylated fatty acids, and seed oil was distinctive for its high relative levels of acetoxypinoresinol and tocopherols).
Collapse
|