1
|
Roszczenko P, Szewczyk-Roszczenko OK, Gornowicz A, Iwańska IA, Bielawski K, Wujec M, Bielawska A. The Anticancer Potential of Edible Mushrooms: A Review of Selected Species from Roztocze, Poland. Nutrients 2024; 16:2849. [PMID: 39275166 PMCID: PMC11397457 DOI: 10.3390/nu16172849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Edible mushrooms are not only a valued culinary ingredient but also have several potential medicinal and industrial applications. They are a rich source of protein, fiber, vitamins, minerals, and bioactive compounds such as polysaccharides and terpenoids, and thus have the capacity to support human health. Some species have been shown to have antioxidant, anti-inflammatory, anticancer, and immunomodulatory properties. We have therefore attempted to summarize the potential properties of the edible mushrooms popular in Poland, in the Roztocze area.
Collapse
Affiliation(s)
- Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | | | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Iga Anna Iwańska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
2
|
Chen X, Xu B. Insights into chemical components, health-promoting effects, and processing impact of golden chanterelle mushroom Cantharellus cibarius. Food Funct 2024; 15:7696-7732. [PMID: 38967456 DOI: 10.1039/d4fo00891j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Cantharellus cibarius (CC) is a culinary mushroom with significant commercial potential due to its diverse components and bioactive functions. CC is rich in carbohydrates, proteins, minerals, vitamins, and aroma compounds while being low in fat and calories. Moreover, CC contains an abundance of bioactive substances including phenolic compounds, vitamin precursors, and indole derivatives. Numerous studies have claimed that CC has diverse functions such as antioxidant, antimicrobial, immunoregulation, anti-inflammatory, antitumor, neuroprotective, antidiabetic, and prebiotic effects in in vivo or in vitro settings. In addition, a variety of thermal, physical, chemical, and biological treatment methods have been investigated for the processing and preservation of CC. Consequently, this study aims to present a comprehensive review of the chemical composition, health benefits, and processing techniques of CC. Furthermore, the issue of heavy metal accumulation in CC has been indicated and discussed. The study highlights the potential of CC as a functional food in the future while providing valuable insights for future research and identifying areas requiring further investigation.
Collapse
Affiliation(s)
- Xinlei Chen
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
3
|
Kulshreshtha S. Mushroom as Prebiotics: a Sustainable Approach for Healthcare. Probiotics Antimicrob Proteins 2024; 16:699-712. [PMID: 37776487 DOI: 10.1007/s12602-023-10164-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
Mushrooms are considered as sustainable foods as they require less effort and can be cultivated on different agro-industrial wastes. Besides, these possess many nutraceuticals for providing health benefits along with supplementing nutrition. The mushrooms are also used as prebiotics for their ability to support beneficial microbes in the gut and inhibit the growth of pathogens. Furthermore, these remain undigested in the upper gut and reach the intestine to replenish the gut microbiota. The mushrooms boost health by inhibiting the binding of pathogenic bacteria, by promoting the growth of specific gut microbiota, producing short chain fatty acids, and regulating lipid metabolism and cancer. Research has been initiated in the commercial formulation of various products such as yogurt and symbiotic capsules. This paper sheds light on health-promoting effect, disease controlling, and regulating effect of mushroom prebiotics. This paper also presented a glimpse of commercialization of mushroom prebiotics. In the future, proper standardization of mushroom-based prebiotic formulations will be available to boost human health.
Collapse
Affiliation(s)
- Shweta Kulshreshtha
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
4
|
Shall A, Dadey E, Wu Q, Qian Z, Xu Z. Inhibitory Effects of the Methanol Extract of the Golden Chanterelle Mushroom, Cantharellus cibarius (Agaricomycetes) in Treating a Human Acute Myeloid Leukemia Cell Line. Int J Med Mushrooms 2024; 26:11-19. [PMID: 39704616 DOI: 10.1615/intjmedmushrooms.2024055328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Currently available treatments for acute myeloid leukemia exhibit side effects that limit their use, with primary and secondary resistance as persistent issues. While edible mushrooms possess nutritional value, they are also an excellent source of bioactive compounds that may have the potential to treat multiple disease states. The aim of the present study was to investigate the in vitro inhibitory effects of chromatographic fractions from the methanol extract of Cantharellus cibarius in a human acute myeloid leukemia (AML) cell line MV4-11. The mushrooms were purchased from a grocery store, the fruiting bodies were triturated and then extracted with 99.9% methanol to generate a crude extract. This crude extract was then redissolved in methanol, filtered over cotton to remove insoluble solids, and then fractionated over Sephadex® LH-20. Each fraction was dried and then analyzed by reverse-phase HPLC. A typical UV wavelength was selected for the detection of possible anticancer compounds in C. cibarius based on the major chromophores in main fungal anticancer agents reported. Based on chromatographic profiles, specific fractions that might contain potential anticancer agents were combined, and the inhibitory activity of the combined fractions was assessed against the MV4-11 leukemia cell line. Data confirmed that one combined fraction LH-20F-IV showed the greatest degree of in vitro inhibitory activity against the selected cell line. Fast determination of the potential anticancer compound containing fraction was completed through the application of reported chemoinformatics on HPLC detection of possible chromophores in potential anticancer agents, in combination with cellular bioassays.
Collapse
Affiliation(s)
- Antonio Shall
- School of Pharmacy, South College, Knoxville, TN 37922, USA
| | | | - Qiong Wu
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Zhijian Qian
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Zhihong Xu
- College of Arts & Sciences, University of Pikeville, Pikeville, KY 41501, USA
| |
Collapse
|
5
|
Tian R, Zhang YZ, Cheng X, Xu B, Wu H, Liang ZQ, Rahman M, Wang Y, Zeng NK. Structural characterization, and in vitro hypoglycemic activity of a polysaccharide from the mushroom Cantharellus yunnanensis. Int J Biol Macromol 2023; 253:127200. [PMID: 37793536 DOI: 10.1016/j.ijbiomac.2023.127200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
A polysaccharide CY-2 from C. yunnanensis was obtained through a process of consecutive water extraction, alcohol precipitation, and DEAE-52 fast-flow chromatography. CY-2, with an average molecular weight of 2.69 × 104 Da mainly consisted of glucose and mannose with a molar ratio of 33.5: 56.9. Infrared spectrum (IR), methylation analysis, and nuclear magnetic resonance (NMR) results revealed that CY-2 may have a backbone consisting of →6)-α-D-Manp-(1 → 3)-β-D-Glcp-(1→, and branch chain β-D-Glcp-(1→. Meanwhile, CY-2 had a higher inhibition rate on α-glucosidase activity compared with other fractions (CY-0, CY-1, and CY-4) and was a mixed competitive inhibitor. In addition, CY-2 at the concentration of 10 μg/mL presented a superior power to improve glucose consumption and metabolism in HepG2 cells compared with metformin. Overall, these findings highlight the potential value of CY-2 as a hypoglycemic agent.
Collapse
Affiliation(s)
- Run Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Yu-Zhuo Zhang
- Gongyi Public Traditional Chinese Medicine Hospital, Henan Province, Zhengzhou 451200, China
| | - Xianbo Cheng
- Dietary Fiber Isolation and Structural Characterization Laboratory, Guangxi Vocational College of Technology and Business, Nanning 530003, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Haitao Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhi-Qun Liang
- College of Science, Hainan University, Haikou 570228, China
| | - Muyassar Rahman
- General Hospital of the Third Division of Xinjiang Production and Construction Corps, Kashgar Hospital District, Kashgar 844000, China
| | - Yong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China.
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
6
|
Bouges E, Segers C, Leys N, Lebeer S, Zhang J, Mastroleo F. Human Intestinal Organoids and Microphysiological Systems for Modeling Radiotoxicity and Assessing Radioprotective Agents. Cancers (Basel) 2023; 15:5859. [PMID: 38136404 PMCID: PMC10741417 DOI: 10.3390/cancers15245859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy is a commonly employed treatment for colorectal cancer, yet its radiotoxicity-related impact on healthy tissues raises significant health concerns. This highlights the need to use radioprotective agents to mitigate these side effects. This review presents the current landscape of human translational radiobiology, outlining the limitations of existing models and proposing engineering solutions. We delve into radiotherapy principles, encompassing mechanisms of radiation-induced cell death and its influence on normal and cancerous colorectal cells. Furthermore, we explore the engineering aspects of microphysiological systems to represent radiotherapy-induced gastrointestinal toxicity and how to include the gut microbiota to study its role in treatment failure and success. This review ultimately highlights the main challenges and future pathways in translational research for pelvic radiotherapy-induced toxicity. This is achieved by developing a humanized in vitro model that mimics radiotherapy treatment conditions. An in vitro model should provide in-depth analyses of host-gut microbiota interactions and a deeper understanding of the underlying biological mechanisms of radioprotective food supplements. Additionally, it would be of great value if these models could produce high-throughput data using patient-derived samples to address the lack of human representability to complete clinical trials and improve patients' quality of life.
Collapse
Affiliation(s)
- Eloïse Bouges
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Charlotte Segers
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Natalie Leys
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Jianbo Zhang
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, 1105 BK Amsterdam, The Netherlands
| | - Felice Mastroleo
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| |
Collapse
|
7
|
Hassan M, Shahzadi S, Ransom RF, Kloczkowski A. Nature's Own Pharmacy: Mushroom-Based Chemical Scaffolds and Their Therapeutic Implications. Int J Mol Sci 2023; 24:15596. [PMID: 37958579 PMCID: PMC10647524 DOI: 10.3390/ijms242115596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Mushrooms are new potential sources of valuable medicines, long neglected because of difficulties experienced in their cultivation. There is a large variety of medicinal mushrooms which possess significant therapeutic properties and are used as medications for various diseases because they contain several novel highly bioactive components. Medicinal mushrooms can be identified based on their morphology, size, mass, and the color of the stalk, cap and spore, and attachment to the stalk. Medicinal mushrooms possess a variety of important biological activities and are used as antioxidants, hepatoprotectors, anticancer, antidiabetic, anti-inflammatory, antiaging, antiviral, antiparasitic, and antimicrobial agents, among others. This review provides a basic overview of the chemical scaffolds present in mushrooms and their therapeutic implications in the human body.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (S.S.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (S.S.)
| | | | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (S.S.)
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
8
|
Liu Y, Chen S, Zhang J, Gao M, Li L. Purification of Polysaccharide Produced by the Haploid Yeast Strain of Tremella sanguinea and Its Antioxidant and Prebiotic Activities. Molecules 2023; 28:5391. [PMID: 37513263 PMCID: PMC10386508 DOI: 10.3390/molecules28145391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Tremella sanguinea is a traditional Chinese medicinal and edible mushroom. Polysaccharides from Tremella mushrooms have received increasing amounts of research attention due to their diverse pharmacological activities. In this study, via the incubation of basidiospores collected from fresh artificially cultivated basidiocarps of T. sanguinea, a haploid yeast strain of T. sanguinea was obtained, and it was found to be a typical loose-slime-forming yeast capable of producing a large amount of exopolysaccharides (EPS). Using DEAE-52 cellulose column chromatography and Sephadex G-100 gel permeation chromatography, the major polysaccharide, named TSPS-1, was separated and purified from the EPS produced by the haploid yeast strain of T. sanguinea. TSPS-1 was a homogeneous polysaccharide with a molecular weight of 2.5 × 103 kDa and consisted of rhamnose, glucose, xylose, mannose and glucuronic acid at a molar ratio of 1: 0.7: 62.2: 24.6: 11.5. The bioactivity of the TSPS-1 polysaccharide was evaluated. The results show that TSPS-1 exhibited noticeable antioxidant activity by scavenging hydroxyl radicals (EC50 = 1.92 mg/mL) and superoxide radicals (EC50 = 1.33 mg/mL), and prebiotic activity by promoting the growth of different probiotic strains in the genus Lactobacillus and Bifidobacterium. These results suggest that the cultivation of the haploid yeast strain can be a promising alternative for the efficient production of valuable T. sanguinea polysaccharides with antioxidant and prebiotic potential.
Collapse
Affiliation(s)
- Yichi Liu
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Suo Chen
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Jialan Zhang
- College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
9
|
Yan S, Duan B, Liu C, Liu G, Kang L, Sun L, Yi L, Zhang Z, Liu Z, Yuan S. Heterologous Expression, Purification and Characterization of an Alkalic Thermophilic β-Mannanase CcMan5C from Coprinopsis cinerea. J Fungi (Basel) 2023; 9:jof9030378. [PMID: 36983546 PMCID: PMC10056200 DOI: 10.3390/jof9030378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
A endo-1,4-β-mannanase (CcMan5C) gene was cloned from Coprinopsis cinerea and heterologously expressed in Pichia pastoris, and the recombinant enzyme was purified by Ni-affinity chromatography and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). CcMan5C hydrolyzed only locust bean gum galactomannan (LBG) but not α-mannan from S. cerevisiae or Avicel cellulose, oat spelt xylan, or laminarin from Laminaria digitata. CcMan5C exhibited distinctive catalytic features that were different from previously reported β-mannanases. (1) CcMan5C is the first reported fungal β-mannase with an optimal alkalic pH of 8.0-9.0 for hydrolytic activity under assay conditions. (2) CcMan5C is the first reported alkalic fungal β-mannase with an optimal temperature of 70 °C for hydrolytic activity under assay conditions. (3) The organic solvents methanol, ethanol, isopropanol, and acetone at concentrations of 10% or 20% did not inhibit CcMan5C activity, while 10% or 20% isopropanol and acetone even enhanced CcMan5C activity by 9.20-34.98%. Furthermore, CcMan5C tolerated detergents such as Tween 20 and Triton X-100, and its activity was even enhanced to 26.2-45.6% by 1% or 10% Tween 20 and Triton X-100. (4) CcMan5C solution or lyophilized CcMan5C exhibited unchanged activity and even increasing activity after being stored at -20 °C or -80 °C for 12 months and retained above 50% activity after being stored at 4 °C for 12 months. These features make CcMan5C a suitable candidate for the detergent industry and paper and pulp industry.
Collapse
Affiliation(s)
- Songling Yan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Baiyun Duan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Cuicui Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Guiyou Liu
- School of Life Science and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Liqin Kang
- School of Life Science and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Lei Sun
- School of Life Science and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Lin Yi
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
10
|
Golden Chanterelle or a Gold Mine? Metabolites from Aqueous Extracts of Golden Chanterelle ( Cantharellus cibarius) and Their Antioxidant and Cytotoxic Activities. Molecules 2023; 28:molecules28052110. [PMID: 36903356 PMCID: PMC10004332 DOI: 10.3390/molecules28052110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Cantharellus cibarius, the golden chanterelle, is the second most-collected wild edible mushroom in Europe and very frequently harvested in Croatia. Wild mushrooms have been considered a healthy food since ancient times and are today highly valued for their beneficial nutritional as well as medicinal properties. Since golden chanterelle is added to different food products to improve their nutritive value, we studied the chemical profile of aqueous extracts of golden chanterelle (at 25 °C and 70 °C) and their antioxidant and cytotoxic activities. Malic acid, pyrogallol and oleic acid were some of the main compounds identified by GC-MS from derivatized extract. p-Hydroxybenzoic acid, protocatechuic acid and gallic acid were the most abundant phenolics quantitatively determined by HPLC, with somewhat higher amounts for samples extracted at 70 °C. Antioxidant activity was determined by ferric reducing antioxidant power assay and oxygen radical absorption method, and the highest results were recorded for golden chanterelle extracted at 70 °C, being 41.54 ± 1.54 and 38.72 ± 2.47 µM TE/L, respectively. Aqueous extract at 25 °C showed the better response against human breast adenocarcinoma MDA-MB-231 (IC50 = 375µg/mL). Our results confirm the beneficial effect of golden chanterelle even under aqueous extraction conditions and highlight its significance as a dietary supplement and in the development of new beverage products.
Collapse
|
11
|
Pan ZC, Zhang YZ, Liang ZQ, Wang Y, Zeng NK. Extraction, Characterization, and In Vitro Hypoglycemic Activity of a Neutral Polysaccharide from the New Medicinal Mushroom Cantharellus yunnanensis (Agaricomycetes). Int J Med Mushrooms 2023; 25:19-31. [PMID: 37560887 DOI: 10.1615/intjmedmushrooms.2023049072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Polysaccharides serve as promising ingredients for health-beneficial functional foods, while there were no investigations into the structural characterizations and bioactivities of an edible mushroom Cantharellus yunnanensis. In the study, crude polysaccharides from this mushroom were extracted by hot water and isolated by ethanol precipitation. Then, a neutral polysaccharide (named CY-1) was purified from the crude polysaccharide by deproteinization with Sevag reagent, decolorization with a kind of macroporous adsorption resin SP-825, DEAE-52 cellulose column chromatography and dialysis. The physicochemical properties of CY-1 were characterized by UV, IR, SEM, NMR, and HPLC analyses. Structural characterizations revealed that CY-1 is a homogeneous heteropolysaccharide with an average molecular weight of 3.06 × 104 Da. CY-1 exhibited a honeycomb structure with an irregular branching shape, and it was composed of mannose, glucose, fucose, xylose, arabinose, galactose, rhamnose, and glucuronic acid, with molar fractions of 54.83%, 25.11%, 10.28% 4.53%, 2.12%, 1.64%, 0.83%, and 0.64%, respectively. In vitro hypoglycemic tests showed that CY-1 had an inhibitory effect on α-glucosidase. In addition, CY-1 of 160 µg/mL promoted glucose consumption in normal HepG2 cells. These results suggested that CY-1 may be a potential hypoglycemic agent.
Collapse
Affiliation(s)
- Zhang-Chao Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P.R. China
| | - Yu-Zhuo Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P.R. China
| | - Zhi-Qun Liang
- College of Science, Hainan University, Haikou, 570228, P.R. China
| | - Yong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P.R. China
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P.R. China
| |
Collapse
|
12
|
Substrate Composition Effect on the Nutritional Quality of Pleurotus ostreatus (MK751847) Fruiting body. Heliyon 2022; 8:e11841. [DOI: 10.1016/j.heliyon.2022.e11841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
|
13
|
Gałgowska M, Pietrzak-Fiećko R. Evaluation of the Nutritional and Health Values of Selected Polish Mushrooms Considering Fatty Acid Profiles and Lipid Indices. Molecules 2022; 27:molecules27196193. [PMID: 36234742 PMCID: PMC9570797 DOI: 10.3390/molecules27196193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Imleria badia, Boletus edulis, and Cantharellus cibarius are popular mushrooms of economic importance in Poland. Since physical and mental development of a person and the maintenance of good health entail providing the body with adequate nutrients, including plant and animal fats, the aim of this study was to determine the fatty acid profiles of three mushroom species from Poland and to assess their nutritional and health values using lipid indices. Studied mushrooms have a favorable fatty acid composition due to the high percentage of polyunsaturated fatty acids. Low values of the atherohenic index (AI) and the thrombogenic index (TI) prove that the consumption of the fungi may decrease the risk of coronary heart disease. Products with a high hypocholesterolemic/hypercholesterolemic ratio (H/H) and health-promoting index value are assumed to be more beneficial to human health, granting the possibility for using mushrooms in the nutrition of people with hypertension and in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Michalina Gałgowska
- Department of Meat Technology and Chemistry, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Cieszyński 1 Sq, 10-719 Olsztyn, Poland
- Department of Dairy Science and Quality Management, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 7 Str., 10-719 Olsztyn, Poland
- Correspondence: (M.G.); (R.P.-F.)
| | - Renata Pietrzak-Fiećko
- Department of Commodity Sciences and Food Analysis, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Cieszyński 1 Sq, 10-719 Olsztyn, Poland
- Correspondence: (M.G.); (R.P.-F.)
| |
Collapse
|
14
|
Zhou R, Wang Y, Li C, Jia S, Shi Y, Tang Y, Li Y. A preliminary study on preparation, characterization, and prebiotic activity of a polysaccharide from the edible mushroom
Ramaria flava. J Food Biochem 2022; 46:e14371. [DOI: 10.1111/jfbc.14371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Rong Zhou
- Department of Biological and Food Engineering School of Chemical Engineering, Xiangtan University Xiangtan China
| | - Yuting Wang
- Department of Biological and Food Engineering School of Chemical Engineering, Xiangtan University Xiangtan China
| | - Chao Li
- Department of Biological and Food Engineering School of Chemical Engineering, Xiangtan University Xiangtan China
| | - Shuting Jia
- Department of Biological and Food Engineering School of Chemical Engineering, Xiangtan University Xiangtan China
| | - Yanan Shi
- Department of Biological and Food Engineering School of Chemical Engineering, Xiangtan University Xiangtan China
| | - Yufang Tang
- Department of Biological and Food Engineering School of Chemical Engineering, Xiangtan University Xiangtan China
| | - Yuqin Li
- Department of Biological and Food Engineering School of Chemical Engineering, Xiangtan University Xiangtan China
| |
Collapse
|
15
|
Zhang YZ, Lin WF, Buyck B, Liang ZQ, Su MS, Chen ZH, Zhang P, Jiang S, An DY, Zeng NK. Morphological and Phylogenetic Evidences Reveal Four New Species of Cantharellus Subgenus Cantharellus (Hydnaceae, Cantharellales) From China. Front Microbiol 2022; 13:900329. [PMID: 35832819 PMCID: PMC9271865 DOI: 10.3389/fmicb.2022.900329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Species of Cantharellus subgenus Cantharellus are interesting and important for their mycorrhizal properties, medicinal values, and edibility. In China, there are many undescribed species of the subgenus. In this study, four new species of subg. Cantharellus, viz. Cantharellus albopileatus, Cantharellus chuiweifanii, Cantharellus pinetorus, and Cantharellus ravus from Hainan and Hunan Provinces, respectively, were described based on morphological and phylogenetic evidence as a contribution to the knowledge of the species diversity in China. Detailed descriptions, color photographs of fresh basidiomata, and line drawings of microstructures of these four new species are presented as well as comparisons with related species.
Collapse
Affiliation(s)
- Yu-Zhuo Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
- College of Science, Hainan University, Haikou, China
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bart Buyck
- UMR 7205, Institut Systématique, Evolution, Biodiversité, Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS, Paris, France
| | - Zhi-Qun Liang
- College of Science, Hainan University, Haikou, China
| | - Ming-Sheng Su
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zuo-Hong Chen
- College of Life Science, Hunan Normal University, Changsha, China
| | - Ping Zhang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Shuai Jiang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- Yinggeling Substation, Hainan Tropical Rainforest National Park, Baisha, China
| | - Dong-Yu An
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| |
Collapse
|
16
|
Bakaytis V, Golub O, Miller Y. Fresh and processed wild Cantharellus cibarius L. growing in West Siberia: food value. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-234-243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Cantharellus cibarius L. is a wild mushroom that has been part of human diet for many centuries. However, there is little reliable information about its nutritional value, storage conditions, shelf life, and processing. The research objective was to study the nutritional value of C. cibarius growing in West Siberia, as well as to define its storage and processing conditions.
Study objects and methods. The research featured fresh and processed (boiled and salted) wild chanterelles (C. cibarius) obtained from the forests of the Novosibirsk region. The mushrooms were tested for amino acids, fatty acids, nutrients, reducing sugars, trehalose, mannit, glycogen, fiber, mucus, squalene, ash, minerals, vitamins, trypsin inhibitor, chlorides, mesophilic and facultative anaerobes, etc. The samples also underwent sensory evaluation.
Results and discussion. The samples of C. cibarius proved to have a high nutritional value. The samples contained 3.6% proteins, including essential amino acids; 3.9% carbohydrates, including sugars and dietary fiber; and 0.7% lipids, including saturated, monounsaturated, and polyunsaturated acids. In addition, C. cibarius appeared to be rich in biologically active substances. It contained trypsin inhibitors that reduce the absorption of protein compounds. Purchasing centers can be recommended to use 70–80% relative air humidity. At 0–2°C, the storage time was five days; at 5–10°C – three days; at 15–20°C – two days; at 20–30°C – one day. Before processing, the mushrooms were washed twice in non-flowing water. C. cibarius also proved to be a valuable raw material for boiled and salted semi-finished products. The optimal boiling time was 5–10 min. Lightly-, medium-, and strong-salted semi-finished mushrooms were ready for consumption after the fermentation was complete, i.e. after day 15, 10, and 3, respectively.
Conclusion. Boiled and salted semi-finished products from Siberian C. cibarius demonstrated excellent sensory qualities and can become part of various popular dishes.
Collapse
Affiliation(s)
| | - Olga Golub
- Siberian University of Consumer Cooperation
| | | |
Collapse
|
17
|
Novel Antioxidant and Hypoglycemic Water-Soluble Polysaccharides from Jasmine Tea. Foods 2021; 10:foods10102375. [PMID: 34681424 PMCID: PMC8535958 DOI: 10.3390/foods10102375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
There have been few studies dealing with chemical elucidation and pharmacological potentials of water-soluble polysaccharides from jasmine tea, limiting their use in functional foods. In this study, water-soluble polysaccharides (named as JSP) were extracted from Jasminum sambac (L.) Aiton tea and fractionated to afford two sub-fractions (JSP-1 and JSP-2). The main structural characteristics of novel JSP sub-fractions were determined by high performance gel permeation chromatography, ultra-performance liquid chromatography-tandem mass spectrometry, Fourier transform infrared, and nuclear magnetic resonance analysis. Physiologically, the abilities of JSP-1 and JSP-2 to reduce ferric ions, scavenge DPPH and hydroxyl radicals, as well as protect islet cells were confirmed in vitro. JSP-1 exhibited better antioxidant and hypoglycemic activities than JSP-2. The molecular weights of JSP-1 and JSP-2 were 18.4 kDa and 14.1 kDa, respectively. JSP-1 was made up of glucose, galactose, rhamnose, xylose, arabinose, and galacturonic acid with molar ratios 1.14:4.69:1.00:9.92:13.79:4.09, whereas JSP-2 with a triple helical structure was composed of galactose, rhamnose, xylose, arabinose, and galacturonic acid as 3.80:1.00:8.27:11.85:5.05 of molar ratios. JSP-1 contains →1)-α-Galƒ-(3→, →1)-α-Galƒ-(2→, →1)-α-Araƒ-(5→, →1)-α-Araƒ-(3→, →1)-α-Araƒ-(3,5→, →1)-β-Xylp-(2→ and →1)-β-Xylp-(3→ residues in the backbone. These results open up new pharmacological prospects for the water-soluble polysaccharides extracted from jasmine tea.
Collapse
|
18
|
Biological activities of a polysaccharide from the coculture of Ganoderma lucidum and Flammulina velutipes mycelia in submerged fermentation. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Preventing Colorectal Cancer through Prebiotics. Microorganisms 2021; 9:microorganisms9061325. [PMID: 34207094 PMCID: PMC8234836 DOI: 10.3390/microorganisms9061325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), the third most common cancer in the world, has been recently rising in emerging countries due to environmental and lifestyle factors. Many of these factors are brought up by industrialization, which includes lack of physical activity, poor diet, circadian rhythm disruption, and increase in alcohol consumption. They can increase the risk of CRC by changing the colonic environment and by altering gut microbiota composition, a state referred to as gut dysbiosis. Prebiotics, which are nutrients that can help maintain intestinal microbial homeostasis and mitigate dysbiosis, could be beneficial in preventing inflammation and CRC. These nutrients can hinder the effects of dysbiosis by encouraging the growth of beneficial bacteria involved in short-chain fatty acids (SCFA) production, anti-inflammatory immunity, maintenance of the intestinal epithelial barrier, pro-apoptotic mechanisms, and other cellular mechanisms. This review aims to summarize recent reports about the implication of prebiotics, and probable mechanisms, in the prevention and treatment of CRC. Various experimental studies, specifically in gut microbiome, have effectively demonstrated the protective effect of prebiotics in the progress of CRC. Hence, comprehensive knowledge is urgent to understand the clinical applications of prebiotics in the prevention or treatment of CRC.
Collapse
|
20
|
Luo J, Yu J, Peng X. Could partial nonstarch polysaccharides ameliorate cancer by altering m 6A RNA methylation in hosts through intestinal microbiota? Crit Rev Food Sci Nutr 2021; 62:8319-8334. [PMID: 34036843 DOI: 10.1080/10408398.2021.1927975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is a growing scientific view that the improvement of cancer by nonstarch polysaccharides (NSPs) is mediated by intestinal microbiota. Intestinal bacteria affect the supply of methyl donor substances and influence N6-methyladenosine (m6A) RNA methylation. As one of the epigenetic/epitranscriptomic modifications, m6A RNA methylation is closely related to the initiation and progression of cancers. This review summarizes the cancer-improving effects of NSPs through modulation of intestinal microbiota. It also summarizes the relationship between intestinal bacteria and the supply of methyl donor substances. Moreover, it also provides a summary of the effects of m6A RNA methylation on various types of cancer. The proposed mechanism is that, dietary consumed NSPs are utilized by specific intestinal bacteria and further reshape the microbial structure. Methyl donor substances will be directly or indirectly generated by the reshaped-microbiota, and affect the m6A RNA methylation of cancer-related and pro-carcinogenic inflammatory cytokine genes. Therefore, NSPs may change the m6A RNA methylation by affecting the methyl donor supply produced by intestinal microbiota and ameliorate cancer. This review discussed the possibility of cancer improvement of bioactive NSPs achieved by impacting RNA methylation via the intestinal microbiota, and it will offer new insights for the application of NSPs toward specific cancer prevention.
Collapse
Affiliation(s)
- Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Juntong Yu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Živković J, Ivanov M, Stojković D, Glamočlija J. Ethnomycological Investigation in Serbia: Astonishing Realm of Mycomedicines and Mycofood. J Fungi (Basel) 2021; 7:jof7050349. [PMID: 33947042 PMCID: PMC8146042 DOI: 10.3390/jof7050349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
This study aims to fill the gaps in ethnomycological knowledge in Serbia by identifying various fungal species that have been used due to their medicinal or nutritional properties. Ethnomycological information was gathered using semi-structured interviews with participants from different mycological associations in Serbia. A total of 62 participants were involved in this study. Eighty-five species belonging to 28 families were identified. All of the reported fungal species were pointed out as edible, and only 15 of them were declared as medicinal. The family Boletaceae was represented by the highest number of species, followed by Russulaceae, Agaricaceae and Polyporaceae. We also performed detailed analysis of the literature in order to provide scientific evidence for the recorded medicinal use of fungi in Serbia. The male participants reported a higher level of ethnomycological knowledge compared to women, whereas the highest number of used fungi species was mentioned by participants within the age group of 61–80 years. In addition to preserving ethnomycological knowledge in Serbia, this study can present a good starting point for further pharmacological investigations of fungi.
Collapse
Affiliation(s)
- Jelena Živković
- Institute for Medicinal Plants Research “Dr Josif Pancic”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (J.G.)
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (J.G.)
- Correspondence: ; Tel.: +381-112078419
| | - Jasmina Glamočlija
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (J.G.)
| |
Collapse
|
22
|
Marathe SJ, Hamzi W, Bashein AM, Deska J, Seppänen-Laakso T, Singhal RS, Shamekh S. Anti-Angiogenic Effect of Cantharellus cibarius Extracts, its Correlation with Lipoxygenase Inhibition, and Role of the Bioactives Therein. Nutr Cancer 2021; 74:724-734. [PMID: 33840317 DOI: 10.1080/01635581.2021.1909739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Angiogenesis is a complex physiological process that cannot be treated with single agent therapy. Several edible fungi have been known to encompass bioactive compounds, and are promising sources of multi-component drugs. One such widely consumed edible fungi is Cantharellus cibarius, which has been explored for its biological activities. The present study focused on assessing the anti-angiogenic activity of petroleum ether and ethanol extracts of C. cibarius using chick chorioallantoic membrane (CAM) assay. Both the extracts showed a dose-dependent response which was compared with the anti-angiogenic activity of the positive controls silibinin, and lenalidomide. The extracts were also studied for their lipoxygenase (LOX) inhibitory potential and compared to ascorbic acid as the positive control. The IC50 values of the petroleum ether extract, ethanol extract, and ascorbic acid for LOX inhibition assay were 135.4, 113.1, and 41.5 µg/mL, respectively. Although both the extracts showed similar responses in CAM assay, ethanol extract proved to be more potent in LOX inhibition assay. Finally, the extracts were investigated for their chemical composition using GC-MS. A correlation between LOX inhibition and anti-angiogenic potential was established at the molecular level. A meticulous literature search was carried out to correlate the biochemical composition of the extracts to their anti-angiogenic activity.
Collapse
Affiliation(s)
| | - Wahiba Hamzi
- Department of Cell Biology and Physiology, Faculty of Natural and Life Sciences, University of Saad Dahlab Blida, Blida, Algeria
| | - Abdulla M Bashein
- Department of Biochemistry, Faculty of Medicine, University of Tripoli, Libya
| | - Jan Deska
- Department of Chemistry and Materials Science, Aalto University, Espoo, Finland
| | - Tuulikki Seppänen-Laakso
- Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
23
|
|
24
|
Niu LL, Wu YR, Liu HP, Wang Q, Li MY, Jia Q. Optimization of extraction process, characterization and antioxidant activities of polysaccharide from Leucopaxillus giganteus. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00865-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Qu Y, Zhao X, Guo H, Meng Y, Wang Y, Zhou Y, Sun L. Structural analysis and macrophage activation of a novel β‑glucan isolated from Cantharellus cibarius. Int J Mol Med 2021; 47:50. [PMID: 33576436 PMCID: PMC7891825 DOI: 10.3892/ijmm.2021.4883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 11/18/2022] Open
Abstract
The present study was designed to investigate the structure and immunomodulatory activity of a polysaccharide. A novel acidic β-glucan (WCCP-A-b; molecular weight, 7.3 kDa) was purified from the fruiting bodies of the edible mushroom Cantharellus cibarius, which possesses high nutritional values. WCCP-A-b was composed primarily of glucose (89.7%) and glucuronic acid (8.8%). Methylation and nuclear magnetic resonance analysis suggested that WCCP-A-b contained β-D-1,6-glucan as its main chain, which was substituted at O-3 by β-1,3-D-Glcp oligosaccharides or a single-unit of β-Glcp residues. Minor β-1,4-D-GlcpA residues may also be present in the side chains. The degree of branching was ~20.9%. Moreover, WCCP-A-b possessed a macrophage activating effect by promoting the secretion of nitric oxide, TNF-α and IL-6 in a dose-dependent manner. At a cellular mechanistic level, WCCP-A-b activated macrophages via the MAPK signaling pathway. The present results provided useful information for supporting further investigations on the structure-activity association of polysaccharides from C. cibarius, and indicated that the novel β-glucan may be a potent natural immunomodulator, thus promoting the application of C. cibarius as a valuable source for functional food.
Collapse
Affiliation(s)
- Yunhe Qu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xiaolin Zhao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Huijun Guo
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Yue Meng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Yumeng Wang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
26
|
Nowacka-Jechalke N, Nowak R, Lemieszek MK, Rzeski W, Gawlik-Dziki U, Szpakowska N, Kaczyński Z. Promising Potential of Crude Polysaccharides from Sparassis crispa against Colon Cancer: An In Vitro Study. Nutrients 2021; 13:E161. [PMID: 33419097 PMCID: PMC7825430 DOI: 10.3390/nu13010161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to evaluate in vitro the beneficial potential of crude polysaccharides from S. crispa (CPS) in one of the most common cancer types-colon cancer. The determination of the chemical composition of CPS has revealed that it contains mostly carbohydrates, while proteins or phenolics are present only in trace amounts. 1H NMR and GC-MS methods were used for the structural analysis of CPS. Biological activity including anticancer, anti-inflammatory and antioxidant properties of CPS was investigated. CPS was found to be non-toxic to normal human colon epithelial CCD841 CoN cells. Simultaneously, they destroyed membrane integrity as well as inhibited the proliferation of human colon cancer cell lines: Caco-2, LS180 and HT-29. Antioxidant activity was determined by various methods and revealed the moderate potential of CPS. The enzymatic assays revealed no influence of CPS on xanthine oxidase and the inhibition of catalase activity. Moreover, pro-inflammatory enzymes such as cyclooxygenase-2 or lipooxygenase were inhibited by CPS. Therefore, it may be suggested that S. crispa is a valuable part of the regular human diet, which may contribute to a reduction in the risk of colon cancer, and possess promising activities encouraging further studies regarding its potential use as chemopreventive and therapeutic agent in more invasive stages of this type of cancer.
Collapse
Affiliation(s)
- Natalia Nowacka-Jechalke
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, 2 Jaczewskiego Street, 20-090 Lublin, Poland; (M.K.L.); (W.R.)
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, 2 Jaczewskiego Street, 20-090 Lublin, Poland; (M.K.L.); (W.R.)
- Department of Functional Anatomy and Cytobiology, Maria Curie Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland;
| | - Nikola Szpakowska
- Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland; (N.S.); (Z.K.)
| | - Zbigniew Kaczyński
- Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland; (N.S.); (Z.K.)
| |
Collapse
|
27
|
Deshaware S, Marathe SJ, Bedade D, Deska J, Shamekh S. Investigation on mycelial growth requirements of Cantharellus cibarius under laboratory conditions. Arch Microbiol 2021; 203:1539-1545. [PMID: 33399895 DOI: 10.1007/s00203-020-02142-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Abstract
The golden chanterelle represents one of the commonly found, edible mushrooms that is highly valued in various cuisines. The present study focused on assessing the requirements of Cantharellus cibarius such as pH, temperature, as well as the carbon and nitrogen sources for mycelial growth. Optimization of the growth parameters was carried out by one-factor-at-a-time method. The optimal pH and temperature were determined to be 6.0 and 22.5 °C, respectively. Among the various carbon sources studied, sucrose at a concentration of 2% gave maximum mycelial growth and proved to be the most suitable one. Amongst the nitrogen sources studied, peptone, ammonium sulphate, and sodium nitrate, gave the maximum mycelial growth at an optimized concentration of 0.5%. In the presence of beef extract and yeast extract, a change in colony pigmentation from yellow to dark grey was observed. Finally, the carbon to nitrogen ratio of 2:0.5 proved to be optimal for mycelial growth. This study is the first report on the optimisation of in vitro growth requirements of C. cibarius.
Collapse
Affiliation(s)
- Shweta Deshaware
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | | | - Dattatray Bedade
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Jan Deska
- Department of Chemistry and Materials Science, Aalto University, Espoo, Finland
| | | |
Collapse
|
28
|
Nowakowski P, Markiewicz-Żukowska R, Gromkowska-Kępka K, Naliwajko SK, Moskwa J, Bielecka J, Grabia M, Borawska M, Socha K. Mushrooms as potential therapeutic agents in the treatment of cancer: Evaluation of anti-glioma effects of Coprinus comatus, Cantharellus cibarius, Lycoperdon perlatum and Lactarius deliciosus extracts. Biomed Pharmacother 2020; 133:111090. [PMID: 33378984 DOI: 10.1016/j.biopha.2020.111090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/15/2020] [Accepted: 11/28/2020] [Indexed: 02/04/2023] Open
Abstract
Cancer incidence rates are on the increase worldwide. The most common brain cancer in adults is glioblastoma. Currently available treatment modalities are limited and natural products such as mushrooms could enhance them. Apart from nutritional value, mushrooms are an excellent source of bioactive compounds and therefore could be used to treat various disorders. The aim of the study was to assess the anti-glioma potential of selected mushrooms on U87MG, LN-18 glioblastoma and SVGp12 normal human astroglial cell lines. The materials were Cantharellus cibarius, Coprinus comatus, Lycoperdon perlatum and Lactarius delicious. Aqueous, 70 % ethanol or 95 % ethanol extracts from mushrooms were used for analysis including assessment of antioxidant activity by DPPH assay, cell viability by MTT assay, DNA biosynthesis by thymidine incorporation assay, activity of metalloproteinase by gelatin zymography and cell cycle assay by flow cytometry. Mushroom extracts influenced the viability and DNA biosynthesis of cancer cells. Activity of ethanol mushroom extracts was stronger than that of aqueous extracts. Anti-glioma mechanism consisted in inhibition of cancer cell proliferation and induction of apoptosis associated with arrest of cells in subG1 or G2/M phase of cell cycle, and inhibition of metalloproteinases activity. Among investigated mushrooms, L. deliciosus and C. comatus showed the greatest anti-glioma potential.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1).
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Krystyna Gromkowska-Kępka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Sylwia Katarzyna Naliwajko
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Justyna Moskwa
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Joanna Bielecka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Monika Grabia
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Maria Borawska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland(1)
| |
Collapse
|
29
|
Jana UK, Suryawanshi RK, Prajapati BP, Kango N. Prebiotic mannooligosaccharides: Synthesis, characterization and bioactive properties. Food Chem 2020; 342:128328. [PMID: 33257024 DOI: 10.1016/j.foodchem.2020.128328] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Functional oligosaccharides are non-digestible food ingredients that confer numerous health benefits. Among these, mannooligosaccharides (MOS) are emerging prebiotics that have characteristic potential bio-active properties. Microbial mannanases can be used to break down mannan rich agro-residues to yield MOS. Various applications of MOS as health promoting functional food ingredient may open up newer opportunities in food and feed industry. Enzymatic hydrolysis is the widely preferred method over chemical hydrolysis for MOS production. Presently, commercial MOS is being derived from yeast cell wall mannan and is widely used as prebiotic in feed supplements for poultry and aquaculture. Apart from stimulating the growth of probiotic microflora, MOS impart anticancer and immunomodulatory effects by inducing different gene markers in colon cells. This review summarizes recent developments and future prospects of enzymatic synthesis of MOS from various mannans, their structural characteristics and their potential health benefits.
Collapse
Affiliation(s)
- Uttam Kumar Jana
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| | - Rahul Kumar Suryawanshi
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| | - Bhanu Pratap Prajapati
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| |
Collapse
|
30
|
Tian W, Xiao N, Yang Y, Xiao J, Zeng R, Xie L, Qiu Z, Li P, Du B. Structure, antioxidant and immunomodulatory activity of a polysaccharide extracted from Sacha inchi seeds. Int J Biol Macromol 2020; 162:116-126. [PMID: 32565299 DOI: 10.1016/j.ijbiomac.2020.06.150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022]
Abstract
In this study, a novel water-soluble polysaccharide (PVLP-1) was extracted and purified from Sacha inchi (Plukenetia volubilis L.) seeds and the structure, antioxidant and immunomodulatory activity of PVLP-1 were investigated. PVLP-1 (144 kDa) consisted of glucose (69.76%), mannose (14.86%), arabinose (10.53%), galactose (2.42%), ribose (1.23%), rhamnose (0.27%) and xylose (0.93%). PVLP-1 displayed characteristic polysaccharide bands in Fourier transform NMR spectra and infrared. The primary structure of PVLP-1 was a heteropolysaccharide with a backbone of (1 → 6)-linked glucose, sidechains of (1 → 4)-linked mannose, (1 → 4)-linked glucose and (1 → 3, 6)-linked mannose and a residue unit of →1)-linked arabinose as revealed the methylation analysis. PVLP-1 possessed good water-holding capacity (WHC), oil-holding capacity (OHC) and antioxidant capacities. Besides, PVLP-1 induced the proliferation of RAW264.7 cell and enhanced the expression of inflammatory cytokines IL-6, TNF-alpha(TNF-α) and IL-1 beta (IL-1β). The present study indicated that PVLP-1 possessed immune-enhancing bioactivities and could be functional food or adjuvant drug to improve biological immunity of immunodeficiency diseases and hypoimmunity.
Collapse
Affiliation(s)
- Wenni Tian
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Yunyun Yang
- Guangdong Engineering and Technology Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jie Xiao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Ruiping Zeng
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Lanhua Xie
- Expert Research Station of Dubing, Pu'er City, Yunnan, 665000, China
| | - Ziyou Qiu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China.
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
31
|
Effects of Laetiporus sulphureus-Fermented Wheat Bran on Growth Performance, Intestinal Microbiota and Digesta Characteristics in Broiler Chickens. Animals (Basel) 2020; 10:ani10091457. [PMID: 32825244 PMCID: PMC7552699 DOI: 10.3390/ani10091457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023] Open
Abstract
Simple Summary This study investigated the effects of a Laetiporussulphureus-fermented wheat bran (LS) supplementation on the microbiota and digesta characteristics of broiler chickens. Results showed that a 5% LS supplementation could potentially enhance the feed conversion ratio and European Broiler Index (EBI) of the broilers by elevating the family Lactobacillaceae and suppressing the phylum Proteobacteria’s population. This could also change the intestinal environments by elevating the ileal and cecal lactic acid concentrations as well as lowering the pH and ammonium nitrate, thereby potentially favoring the growth and health of the broilers. Abstract This study investigated the effects of a Laetiporus sulphureus-fermented wheat bran (LS) supplementation on the microbiota and digesta characteristics of broiler chickens. Two hundred and forty male broilers (Ross 308) were randomly allocated into three groups fed with a corn–soybean-based diet (control), and the control diet being replaced with 5% wheat bran (WB) and 5% LS, respectively. Each group had four replicates and 20 birds per pen. Metagenomics analysis results of the ileum microbiota showed that, at the family level, the 5% LS groups had over 40% higher Lactobacillaceae compared to the control group in a mean difference comparison. Heat maps showed that, at the phylum level, the population of Firmicutes was higher and Proteobacteria was lower in the ileum of 5% LS compared to the control group. Results of the stack column plots of the top ten OTUs at the family level showed that a 5% LS and 5% WB supplementation altered the broiler microbiota distribution by increasing the relative abundance of Lactobacillaceae. Cecal microbiota analysis showed that the 5% LS-supplemented group had approximately 5% and 3% higher Veillonellaceae and Lactobacillaceae, respectively. Stack column plots of the top ten OTUs indicated that the distribution of cecal bacteria in each group was not markedly different. Both the ileum and cecum digesta in the 5% LS supplementation group had a slight and not significant elevation on the total VFA, while the pH values and ammonia nitrogen were significantly lowered compared to the control and 5% WB groups (p < 0.05). In addition, the 5% LS supplementation group had a significantly higher lactic acid concentration in both the ileum and cecum compared to the control and 5% WB groups (p < 0.05). In conclusion, a 5% LS supplementation could potentially enhance the feed conversion ratio and European Broiler Index (EBI) of broilers by elevating the family Lactobacillaceae and suppressing the phylum Proteobacteria’s population, thus creating changed intestinal environments that may potentially favor the growth and health of the broilers.
Collapse
|
32
|
Chen R, Liu B, Wang X, Chen K, Zhang K, Zhang L, Fei C, Wang C, Yingchun L, Xue F, Gu F, Wang M. Effects of polysaccharide from Pueraria lobata on gut microbiota in mice. Int J Biol Macromol 2020; 158:S0141-8130(20)33067-1. [PMID: 32387359 DOI: 10.1016/j.ijbiomac.2020.04.201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Polysaccharide was derived from Pueraria lobata (PPL) which was considered as one of the traditional Chinese medicinal and edible herbs. In the present study, PPL was administered in equal doses (12.5 mg/kg) to both normal mice and antibiotic-associated diarrhea (AAD) mice for two weeks, and was evaluated in terms of body weight, organ indices, gut structure, gut microbiota and short chain fatty acids. The results showed that normal mice treated with PPL not only reduced the isovaleric acid concentration (P < 0.05), but also significantly increased the abundance of beneficial bacteria, involving Oscillospira and Anaerotruncus (P < 0.05). In addition, PPL could relieve colonic pathological changes and gut microbiota dysbiosis caused by AAD. It indicated that PPL was a potential functional food ingredient by modulating gut microbiota.
Collapse
Affiliation(s)
- Rong Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Bo Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Kai Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Keyu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lifang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chenzhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Liu Yingchun
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Feiqun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Feng Gu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|
33
|
FAS/FAS-L-mediated apoptosis and autophagy of SPC-A-1 cells induced by water-soluble polysaccharide from Polygala tenuifolia. Int J Biol Macromol 2020; 150:449-458. [DOI: 10.1016/j.ijbiomac.2020.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
|
34
|
Thu ZM, Myo KK, Aung HT, Clericuzio M, Armijos C, Vidari G. Bioactive Phytochemical Constituents of Wild Edible Mushrooms from Southeast Asia. Molecules 2020; 25:E1972. [PMID: 32340227 PMCID: PMC7221775 DOI: 10.3390/molecules25081972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have a long history of uses for their medicinal and nutritional properties. They have been consumed by people for thousands of years. Edible mushrooms are collected in the wild or cultivated worldwide. Recently, mushroom extracts and their secondary metabolites have acquired considerable attention due to their biological effects, which include antioxidant, antimicrobial, anti-cancer, anti-inflammatory, anti-obesity, and immunomodulatory activities. Thus, in addition to phytochemists, nutritionists and consumers are now deeply interested in the phytochemical constituents of mushrooms, which provide beneficial effects to humans in terms of health promotion and reduction of disease-related risks. In recent years, scientific reports on the nutritional, phytochemical and pharmacological properties of mushroom have been overwhelming. However, the bioactive compounds and biological properties of wild edible mushrooms growing in Southeast Asian countries have been rarely described. In this review, the bioactive compounds isolated from 25 selected wild edible mushrooms growing in Southeast Asia have been reviewed, together with their biological activities. Phytoconstituents with antioxidant and antimicrobial activities have been highlighted. Several evidences indicate that mushrooms are good sources for natural antioxidants and antimicrobial agents.
Collapse
Affiliation(s)
- Zaw Min Thu
- Center of Ningxia Organic Synthesis and Engineering Technology, Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China;
- Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar
| | - Ko Ko Myo
- Center of Ningxia Organic Synthesis and Engineering Technology, Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China;
- Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar
| | - Hnin Thanda Aung
- Department of Chemistry, University of Mandalay, Mandalay 100103, Myanmar;
| | - Marco Clericuzio
- DISIT, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy;
| | - Chabaco Armijos
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| | - Giovanni Vidari
- Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| |
Collapse
|
35
|
Dávila G LR, Murillo A W, Zambrano F CJ, Suárez M H, Méndez A JJ. Evaluation of nutritional values of wild mushrooms and spent substrate of Lentinus crinitus (L.) Fr. Heliyon 2020; 6:e03502. [PMID: 32181387 PMCID: PMC7062765 DOI: 10.1016/j.heliyon.2020.e03502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/05/2019] [Accepted: 02/24/2020] [Indexed: 12/02/2022] Open
Abstract
In Colombia, despite the great diversity of mushrooms, most are yet unknown from the taxonomic point of view, and even less known from their nutritional composition or their possible application to obtain value-added products from agro-waste. The mycelial growth of Lentinus crinitus (L.) Fr strain was investigated on agro-waste in culture media agar and correlation analyses were performed. The proximate and mineral element composition was determinate in wild mushrooms and spent substrate of L. crinitus, obtained in the solid-state fermentation. The evaluation of the mycelial growth of the L. crinitus strain confirmed that it can grow on agro-waste. The treatment T6 (Orange peel and brand) was determined to be the best for the mycelial growth of L. crinitus (0.0790 cm/h), T7 (Bran, Orange peel and rice husk) and T5 (Rice hush and orange peel) followed, with mycelial growth rates of 0.0753 cm/h and .0720 cm/h, respectively. The growth rate was positively correlated with C/N ratios but negatively correlated with Zn, N and protein. The combination of the agro-waste (T6, T7 and T5) were used to obtain the spent substrate and assess its nutritional potential. The results showed that wild mushrooms of L. crinitus had protein contents of 14.42%, and fiber of 57.18%. The spent substrate of L. crinitus increased their protein content (10.5–11.22%), fiber (44.1–56%) and nitrogen (1.64–1.28%). These advances are promising for the use of L. crinitus as degrader of agro-waste to obtain different products of food and agro-industrial interest.
Collapse
Affiliation(s)
- Lina R Dávila G
- Grupo de Investigación en Productos Naturales, GIPRONUT, Universidad del Tolima, Ibagué, 730006, Colombia
| | - Walter Murillo A
- Grupo de Investigación en Productos Naturales, GIPRONUT, Universidad del Tolima, Ibagué, 730006, Colombia
| | - Cristian J Zambrano F
- Grupo de Investigación en Productos Naturales, GIPRONUT, Universidad del Tolima, Ibagué, 730006, Colombia
| | - Héctor Suárez M
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jonh J Méndez A
- Grupo de Investigación en Productos Naturales, GIPRONUT, Universidad del Tolima, Ibagué, 730006, Colombia
| |
Collapse
|
36
|
Mingyi Y, Belwal T, Devkota HP, Li L, Luo Z. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Tian W, Dai L, Lu S, Luo Z, Qiu Z, Li J, Li P, Du B. Effect of Bacillus sp. DU-106 fermentation on Dendrobium officinale polysaccharide: Structure and immunoregulatory activities. Int J Biol Macromol 2019; 135:1034-1042. [DOI: 10.1016/j.ijbiomac.2019.05.203] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 11/26/2022]
|
38
|
Cantharellus cibarius branched mannans inhibits colon cancer cells growth by interfering with signals transduction in NF-ĸB pathway. Int J Biol Macromol 2019; 134:770-780. [DOI: 10.1016/j.ijbiomac.2019.05.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 11/21/2022]
|
39
|
Structural characterisation and cholesterol efflux improving capacity of the novel polysaccharides from Cordyceps militaris. Int J Biol Macromol 2019; 131:264-272. [DOI: 10.1016/j.ijbiomac.2019.03.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
|
40
|
Polysaccharide-Rich Fractions from Rosa rugosa Thunb.-Composition and Chemopreventive Potential. Molecules 2019; 24:molecules24071354. [PMID: 30959857 PMCID: PMC6480326 DOI: 10.3390/molecules24071354] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 11/17/2022] Open
Abstract
The huge health-beneficial potential of polysaccharides encourages the search for novel sources and applications of these compounds. One poorly explored source of polysaccharides is the rose. The content and biological activity of polysaccharides in rose organs is an almost completely unaddressed topic, therefore, polysaccharide-rich extracts (crude polysaccharides, CPLs) from petals, leaves, hips, and achenes of Rosa rugosa Thunb. were studied for their composition and the influence on various cellular processes involved in the development of cancer and other civilization diseases. The study revealed the presence of water-soluble and -insoluble polysaccharides (including β-glucans) and protein-polysaccharide conjugates in rose organs. Rose hips were found to be the most abundant source of polysaccharides. Different polysaccharide-rich extracts showed the ability to inhibit pro-inflammatory enzymes (COX-1, COX-2, hyaluronidase), a radical scavenging effect (against DPPH• and ABTS•+), and antiproliferative activity (in the A549 lung and SW480 colon cancer cell lines) in in vitro assays. Therefore, rose crude polysaccharides are very promising and can potentially be used as natural chemopreventive agents.
Collapse
|
41
|
Lemieszek MK, Marques PS, Ribeiro M, Ferreira D, Marques G, Chaves R, Pożarowski P, Nunes FM, Rzeski W. Mushroom small RNAs as potential anticancer agents: a closer look at Cantharellus cibarius proapoptotic and antiproliferative effects in colon cancer cells. Food Funct 2019; 10:2739-2751. [DOI: 10.1039/c8fo02378f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Screening aimed at the evaluation of the presence of small RNAs with anticancer properties in Boletus spretus, B. pinophilus and Cantharellus cibarius, was conducted.
Collapse
Affiliation(s)
| | - Patrícia S. Marques
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- Food and Wine Chemistry Lab
- University of Trás-os-Montes e Alto Douro
| | - Miguel Ribeiro
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- Food and Wine Chemistry Lab
- University of Trás-os-Montes e Alto Douro
| | - Daniela Ferreira
- CAG – Laboratory of Cytogenomics and Animal Genomics
- Department of Genetics and Biotechnology
- University of Trás-os-Montes e Alto Douro
- Vila Real
- Portugal
| | - Guilhermina Marques
- CITAB, Department of Agronomy
- University of Trás-os-Montes e Alto Douro
- Vila Real
- Portugal
| | - Raquel Chaves
- CAG – Laboratory of Cytogenomics and Animal Genomics
- Department of Genetics and Biotechnology
- University of Trás-os-Montes e Alto Douro
- Vila Real
- Portugal
| | - Piotr Pożarowski
- Department of Clinical Immunology
- Medical University of Lublin
- Lublin
- Poland
| | - Fernando M. Nunes
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- Food and Wine Chemistry Lab
- University of Trás-os-Montes e Alto Douro
| | - Wojciech Rzeski
- Department of Medical Biology
- Institute of Rural Health
- Lublin
- Poland
- Department of Virology and Immunology
| |
Collapse
|
42
|
Lemieszek MK, Nunes FM, Rzeski W. Branched mannans from the mushroom Cantharellus cibarius enhance the anticancer activity of natural killer cells against human cancers of lung and colon. Food Funct 2019; 10:5816-5826. [DOI: 10.1039/c9fo00510b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cantharellus cibarius branched mannans increase natural killer cells NK92 viability and proliferation and enhance their cytotoxicity against lung and colon cancer cells A549 and LS180, at the same time they do not affect lung and colon epithelial cells NL20 and CCD841 CoN.
Collapse
Affiliation(s)
| | - Fernando M. Nunes
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- Food and Wine Chemistry Lab
- University of Trás-os-Montes e Alto Douro
| | - Wojciech Rzeski
- Department of Medical Biology
- Institute of Rural Health
- Lublin
- Poland
- Department of Virology and Immunology
| |
Collapse
|