1
|
Ruiqi L, He Z. Effects of quinoa on cardiovascular disease and diabetes: a review. Front Nutr 2024; 11:1470834. [PMID: 39430786 PMCID: PMC11487239 DOI: 10.3389/fnut.2024.1470834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Quinoa is an annual dicotyledonous plant belonging to the genus Chenopodiaceae. As a functional healthy food with outstanding nutritional value, quinoa contains not only a balanced proportion of amino acids but also higher contents of protein, unsaturated fatty acids, vitamins, and minerals (K, P, Mg, Ca, Zn, and Fe) than most cereal crops. Quinoa is also rich in active ingredients, such as polyphenols, flavonoids, saponins, polysaccharides, peptides, and ecdysone, which provide balanced nutrition, enhance the body function, regulate blood sugar, decrease blood lipid, increase anti-oxidation and anti-inflammatory action, and prevent and treat cardiovascular diseases. Thus, quinoa is especially suitable for people suffering from chronic diseases, such as diabetes, hypertension, hyperlipidemia, and heart disease, and for the elderly people. Because of its comprehensive nutritional value and edible functional characteristics, quinoa is better than most grains and has become a highly nutritious food suitable for human consumption. This article reviews the active ingredients and physiological functions of quinoa, aiming to provide a reference for further research and its utilization in food, healthcare, and pharmaceutical research and development.
Collapse
Affiliation(s)
- Li Ruiqi
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Zhang He
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
2
|
Zhang Q, Peng Y, Xu Y, Li F, Liu S, Bukvicki D, Zhang Q, Lin S, Wang M, Zhang T, Wu D, Qin W. Extraction, Characterization, and In Vitro Biological Activity of Polyphenols from Discarded Young Fig Fruits Based on Deep Eutectic Solvents. Antioxidants (Basel) 2024; 13:1084. [PMID: 39334743 PMCID: PMC11428376 DOI: 10.3390/antiox13091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Discarded young fig fruits (DYFFs) result in a waste of resources, such as sparse fruits and residual fruits, and there has been no research on the relationship between phenolic compounds and biological activity in DYFFs (2) Methods: Different deep eutectic solvents (DESs) and 80% ethanol were used to prepare DYFF extracts, and polyphenol extraction efficiency and bioactivities in the DYFFs extracts were compared. (3) Results: More than 1700 phytochemicals were identified in DYFFs, and thirteen of these typical phenolic compounds were analyzed quantitatively; chlorogenic acid, rutin, luteolin 8-C-glucoside, and epicatechin are the main polyphenols in DYFFs, especially chlorogenic acid with 2720-7980 mg/kg. Ferulic acid, caffeic acid, epicatechin, (+)-catechin, luteolin 8-C-glucoside, rutin, hesperetin, and chlorogenic acid showed different degrees of correlation with in vitro antioxidant activity. Moreover, the highest total phenol content found in the extracts of ChCl-Ethylene glycol (Choline chloride:Ethylene glycol = 1:2) was 8.88 mg GAE/g DW, and all quantitatively analyzed phenolic compounds had high levels in various DESs and 80% ethanol. The 80% ethanol and Choline chloride (ChCl) solvent system showed the greatest antioxidant properties, and the Choline chloride-Urea (Choline chloride: Urea = 1:2) extract of DYFFs exhibited the highest inhibitory activity. (4) Conclusions: DESs have demonstrated potential as promising green solvents, especially the ChCl solvent system, which facilitates the extraction of polyphenols.
Collapse
Affiliation(s)
- Qinqiu Zhang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yue Peng
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yi Xu
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Fan Li
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Shuxiang Liu
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Danka Bukvicki
- Faculty of Biology, Institute of Botany 43, Belgrade University, 11000 Belgrade, Serbia
| | - Qing Zhang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Shang Lin
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Miaomiao Wang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Tianyi Zhang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Centre of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wen Qin
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
3
|
Yin H, Zhu J, Zhong Y, Wang D, Deng Y. Kinetic and thermodynamic-based studies on the interaction mechanism of novel R. roxburghii seed peptides against pancreatic lipase and cholesterol esterase. Food Chem 2024; 447:139006. [PMID: 38492305 DOI: 10.1016/j.foodchem.2024.139006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Pancreatic lipase (PL) and cholesterol esterase (CE) are vital digestive enzymes that regulate lipid digestion. Three bioactive peptides (LFCMH, RIPAGSPF, YFRPR), possessing enzyme inhibitory activities, were identified in the seed proteins of R. roxburghii. It is hypothesized that these peptides could inhibit the activities of these enzymes by binding to their active sites or altering their conformation. The results showed that LFCMH exhibited superior inhibitory activity against these enzymes compared to the other peptides. The inhibition mechanisms of the three peptides were identified as either competitive or mixed, according to inhibition models. Further studies have shown that peptides could bind to the active sites of enzymes, thus affecting their spatial conformation and restricting substrate entry into the active site. Molecular simulation further proved that hydrogen bonds and hydrophobic interactions played a vital role in the binding of peptides to enzymes. This study enriches our understanding of interaction mechanisms of peptides on PL and CE.
Collapse
Affiliation(s)
- Hao Yin
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Jiao Tong University Yunnan (Dali) Research Institute, Dali, Yunnan 671000, China
| | - Jiangxiong Zhu
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu Zhong
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Danfeng Wang
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Jiao Tong University Yunnan (Dali) Research Institute, Dali, Yunnan 671000, China.
| |
Collapse
|
4
|
Cantero-Bahillo E, Navarro del Hierro J, de las Nieves Siles-Sánchez M, Jaime L, Santoyo S, Martin D. Combination of Fenugreek and Quinoa Husk as Sources of Steroidal and Triterpenoid Saponins: Bioactivity of Their Co-Extracts and Hydrolysates. Foods 2024; 13:562. [PMID: 38397539 PMCID: PMC10888084 DOI: 10.3390/foods13040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Saponins, both steroidal and triterpenoid, exhibit distinct bioactivities. However, they are not commonly found together in natural sources; instead, sources tend to be rich in one type or another and mainly in the form of saponins rather than the sapogenin aglycones. Developing co-extracts containing both saponin or sapogenin types would be a strategy to harness their respective bioactivities, yielding multibioactive extracts. Therefore, this study evaluates the bioactivity (hypolipidemic, antioxidant, and anti-inflammatory activities) of co-extracts from fenugreek seeds (steroidal-rich saponins) and quinoa husk (triterpenoid-rich saponins), co-extracted at varying proportions, alongside their respective sapogenin-rich hydrolysates. Pancreatic lipase inhibition increased with fenugreek content in co-extracts, especially in sapogenin-rich variants. The latter substantially interfered with cholesterol bioaccessibility (90% vs. 15% in sapogenin-rich extracts). Saponin-rich co-extracts exhibited reduced cytokine release with increased fenugreek content, while sapogenin-rich counterparts showed greater reductions with higher quinoa husk content. Limited cellular antioxidant activities were observed in all extracts, with improved post-hydrolysis bioactivity. Therefore, simultaneous co-extraction of steroidal and triterpenoid sources, such as fenugreek and quinoa husk, as well as their subsequent hydrolysis, are innovative strategies for obtaining multibioactive natural extracts.
Collapse
Affiliation(s)
- Emma Cantero-Bahillo
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.C.-B.); (M.d.l.N.S.-S.); (L.J.); (S.S.); (D.M.)
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Joaquín Navarro del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain
- Sección Departamental de Tecnología Alimentaria, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María de las Nieves Siles-Sánchez
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.C.-B.); (M.d.l.N.S.-S.); (L.J.); (S.S.); (D.M.)
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Laura Jaime
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.C.-B.); (M.d.l.N.S.-S.); (L.J.); (S.S.); (D.M.)
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Susana Santoyo
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.C.-B.); (M.d.l.N.S.-S.); (L.J.); (S.S.); (D.M.)
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Diana Martin
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.C.-B.); (M.d.l.N.S.-S.); (L.J.); (S.S.); (D.M.)
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| |
Collapse
|
5
|
Wu M, Zhou Q, Zhou L, Wang J, Ren T, Zheng Y, Lv W, Zhao W. Enhancement of γ-Aminobutyric Acid and the Characteristics of Nutrition and Function in White Quinoa through Ultrasound Stress at the Pre-Germination Stage. Foods 2023; 13:57. [PMID: 38201084 PMCID: PMC10778457 DOI: 10.3390/foods13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The global production of quinoa has been increasing in recent years. In plant-based foods, ultrasound stress has received increasing attention, owing to its ability to enhance the production of primary and secondary metabolites. We studied the effects of ultrasonic stress at the pre-germination stage on the γ-aminobutyric acid (GABA) accumulation and characteristics of nutrition and function in quinoa. The results showed that ultrasonic conditions of 100 W for 4 min promoted an increase in GABA content by 9.15-fold, to 162.47 ± 6.69 mg/100 g·DW, compared to that of untreated quinoa, through promoting a 10.2% and 71.9% increase in the water absorption and glutamate decarboxylase activity of quinoa, respectively. Meanwhile, compared to untreated quinoa, ultrasonic stress at the pre-germination stage enhanced the total phenolic, total flavonoid, and total saponin contents of quinoa by 10.2%, 33.6%, and 90.7%, to 3.29 mg GA/g·DW, 104.0 mg RE/100 g·DW, and 7.13 mg/g, respectively, without decreasing its basic nutritional quality. Ultrasonic stress caused fissures on the surface of quinoa starch particles. Additionally, germination under ultrasonic stress increased the n3 polyunsaturated fatty acids by 14.4%. Furthermore, ultrasonic stress at the pre-germination stage promoted the scavenging of 2,2-diphenyl1-picrylhydrazyl radicals and inhibitions of α-amylase, α-glucosidase, and pancreatic lipase by 14.4%, 14.9%, 24.6%, and 20.0% in vitro, compared to untreated quinoa. The results indicated that the quinoa sprouted via ultrasonic stress could represent a promising method through which to develop nutritionally balanced whole grains rich in GABA, with hypoglycemic and hypolipidemic activities, which could provide theoretical support for the development of functional whole-grain foods based on quinoa.
Collapse
Affiliation(s)
- Mengying Wu
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Qian Zhou
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Liangfu Zhou
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Jie Wang
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Ting Ren
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Yu Zheng
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| | - Wei Lv
- National Engineering Research Center for Semi-Arid Agriculture, Shijiazhuang 050000, China;
| | - Wen Zhao
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (M.W.); (Q.Z.); (L.Z.); (J.W.); (T.R.); (Y.Z.)
| |
Collapse
|
6
|
Neagu E, Paun G, Albu C, Apreutesei OT, Radu GL. In Vitro Assessment of the Antidiabetic and Anti-Inflammatory Potential of Artemisia absinthium, Artemisia vulgaris and Trigonella foenum-graecum Extracts Processed Using Membrane Technologies. Molecules 2023; 28:7156. [PMID: 37894635 PMCID: PMC10609499 DOI: 10.3390/molecules28207156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, there has been increased interest in the discovery of new natural herbal remedies for treating diabetes and inflammatory diseases. In this context, this work analyzed the antidiabetic and anti-inflammatory potential of Artemisia absinthium, Artemisia vulgaris and Trigonella foenum-graecum herbs, which have been studied less from this point of view. Therefore, extracts were prepared and processed using membrane technologies, micro- and ultrafiltration, to concentrate the biologically active principles. The polyphenol and flavone contents in the extracts were analyzed. The qualitative analysis of the polyphenolic compounds was performed via HPLC, identifying chlorogenic acid, rosmarinic acid and rutin in A. absinthium; chlorogenic acid, luteolin and rutin in A. vulgaris; and genistin in T. foenum-graecum. The antidiabetic activity of the extracts was analyzed by testing their ability to inhibit α-amylase and α-glucosidase, and the anti-inflammatory activity was analyzed by testing their ability to inhibit hyaluronidase and lipoxygenase. Thus, the concentrated extracts of T. foenum-graecum showed high inhibitory activity on a-amylase-IC50 = 3.22 ± 0.3 μg/mL-(compared with acarbose-IC50 = 3.5 ± 0.18 μg/mL) and high inhibitory activity on LOX-IC50 = 19.69 ± 0.52 μg/mL (compared with all standards used). The concentrated extract of A. vulgaris showed increased α-amylase inhibition activity-IC50 = 8.57 ± 2.31 μg/mL-compared to acarbose IC50 = 3.5 ± 0.18 μg/mL. The concentrated extract of A. absinthium showed pronounced LOX inhibition activity-IC50 = 19.71 ± 0.79 μg/mL-compared to ibuprofen-IC50 = 20.19 ± 1.25 μg/mL.
Collapse
Affiliation(s)
- Elena Neagu
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania; (E.N.); (G.P.); (C.A.)
| | - Gabriela Paun
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania; (E.N.); (G.P.); (C.A.)
| | - Camelia Albu
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania; (E.N.); (G.P.); (C.A.)
| | - Oana Teodora Apreutesei
- Commercial Society for Medicinal Plant Research and Processing Plantavorel, 46 Cuza Voda Street, 610019 Piatra Neamt, Romania;
| | - Gabriel Lucian Radu
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania; (E.N.); (G.P.); (C.A.)
| |
Collapse
|
7
|
Herrera T, Iriondo-DeHond M, Ramos Sanz A, Bautista AI, Miguel E. Effect of Wild Strawberry Tree and Hawthorn Extracts Fortification on Functional, Physicochemical, Microbiological, and Sensory Properties of Yogurt. Foods 2023; 12:3332. [PMID: 37761041 PMCID: PMC10528895 DOI: 10.3390/foods12183332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The composition analyses and health-promoting properties (antioxidant capacity, antidiabetic, and antihypertensive properties) of wild fruit extracts and the effect of the incorporation of strawberry tree (STE) and hawthorn (HTE) extracts on the physicochemical, instrumental textural, microbiological, and sensory parameters of yogurts were evaluated. The incorporation of wild fruit extracts in yogurt increased antioxidant and antidiabetic properties (inhibition of digestive α-amylase, α-glucosidase, and lipase enzymatic activities) compared to the control, without decreasing their sensory quality or acceptance by consumers. The hawthorn yogurt (YHTE) showed the highest total phenolic content (TPC) and antioxidant capacity (ABTS and ORAC methods). Yogurts containing wild fruit extracts and dietary fiber achieved high overall acceptance scores (6.16-7.04) and showed stable physicochemical, textural, and microbiological properties. Therefore, the use of wild fruit extracts and inulin-type fructans as ingredients in yogurt manufacture stands as a first step towards the development of non-added sugar dairy foods for sustainable health.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Miguel
- Área de Investigación Agroalimentaria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28805 Alcalá de Henares, Spain
| |
Collapse
|
8
|
Abadi M, Fadaei V, Salehifar M. In Vitro Inhibition of α-Amylase, α-Glucosidase and Antioxidant Activity of Milk Containing Fenugreek Seed Alcoholic Extract. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:566-573. [PMID: 37574513 DOI: 10.1007/s11130-023-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
The aim of this study was to evaluate the effect of fenugreek seed alcoholic extract (FSAE) at the levels of 0.15% and 0.30% (V/V) on the selected properties of enriched milk during the 10-day storage period at 4 °C. The results demonstrated that with the addition of FSAE, the pH, brightness intensity and white color coefficient decreased and the values of acidity, viscosity, a* and b* indexes, total phenol content (TPC), total flavonoid content (TFC), antioxidant activity (AA) and enzyme inhibitory activity of enriched milk samples increased significantly compared to the control (p < 0.05). During the storage period, a decrease in TPC, TFC, AA and inhibitory activity was observed in all samples (p < 0.05). The FSAE was able to significantly reduce total microbial count (TMC) in milk samples (p < 0.05). In terms of sensory characteristics, the best sensory scores during the storage period were related to the sample containing 0.15% (V/V) FSAE. Overall, a positive and direct relationship was found between the beneficial effects of FSAE and its concentration. Finally, according to the results of the overall acceptance score in sensory tests, the sample containing 0.15% (V/V) FSAE was introduced as the best sample.
Collapse
Affiliation(s)
- Mahsa Abadi
- Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Vajiheh Fadaei
- Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Mania Salehifar
- Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Wagner S, Gómez de Cedrón M, Navarro Del Hierro J, Martín-Hernández D, Siles MDLN, Santoyo S, Jaime L, Martín D, Fornari T, Ramírez de Molina A. Biological Activities of Miracle Berry Supercritical Extracts as Metabolic Regulators in Chronic Diseases. Int J Mol Sci 2023; 24:ijms24086957. [PMID: 37108121 PMCID: PMC10138767 DOI: 10.3390/ijms24086957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Synsepalum dulcificum (Richardella dulcifica) is a berry fruit from West Africa with the ability to convert the sour taste into a sweet taste, and for this reason, the fruit is also known as the "miracle berry" (MB). The red and bright berry is rich in terpenoids. The fruit's pulp and skin contain mainly phenolic compounds and flavonoids, which correlate with their antioxidant activity. Different polar extracts have been described to inhibit cell proliferation and transformation of cancer cell lines in vitro. In addition, MB has been shown to ameliorate insulin resistance in a preclinical model of diabetes induced by a chow diet enriched in fructose. Herein, we have compared the biological activities of three supercritical extracts obtained from the seed-a subproduct of the fruit-and one supercritical extract obtained from the pulp and the skin of MB. The four extracts have been characterized in terms of total polyphenols content. Moreover, the antioxidant, anti-inflammatory, hypo-lipidemic, and inhibition of colorectal cancer cell bioenergetics have been compared. Non-polar supercritical extracts from the seed are the ones with the highest effects on the inhibition of bioenergetic of colorectal (CRC) cancer cells. At the molecular level, the effects on cell bioenergetics seems to be related to the inhibition of main drivers of the de novo lipogenesis, such as the sterol regulatory element binding transcription factor (SREBF1) and downstream molecular targets fatty acid synthase (FASN) and stearoyl coenzyme desaturase 1 (SCD1). As metabolic reprograming is considered as one of the hallmarks of cancer, natural extracts from plants may provide complementary approaches in the treatment of cancer. Herein, for the first time, supercritical extracts from MB have been obtained, where the seed, a by-product of the fruit, seems to be rich in antitumor bioactive compounds. Based on these results, supercritical extracts from the seed merit further research to be proposed as co-adjuvants in the treatment of cancer.
Collapse
Affiliation(s)
- Sonia Wagner
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - Joaquín Navarro Del Hierro
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
- Facultad de Veterinaria, Sección Departamental de Tecnología Alimentaria, Universidad Complutense de Madrid (ROR 02p0gd045), 28040 Madrid, Spain
| | - Diego Martín-Hernández
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - María de Las Nieves Siles
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - Laura Jaime
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - Diana Martín
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - Tiziana Fornari
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| |
Collapse
|
10
|
A comparative analysis of anti-lipidemic potential of soybean (Glycine max) protein hydrolysates obtained from different ripening stages: Identification, and molecular interaction mechanisms of novel bioactive peptides. Food Chem 2023; 402:134192. [DOI: 10.1016/j.foodchem.2022.134192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
|
11
|
Zhang ZQ, Chen SC, Wei XF, Geng J, Sui ZX, Wang QL, Liu CQ, Xiao JH, Huang DW. Characterization of bioactives and in vitro biological activity from Protaetia brevitarsis larval extracts obtained by different pretreatment extractions. Food Chem 2022; 405:134891. [DOI: 10.1016/j.foodchem.2022.134891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
12
|
Navarro del Hierro J, Cantero-Bahillo E, Fernández-Felipe MT, García-Risco MR, Fornari T, Rada P, Doblado L, Ferreira V, Hitos AB, Valverde ÁM, Monsalve M, Martin D. Effects of a Mealworm ( Tenebrio molitor) Extract on Metabolic Syndrome-Related Pathologies: In Vitro Insulin Sensitivity, Inflammatory Response, Hypolipidemic Activity and Oxidative Stress. INSECTS 2022; 13:896. [PMID: 36292844 PMCID: PMC9604471 DOI: 10.3390/insects13100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The mealworm (Tenebrio molitor Linnaeus 1758) is gaining importance as one of the most popular edible insects. Studies focusing on its bioactivities are increasing, although alternative forms of consumption other than the whole insect or flour, such as bioactive non-protein extracts, remain underexplored. Furthermore, the incidence of metabolic syndrome-related pathologies keeps increasing, hence the importance of seeking novel natural sources for reducing the impact of certain risk factors. The aim was to study the potential of a non-protein mealworm extract on metabolic syndrome-related pathologies, obtained with ethanol:water (1:1, v/v) by ultrasound-assisted extraction. We characterized the extract by gas-chromatography mass-spectrometry and assessed its hypolipidemic potential, its ability to scavenger free radicals, to attenuate the inflammatory response in microglial cells, to affect mitochondrial respiration and to enhance insulin sensitivity in mouse hepatocytes. The extract contained fatty acids, monoglycerides, amino acids, certain acids and sugars. The mealworm extract caused a 30% pancreatic lipase inhibition, 80% DPPH· scavenging activity and 55.9% reduction in the bioaccessibility of cholesterol (p = 0.009). The extract was effective in decreasing iNOS levels, increasing basal, maximal and ATP coupled respiration as well as enhancing insulin-mediated AKT phosphorylation at low insulin concentrations (p < 0.05). The potential of a non-protein bioactive mealworm extract against metabolic syndrome-related pathologies is shown, although further studies are needed to elucidate the mechanisms and relationship with compounds.
Collapse
Affiliation(s)
- Joaquín Navarro del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.); (M.R.G.-R.); (T.F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Emma Cantero-Bahillo
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.); (M.R.G.-R.); (T.F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - M. Teresa Fernández-Felipe
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.); (M.R.G.-R.); (T.F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Mónica R. García-Risco
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.); (M.R.G.-R.); (T.F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Tiziana Fornari
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.); (M.R.G.-R.); (T.F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28049 Madrid, Spain; (P.R.); (L.D.); (V.F.); (A.B.H.); (Á.M.V.); (M.M.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Doblado
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28049 Madrid, Spain; (P.R.); (L.D.); (V.F.); (A.B.H.); (Á.M.V.); (M.M.)
| | - Vitor Ferreira
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28049 Madrid, Spain; (P.R.); (L.D.); (V.F.); (A.B.H.); (Á.M.V.); (M.M.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana B. Hitos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28049 Madrid, Spain; (P.R.); (L.D.); (V.F.); (A.B.H.); (Á.M.V.); (M.M.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28049 Madrid, Spain; (P.R.); (L.D.); (V.F.); (A.B.H.); (Á.M.V.); (M.M.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28049 Madrid, Spain; (P.R.); (L.D.); (V.F.); (A.B.H.); (Á.M.V.); (M.M.)
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.); (M.R.G.-R.); (T.F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
13
|
de Quadros CC, Latorres JM, Michelon M, Salas-Mellado MM, Prentice C. Effect of In Vitro Gastrointestinal Digestion on the Bioactive Properties of Mullet ( Mugil liza) Peptides. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2120378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | | | - Mariano Michelon
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Carlos Prentice
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| |
Collapse
|
14
|
Zhu N, Meng S, Li J, Liu T, Rohani S. Fenugreek Extract-Loaded Polycaprolacton/Cellulose Acetate Nanofibrous Wound Dressings for Transplantation of Unrestricted Somatic Stem Cells: An In Vitro and In Vivo Evaluation. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Complex pathophysiology of diabetic wounds causes a delayed wound healing response. Advanced wound dressing materials that deliver biochemical cues are of particular interest in wound healing research. Here, we developed a dual-function delivery vehicle for drug and cell delivery applications
to treat diabetic wounds. The delivery system was developed via electrospinning of polycaprolacton/cellulose acetate solution containing fenugreek extract. The produced delivery vehicle was characterized using microstructural studies, cell viability assay, cytoprotection assay, cell migration
assay, In Vitro anti-inflammatory assay, free radical scavenging assay, tensile strength studies, swelling studies, and protein adsorption test. Scaffolds were then seeded with 30000 unrestricted somatic stem cells and transplanted into the rat model of excisional diabetic wound. Wound
healing assay showed that the co-delivery of fenugreek extract and unrestricted somatic stem cells led to a substantial improvement in the healing activity of electrospun dressings, as evidenced by higher wound contraction, epithelial thickness, and collagen deposition in this group compared
with other experimental groups. Gene expression analysis showed that dual-function delivery system could increase the expression level of VEGF, b-FGF, and collagen type II genes. Furthermore, the tissue expression level of IL-1β and glutathione peroxidase genes was significantly
reduced in this group compared with other groups. This study shows that the developed system may be considered as a potential treatment modality for diabetic wounds in the clinic.
Collapse
Affiliation(s)
- Na Zhu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Meng
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060,
People’s Republic of China
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Anhui Bengbu 233030, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Saeed Rohani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1452365, Iran
| |
Collapse
|
15
|
Navarro del Hierro J, Cantero-Bahillo E, Fernández-Felipe MT, Martin D. Microwave-Assisted Acid Hydrolysis vs. Conventional Hydrolysis to Produce Sapogenin-Rich Products from Fenugreek Extracts. Foods 2022; 11:foods11131934. [PMID: 35804750 PMCID: PMC9266256 DOI: 10.3390/foods11131934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
The acid hydrolysis of saponins is commonly performed by conventional heating to produce sapogenin-rich products of bioactive interest, but alternative hydrolysis methods and their impact on bioactivity have been unexplored. We compared the conventional method with microwave-assisted acid hydrolysis (MAAH) of a commercial saponin-rich extract from a typical saponin source, fenugreek, focusing on the study of temperature (100, 120, 130, 140, 150 °C) and time (10, 20, 30, 40 min) of hydrolysis. The impact of these factors was assayed on both the sapogenin yield and the bioactivity of the hydrolyzed products, specifically their antioxidant and lipase inhibitory activities. The highest sapogenin content (34 g/100 g extract) was achieved by MAAH at 140 °C and 30 min, which was higher than conventional hydrolysis at both reference conditions (100 °C, 60 min, 24.6 g/100 g extract) and comparative conditions (140 °C, 30 min, 17 g/100 g extract) (p < 0.001). Typical steroid artifacts from sapogenins were observed in very small amounts, regardless of the method of hydrolysis. Antioxidant activity of MAAH hydrolyzed extracts (around 80% DPPH inhibition) was barely affected by time and temperature, but pancreatic lipase inhibitory activity was higher (>65%) at lower MAAH temperature (<130 °C) and time (<30 min) of hydrolysis. MAAH is shown as a valid alternative to produce selective sapogenin-rich extracts from fenugreek with minor impact on their bioactivities, and whose magnitude can be modulated by the hydrolysis conditions.
Collapse
Affiliation(s)
- Joaquin Navarro del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Emma Cantero-Bahillo
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M. Teresa Fernández-Felipe
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-001-7930
| |
Collapse
|
16
|
Wang R, Wang L, Zhang L, Wan S, Li C, Liu S. Solvents effect on phenolics, iridoids, antioxidant activity, antibacterial activity, and pancreatic lipase inhibition activity of noni (Morinda citrifolia L.) fruit extract. Food Chem 2022; 377:131989. [PMID: 35008024 DOI: 10.1016/j.foodchem.2021.131989] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/26/2021] [Accepted: 12/29/2021] [Indexed: 11/04/2022]
Abstract
This study focused on the relationship between content levels of phytochemicals and the biological activities of noni (Morinda Citrifolia L.) fruit extracts (NFEs) prepared with traditional solvents and deep eutectic solvents (DESs). The results indicated the total phenolic content in Bet-Gly (Betaine: Glycerol) extracts (11.89 mg GAE/g DW) and total iridoid content in 70% ethanol extracts (26.38 mg CE/g DW) were the highest. A total of 17 compounds were identified and quantified in NFEs. Traditional solvent extracts, except ethyl acetate, exhibited higher antioxidant activities than DESs. Three DES extracts showed higher activities against pancreatic lipase than traditional solvent extracts. Multivariate analysis revealed that the type of extraction solvent exerts a significant influence on the phytochemical compositions and biological activities of NFEs. This study provided valuable information on the efficient extraction of phytochemicals from noni fruits and DESs are promising green solvent for the extraction of bioactive compounds from noni fruits.
Collapse
Affiliation(s)
- Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Lin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Sitong Wan
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China.
| | - Sixin Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China; School of Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
17
|
Zhang Z, Chen S, Wei X, Xiao J, Huang D. Characterization, Antioxidant Activities, and Pancreatic Lipase Inhibitory Effect of Extract From the Edible Insect Polyrhachis vicina. Front Nutr 2022; 9:860174. [PMID: 35464030 PMCID: PMC9021923 DOI: 10.3389/fnut.2022.860174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress and obesity are critical risk factors for metabolic syndrome. The consumption of functional food ingredients can a viable strategy to alleviate oxidative stress and obesity. In this study, the hydro-ethanolic extract of the edible insect Polyrhachis vicina was prepared and its bioactive components were characterized. The total polyphenol contents, total flavonoid contents, antioxidant and pancreatic lipase (PL) inhibitory activities of the extract were determined in vitro. In total, 60 bioactive components were tentatively identified in the P. vicina extract. Polyphenols and fatty acids were further quantified using LC-MS and GC-MS, respectively. P. vicina extract possessed excellent antioxidant and PL inhibition activities. Salicylic acid, gallic acid, liquiritigenin, and naringenin, which were the major polyphenols in the P. vicina extract, interacted with PL through hydrogen bonding, hydrophilic or hydrophobic and pi-cation interactions. Thus, P. vicina extract can be used as a nutraceutical to alleviate oxidative stress-induced disease and manage obesity.
Collapse
|
18
|
Optimized high-performance thin-layer chromatography‒bioautography screening of Ecuadorian Chenopodium quinoa Willd. leaf extracts for inhibition of α-amylase. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-021-00140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Przeor M. Some Common Medicinal Plants with Antidiabetic Activity, Known and Available in Europe (A Mini-Review). Pharmaceuticals (Basel) 2022; 15:ph15010065. [PMID: 35056122 PMCID: PMC8778315 DOI: 10.3390/ph15010065] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a metabolic disease that affected 9.3% of adults worldwide in 2019. Its co-occurrence is suspected to increase mortality from COVID-19. The treatment of diabetes is mainly based on the long-term use of pharmacological agents, often expensive and causing unpleasant side effects. There is an alarming increase in the number of pharmaceuticals taken in Europe. The aim of this paper is to concisely collect information concerning the few antidiabetic or hypoglycaemic raw plant materials that are present in the consciousness of Europeans and relatively easily accessible to them on the market and sometimes even grown on European plantations. The following raw materials are discussed in this mini-review: Morus alba L., Cinnamomum zeylanicum J.Presl, Trigonella foenum-graecum L., Phaseolus vulgaris L., Zingiber officinale Rosc., and Panax ginseng C.A.Meyer in terms of scientifically tested antidiabetic activity and the presence of characteristic biologically active compounds and their specific properties, including antioxidant properties. The characteristics of these raw materials are based on in vitro as well as in vivo studies: on animals and in clinical studies. In addition, for each plant, the possibility to use certain morphological elements in the light of EFSA legislation is given.
Collapse
Affiliation(s)
- Monika Przeor
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|
20
|
Yang P, Huang K, Zhang Y, Li S, Cao H, Song H, Zhang Y, Guan X. Biotransformation of quinoa phenolic compounds with Monascus anka to enhance the antioxidant capacity and digestive enzyme inhibitory activity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Habeeb TH. Inhibitory Action of Date Palm ( Phoenix dactylifera L.) Leaf Extract on Pancreatic Lipase and α-Amylase Activities. Pak J Biol Sci 2021; 24:733-740. [PMID: 34486291 DOI: 10.3923/pjbs.2021.733.740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Cardiovascular Diseases (CVDs) remain the main cause of mortality globally. High cholesterol levels (hypercholesterolemia) and high blood glucose (diabetes) are among the factors that increase the risk for CVDs. Application of inhibitors for the digestive enzymes accountable for the macronutrient hydrolysis, such as carbohydrates and fats, is one of the prevalent approaches in the development of medications against CVDs. The present study was performed to examine, <i>in vitro</i>, the lipase and amylase inhibitory potential of phenolic rich extract of leaves of four date palm cultivars. <b>Materials and Methods:</b> In the current study, the research investigated the potentiality of phytochemicals extracted from leaves of four date palm cultivars (Rawthan, Rabeaa, Barny and Ajwa), collected from Al-Madinah Governorate as lipase and amylase inhibitors and as antioxidants. Moreover, the total contents of flavonoids and phenolics were assessed. <b>Results:</b> The results revealed that all the tested cultivars showed promising lipase and amylase inhibition and antioxidants capacities. However, Rawthan and Ajwa were the most powerful cultivars. <b>Conclusion:</b> Therefore, the results presented herein suggest as the earliest report, the potential use of date palm leaves as a potential source for lipase and amylase inhibitors as an approach to decrease the risk for CVDs.
Collapse
|
22
|
Effect of Defatting and Extraction Solvent on the Antioxidant and Pancreatic Lipase Inhibitory Activities of Extracts from Hermetia illucens and Tenebrio molitor. INSECTS 2021; 12:insects12090789. [PMID: 34564229 PMCID: PMC8472067 DOI: 10.3390/insects12090789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary The food industry is notably investing more resources on the production of nutritious, healthy, safe and sustainable products derived from edible insects. In this sense, natural extracts (or concentrated forms of compounds from natural sources) are usually food ingredients with added value for human health. This is due to their intrinsic beneficious biological activities; however, bioactive extracts from edible insects have been scarcely explored. Due to that and considering that the bioactivities of extracts might be conditioned by parameters of the technological process, we assessed how different extraction conditions, such as the defatting of the raw insect flours or the extraction solvents employed, affected two bioactivities of the resulting extracts from insects: the blocking of the digestion of fats from the diet by evaluating the inhibition of the responsible enzyme (pancreatic lipase), as well as their antioxidant activity. T. molitor and H. illucens were used, as they are two of the most known edible species for both feed and food. We observed a multibioactivity for all the extracts. Both tested processing factors differentially modulated the bioactivity of extracts from both species. We also analysed the composition of the H. illucens extracts and detected amino acids, lipids, carbohydrates, sterols and organic acids. Abstract The production of specific insect extracts with bioactive properties for human health is an emerging and innovative field for the edible insects industry, but there are unexplored extraction factors that might modulate the bioactivity of the extracts. Ultrasound-assisted extracts from T. molitor and H. illucens were produced. Effects of defatting pre-treatment and extraction solvent were evaluated on extraction yield, antioxidant activity and pancreatic lipase inhibitory effect. Chemical characterisation of defatted extracts from H. illucens was performed by GC-MS-FID. Non-defatted extracts showed higher extraction yields. Defatted extracts had similar extraction yields (around 3%). Defatted extracts had higher antioxidant activity, T. molitor being stronger than H. illucens. Antioxidant activity of T. molitor methanol extract was higher than the rest of solvents. Aqueous ethanol improved the antioxidant activity of H. illucens extracts. All extracts inhibited lipase, but no significant effect of defatting and solvent was observed for T. molitor. A significant higher inhibitory activity was observed for H. illucens, the strongest being defatted 100% and 70% ethanol H. illucens extracts. H. illucens extracts contained free amino acids and disaccharides, together with minor fractions of lipids, sterols and organic acids. These results evidence the potential of extracts obtained from edible insects as antioxidants and inhibitors of the pancreatic lipase, a simultaneous multibioactivity that might be favoured by the defatting pre-treatment of the samples and the solvent of extraction.
Collapse
|
23
|
Mechanistic insights into the inhibition of pancreatic lipase by apigenin: Inhibitory interaction, conformational change and molecular docking studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Faraone I, Russo D, Genovese S, Milella L, Monné M, Epifano F, Fiorito S. Screening of in vitro and in silico α-amylase, α-glucosidase, and lipase inhibitory activity of oxyprenylated natural compounds and semisynthetic derivatives. PHYTOCHEMISTRY 2021; 187:112781. [PMID: 33930668 DOI: 10.1016/j.phytochem.2021.112781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Metabolic syndrome has several characteristic manifestations, including insulin resistance and dyslipidaemia, that demand therapeutic approaches, such as the inhibition of enzymes involved in nutrient absorption and digestion.This study aimed to evaluate the potential pharmacological use of natural compounds widespread in the plant kingdom and their semisynthetic compounds against target enzymes. Twenty-three oxyprenylated natural compoundswere investigated for their ability to inhibit α-amylase, α-glucosidase, and pancreatic lipase enzymes by in vitro assays. Moreover, in silico molecular docking was performed to analyse their binding capabilities into 3D structures. Farnesyloxyferulic acid, geranyloxyvanillic acid, nelumal A, and geranyloxyferulic acid showed the highest inhibition activity in all three in vitro enzyme assays. Moreover, in silico molecular docking of these four compounds was used to analyse their possible binding in 3D structures of the investigated enzymes. The results indicate that these compounds have considerable therapeutic potential for the treatment of metabolic syndrome, and further studies are warranted for their pharmacological development.
Collapse
Affiliation(s)
- Immacolata Faraone
- Department of Science, University of Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy; SpinoffBioActiPlant s.r.l., via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy; SpinoffBioActiPlant s.r.l., via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Salvatore Genovese
- Department of Pharmacy, University Gabriele D'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Luigi Milella
- Department of Science, University of Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| | - Magnus Monné
- Department of Science, University of Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Francesco Epifano
- Department of Pharmacy, University Gabriele D'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy.
| | - Serena Fiorito
- Department of Pharmacy, University Gabriele D'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| |
Collapse
|
25
|
Li C, Chen S, Sha J, Cui J, He J, Fu J, Shen Y. Extraction and purification of total flavonoids from Eupatorium lindleyanum DC. and evaluation of their antioxidant and enzyme inhibitory activities. Food Sci Nutr 2021; 9:2349-2363. [PMID: 34026054 PMCID: PMC8116873 DOI: 10.1002/fsn3.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/18/2022] Open
Abstract
The health benefits and promising medical treatment potential of total flavonoids from Eupatorium lindleyanum DC. (TFELDC) have been recognized. The process parameters of extracting total flavonoids from Eupatorium lindleyanum DC. by ultrasonic-microwave synergistic extraction (UMSE) were optimized, and they were purified by AB-8 macroporous resin in the current study. In addition, the antioxidant and enzyme inhibitory activities of the purified TFELDC (PTFELDC) were evaluated. The results showed that the optimal parameters of UMSE were as follows: ethanol volume fraction 71.5%, L/S ratio 12.2 ml/g, microwave power 318 W, and extraction time 143 s. After TFELDC were purified by AB-8 macroporous resin, the total flavonoid contents of PTFELDC increased from 208.18 ± 1.60 to 511.19 ± 3.21 mg RE/g FDS. Compared with TFELDC, the content of total flavonoids in PTFELDC was increased by 2.46 times. The antioxidant activities of PTFELDC were assessed using DPPH radical, superoxide anion radical, reducing power, and ferric reducing antioxidant power assays, and the IC50 values were found to be 37.13, 19.62, 81.22, and 24.72 μg/ml, respectively. The enzyme inhibitory activities of PTFELDC were measured using lipase, α-amylase, α-glucosidase, and acetylcholinesterase assays with the IC50 values 1.38, 2.08, 1.63, and 0.58 mg/ml, respectively. By comparing with their positive controls, it was found that PTFELDC had good antioxidant activities, and lipase, α-amylase, and α-glucosidase inhibitory activities, However, the acetylcholinesterase inhibitory activity was relatively weaker. These results suggested that PTFELDC have a promising potential as natural antioxidant, antilipidemic, and hypoglycemic drugs used in functional foods or pharmaceuticals.
Collapse
Affiliation(s)
- Chao Li
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Shanglong Chen
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Jin Sha
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Jue Cui
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Juping He
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Junning Fu
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Yingbin Shen
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
26
|
Liu M, Liu X, Luo J, Bai T, Chen H. Effect of digestion on bound phenolic content, antioxidant activity and hypoglycemic ability of insoluble dietary fibre from four Triticeae crops. J Food Biochem 2021; 45:e13746. [PMID: 33913169 DOI: 10.1111/jfbc.13746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/16/2021] [Accepted: 04/13/2021] [Indexed: 02/05/2023]
Abstract
To assess the physiological functions of bound phenols in insoluble dietary fiber (IDF) from different Triticeae crops, bound phenols in IDF were extracted from wheat, triticale, barley and quinoa. In addition, model in vitro was established and used in evaluating the release of bound phenols and changes in their physiological functions after simulated digestion. Results showed that bound phenol content in IDF from Triticeae crops before digestion was higher than which during digestion, and its physiological functions were also better (p < .05). Moreover, barley extracted before digestion, its bound phenolic content in IDF was higher than those in other three Triticeae crops, besides,its bound phenol also showed better antioxidant ability. Before digestion, bound phenols in IDF from triticale showed the best hypoglycemic ability (the inhibition rate of α-glucosidase was 95%; the inhibition rate of α-amylase was 97%). In the simulated digestion model, the bound phenols were mainly released during the intestinal digestion stage, they showed better physiological functions than which released at the gastric digestion stage. The bound phenol content in triticale was higher and its physiological functions was better than those in the other crops. PRACTICAL APPLICATIONS: The results of this experiment showed that the release of bound phenols measured by chemical extraction (i.e., before digestion) was higher than that by simulated gastrointestinal digestion. Compared with the chemical extraction method, in vitro gastro-intestinal digestion simulates the pH value and enzyme environment of food in the human body gastrointestinal digestion process more effectively. This study can provide reference for selecting Triticeae crops feeding in the future. To be more precise, bound phenol content in the insoluble dietary fiber of barley was the highest before digestion. The bound phenol in the insoluble dietary fiber of triticale had the best hypoglycemic ability. The bound phenolic compounds are mainly released during intestinal digestion, and their physiological functions are better than that in gastric digestion.
Collapse
Affiliation(s)
- Mengcong Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xinzhi Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Junyun Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Tingmei Bai
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
27
|
Castanea sativa shells: A review on phytochemical composition, bioactivity and waste management approaches for industrial valorization. Food Res Int 2021; 144:110364. [PMID: 34053557 DOI: 10.1016/j.foodres.2021.110364] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022]
Abstract
Castanea sativa is an outstanding species that represents a valuable natural resource for rural populations. C. sativa shells (CSS), an abundant agro-industrial by-product generated during chestnut peeling process, is commonly discarded or used as fuel. Nevertheless, CSS produced are not depleted by this application and huge amounts are still available, being particularly rich in bioactive compounds (polyphenols, vitamin E, lignin and oligosaccharides) with health benefits. Phytochemical studies reported not only antioxidant and antimicrobial activities, but also anti-inflammatory, anticancer, hypolipidemic, hypoglycemic and neuroprotective activities. The application of a suitable extraction technique is required for the isolation of bioactive compounds, being green extraction technologies outstanding for the industrial recovery of chestnut shells' bioactive compounds. CSS were highlighted as remarkable sources of functional ingredients with promising applications in food and nutraceutical fields, mainly as natural antioxidants and effective prebiotics. This review aims to summarize the phytochemical composition and pro-healthy properties of CSS, emphasizing the sustainable extraction techniques employed in the recovery of bioactive compounds and their potential applications in food and nutraceutical industries.
Collapse
|
28
|
Pinto D, Silva AM, Freitas V, Vallverdú-Queralt A, Delerue-Matos C, Rodrigues F. Microwave-Assisted Extraction as a Green Technology Approach to Recover Polyphenols from Castanea sativa Shells. ACTA ACUST UNITED AC 2021. [DOI: 10.1021/acsfoodscitech.0c00055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diana Pinto
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Ana M. Silva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Vitor Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| |
Collapse
|
29
|
Lankatillake C, Luo S, Flavel M, Lenon GB, Gill H, Huynh T, Dias DA. Screening natural product extracts for potential enzyme inhibitors: protocols, and the standardisation of the usage of blanks in α-amylase, α-glucosidase and lipase assays. PLANT METHODS 2021; 17:3. [PMID: 33407662 PMCID: PMC7789656 DOI: 10.1186/s13007-020-00702-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/19/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Enzyme assays have widespread applications in drug discovery from plants to natural products. The appropriate use of blanks in enzyme assays is important for assay baseline-correction, and the correction of false signals associated with background matrix interferences. However, the blank-correction procedures reported in published literature are highly inconsistent. We investigated the influence of using different types of blanks on the final calculated activity/inhibition results for three enzymes of significance in diabetes and obesity; α-glucosidase, α-amylase, and lipase. This is the first study to examine how different blank-correcting methods affect enzyme assay results. Although assays targeting the above enzymes are common in the literature, there is a scarcity of detailed published protocols. Therefore, we have provided comprehensive, step-by-step protocols for α-glucosidase-, α-amylase- and lipase-inhibition assays that can be performed in 96-well format in a simple, fast, and resource-efficient manner with clear instructions for blank-correction and calculation of results. RESULTS In the three assays analysed here, using only a buffer blank underestimated the enzyme inhibitory potential of the test sample. In the absorbance-based α-glucosidase assay, enzyme inhibition was underestimated when a sample blank was omitted for the coloured plant extracts. Similarly, in the fluorescence-based α-amylase and lipase assays, enzyme inhibition was underestimated when a substrate blank was omitted. For all three assays, method six [Raw Data - (Substrate + Sample Blank)] enabled the correction of interferences due to the buffer, sample, and substrate without double-blanking, and eliminated the need to add substrate to each sample blank. CONCLUSION The choice of blanks and blank-correction methods contribute to the variability of assay results and the likelihood of underestimating the enzyme inhibitory potential of a test sample. This highlights the importance of standardising the use of blanks and the reporting of blank-correction procedures in published studies in order to ensure the accuracy and reproducibility of results, and avoid overlooked opportunities in drug discovery research due to inadvertent underestimation of enzyme inhibitory potential of test samples resulting from unsuitable blank-correction. Based on our assessments, we recommend method six [RD - (Su + SaB)] as a suitable method for blank-correction of raw data in enzyme assays.
Collapse
Affiliation(s)
- Chintha Lankatillake
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia
| | - Shiqi Luo
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia
| | - Matthew Flavel
- TPM Bioactives Division, The Product Makers Pty Ltd, Melbourne, Australia
- School of Life Sciences, La Trobe University, Melbourne, Australia
| | - George Binh Lenon
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, 3083, Australia
| | - Tien Huynh
- School of Science, RMIT University, Bundoora, 3083, Australia
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia.
| |
Collapse
|
30
|
Medina-Pérez G, Estefes-Duarte JA, Afanador-Barajas LN, Fernández-Luqueño F, Zepeda-Velázquez AP, Franco-Fernández MJ, Peláez-Acero A, Campos-Montiel RG. Encapsulation Preserves Antioxidant and Antidiabetic Activities of Cactus Acid Fruit Bioactive Compounds under Simulated Digestion Conditions. Molecules 2020; 25:E5736. [PMID: 33291808 PMCID: PMC7731167 DOI: 10.3390/molecules25235736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cactus acid fruit (Xoconostle) has been studied due its content of bioactive compounds. Traditional Mexican medicine attributes hypoglycemic, hypocholesterolemic, anti-inflammatory, antiulcerogenic and immunostimulant properties among others. The bioactive compounds contained in xoconostle have shown their ability to inhibit digestive enzymes such as α-amylase and α-glucosidase. Unfortunately, polyphenols and antioxidants in general are molecules susceptible to degradation due to storage conditions, (temperature, oxygen and light) or the gastrointestinal tract, which limits its activity and compromises its potential beneficial effect on health. The objectives of this work were to evaluate the stability, antioxidant and antidiabetic activity of encapsulated extract of xoconostle within double emulsions (water-in-oil-in-water) during storage conditions and simulated digestion. Total phenols, flavonoids, betalains, antioxidant activity, α-amylase and α-glucosidase inhibition were measured before and after the preparation of double emulsions and during the simulation of digestion. The ED40% (treatment with 40% of xoconostle extract) treatment showed the highest percentage of inhibition of α-glucosidase in all phases of digestion. The inhibitory activity of α-amylase and α-glucosidase related to antidiabetic activity was higher in microencapsulated extracts than the non-encapsulated extracts. These results confirm the viability of encapsulation systems based on double emulsions to encapsulate and protect natural antidiabetic compounds.
Collapse
Affiliation(s)
- Gabriela Medina-Pérez
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo, Hidalgo C.P. 43000, Mexico; (G.M.-P.); (J.A.E.-D.); (A.P.Z.-V.); (M.J.F.-F.); (A.P.-A.)
| | - José Antonio Estefes-Duarte
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo, Hidalgo C.P. 43000, Mexico; (G.M.-P.); (J.A.E.-D.); (A.P.Z.-V.); (M.J.F.-F.); (A.P.-A.)
| | - Laura N. Afanador-Barajas
- Natural Sciences Department, Engineering and Sciences Faculty, Universidad Central, Bogotá 110311, Colombia;
| | - Fabián Fernández-Luqueño
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, Coahuila C.P. 25900, Mexico;
| | - Andrea Paloma Zepeda-Velázquez
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo, Hidalgo C.P. 43000, Mexico; (G.M.-P.); (J.A.E.-D.); (A.P.Z.-V.); (M.J.F.-F.); (A.P.-A.)
| | - Melitón Jesús Franco-Fernández
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo, Hidalgo C.P. 43000, Mexico; (G.M.-P.); (J.A.E.-D.); (A.P.Z.-V.); (M.J.F.-F.); (A.P.-A.)
| | - Armando Peláez-Acero
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo, Hidalgo C.P. 43000, Mexico; (G.M.-P.); (J.A.E.-D.); (A.P.Z.-V.); (M.J.F.-F.); (A.P.-A.)
| | - Rafael Germán Campos-Montiel
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo, Hidalgo C.P. 43000, Mexico; (G.M.-P.); (J.A.E.-D.); (A.P.Z.-V.); (M.J.F.-F.); (A.P.-A.)
| |
Collapse
|
31
|
Navarro Del Hierro J, Casado-Hidalgo G, Reglero G, Martin D. The hydrolysis of saponin-rich extracts from fenugreek and quinoa improves their pancreatic lipase inhibitory activity and hypocholesterolemic effect. Food Chem 2020; 338:128113. [PMID: 33092009 DOI: 10.1016/j.foodchem.2020.128113] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 01/18/2023]
Abstract
Saponins are promising compounds for ameliorating hyperlipidemia but scarce information exists about sapogenins, the hydrolyzed forms of saponins. Saponin-rich extracts and their hydrolysates from fenugreek (FE, HFE) and quinoa (QE, HQE), and saponin and sapogenin standards, were assessed on the inhibition of pancreatic lipase and interference on the bioaccessibility of cholesterol by in vitro digestion models. All extracts inhibited pancreatic lipase (IC50 between 1.15 and 0.59 mg/mL), although the hydrolysis enhanced the bioactivity of HQE (p = 0.014). The IC50 value significantly correlated to the saponin content (r = -0.82; p = 0.001). Only the hydrolyzed extracts showed a reduction of bioaccessible cholesterol (p < 0.001) higher than that of phytosterols (35% reduction). Sapogenin standards exhibited no bioactivities, protodioscin and hederacoside C slightly inhibited the lipase (around 10%) and protodioscin reduced the bioaccessible cholesterol (23% reduction, p = 0.035). The hydrolysis process of saponin-rich extracts enhances the bioactivity and allows developing multibioactive products against pancreatic lipase and cholesterol absorption simultaneously.
Collapse
Affiliation(s)
- Joaquín Navarro Del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación. Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gema Casado-Hidalgo
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación. Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Guillermo Reglero
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación. Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Imdea-Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación. Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
32
|
Salas AL, Mercado MI, Eugenia Orqueda M, Correa Uriburu FM, García ME, Pérez MJ, Alvarez MDLA, Ponessa GI, Maldonado LM, Zampini IC, Isla MI. Zuccagnia
‐type Propolis from Argentina: A potential functional ingredient in food to pathologies associated to metabolic syndrome and oxidative stress. J Food Sci 2020. [DOI: 10.1111/1750-3841.15323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ana L. Salas
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
- Facultad de Ciencias Naturales Universidad Nacional de Tucumán San Miguel de Tucumán Tucumán 4000 Argentina
| | - María Inés Mercado
- Instituto de Morfología Vegetal Área Botánica, Fundación Miguel Lillo San Miguel de Tucumán Tucumán 4000 Argentina
| | - Maria Eugenia Orqueda
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
| | - Florencia M. Correa Uriburu
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
- Facultad de Ciencias Naturales Universidad Nacional de Tucumán San Miguel de Tucumán Tucumán 4000 Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria Famaillá Famaillá Tucumán 4132 Argentina
| | - Maria Elena García
- Instituto de Morfología Vegetal Área Botánica, Fundación Miguel Lillo San Miguel de Tucumán Tucumán 4000 Argentina
| | - María Jorgelina Pérez
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
| | - María de los Angeles Alvarez
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
| | - Graciela I. Ponessa
- Instituto de Morfología Vegetal Área Botánica, Fundación Miguel Lillo San Miguel de Tucumán Tucumán 4000 Argentina
| | - Luis Maldonado Maldonado
- Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria Famaillá Famaillá Tucumán 4132 Argentina
| | - Iris Catiana Zampini
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
- Facultad de Ciencias Naturales Universidad Nacional de Tucumán San Miguel de Tucumán Tucumán 4000 Argentina
- Instituto de Morfología Vegetal Área Botánica, Fundación Miguel Lillo San Miguel de Tucumán Tucumán 4000 Argentina
| | - María Inés Isla
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) CONICET‐UNT San Miguel de Tucumán Tucumán 4000 Argentina
- Facultad de Ciencias Naturales Universidad Nacional de Tucumán San Miguel de Tucumán Tucumán 4000 Argentina
- Instituto de Morfología Vegetal Área Botánica, Fundación Miguel Lillo San Miguel de Tucumán Tucumán 4000 Argentina
| |
Collapse
|
33
|
|
34
|
Khamis G, Saleh AM, Habeeb TH, Hozzein WN, Wadaan MAM, Papenbrock J, AbdElgawad H. Provenance effect on bioactive phytochemicals and nutritional and health benefits of the desert date Balanites aegyptiaca. J Food Biochem 2020; 44:e13229. [PMID: 32250478 DOI: 10.1111/jfbc.13229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 01/05/2023]
Abstract
Balanites aegyptiaca L. is a multipurpose tree distributed in Africa and Middle East. Several parts of B. aegyptiaca have been suggested to have medicinal uses. So far the effect of ecological origin on the nutritional values and biological activities of B. aegyptiaca genotypes is rarely investigated. Further, metabolic profiling and assessment of the functional food value of B. aegyptiaca leaves are far from complete. In this study, biological activities and profiling of primary and secondary metabolites were investigated in the leaves of five B. aegyptiaca provenances collected from Egypt, Sudan, Saudi Arabia, and Yemen. Interestingly, all provenances showed notable antidiabetic, antioxidant, antiprotozoal, antibacterial, antifungal, and anticancer activities. Hierarchical clustering analysis revealed significant variability in the concentrations of individual sugars, organic acids, amino acids, fatty acids, vitamins, phenolics, and minerals among the provenances and these variations were provenance dependent. Medina provenance showed the heights diphenylpicrylhydrazyl (DPPH) scavenging and antifungal activities and was the most powerful against embryonic kidney adenocarcinoma and urinary bladder carcinoma cells. The highest inhibition against Escherichia coli and colon carcinoma cells was observed by Sudan and Cairo provenances. El-Kharga and Yemen provenances showed the greatest activity against Trypanosoma cruzi and hepatocellular and urinary bladder carcinoma. Therefore, leaves of B. aegyptiaca possess good nutritive and biological capacities and might have potential applications in the food and medical industries. However, the strength of such activities is significantly affected by the provenance. PRACTICAL APPLICATIONS: According to the national Research Council (NRC) of United States, Balanites aegyptiaca L. is recognized among the 24 priority lost crops of Africa. B. aegyptiaca leaves contain considerable amounts of primary metabolites (e.g., sugars, EAAs, USFAs) and secondary (e.g., phenolic acids and flavonoids) metabolites, vitamins, and macro and microelements. The obvious existence of these nutritionally and medicinally related compounds supports the functional food value of B. aegyptiaca leaves. Moreover, the present results revealed that B. aegyptiaca is not only a foliage dietary plant, but also could be considered as a valuable source for neutraceuticals, which support its pharmacological value. So far, this is the first report to explore, in detail, the functional food value of B. aegyptiaca leaves by presenting a clear image about its metabolic profiling and biological activities, and how the provenance factor could affect these values.
Collapse
Affiliation(s)
- Galal Khamis
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt.,Biology Department, Faculty of Science at Yanbu, Taibah University, Yanbu El-Bahr, Saudi Arabia
| | - Talaat H Habeeb
- Biology Department, Faculty of Science at Yanbu, Taibah University, Yanbu El-Bahr, Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed A M Wadaan
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.,Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
35
|
Xu H, Zhao C, Li Y, Liu R, Ao M, Li F, Yao Y, Tao Z, Yu L. The ameliorative effect of the Pyracantha fortuneana (Maxim.) H. L. Li extract on intestinal barrier dysfunction through modulating glycolipid digestion and gut microbiota in high fat diet-fed rats. Food Funct 2020; 10:6517-6532. [PMID: 31538163 DOI: 10.1039/c9fo01599j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pyracantha fortuneana fruits are consumed as a dietary supplement in China and attenuate obesity and metabolic disorders. Obesity is known to be associated with intestinal barrier dysfunction driven by hyperglycemia and gut dysbiosis. However, whether the health benefits of P. fortuneana fruits are linked with the intestinal barrier function (IBF) remains unknown. This study aimed to evaluate the restorative effects of P. fortuneana fruit extract (PFE) on the IBF. Sprague Dawley rats were fed with a chow, a high-fat diet (HFD), or a PFE-supplemented diet for 8 weeks. Results showed that PFE intervention ameliorated HFD-induced intestinal barrier dysfunction by attenuating impaired structural integrity, reducing the elevated lactulose/mannitol ratio, and improving the mRNA and protein expression levels of tight junction proteins in HFD-fed rats. The ameliorations were associated with a beneficial effect on glycolipid homeostasis, as evidenced from the PFE decreasing intestinal absorptive capacity based on the d-xylose excretory rate, lowering the expression of GLUT2 and inhibiting digestive enzyme activities. The proanthocyanidins in the PFE showed greater in vitro inhibition on α-amylase, α-glucosidase, and lipase compared with triterpenoid saponins. Furthermore, the ameliorations on the IBF were also associated with effects on the microbial composition based on 16S rRNA gene sequence analysis. Several bacterial groups, which were linked with gut barrier integrity, were modulated after PFE administration, that is, Actinobacteria, Bacteroidaceae, Corynebacteriaceae, Lactobacillaceae, and S24-7 were elevated and the HFD-induced increase in Clostridia, Ruminococcaceae, Oscillospira, and Flexispira was restored. These data provide evidence for the ameliorative effect of the PFE on diet-induced intestinal barrier functional alternations in association with its capacity to modulate glycolipid digestion and gut microbiota in HFD-fed obese rats.
Collapse
Affiliation(s)
- Hang Xu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor. Food Chem 2019; 309:125742. [PMID: 31704068 DOI: 10.1016/j.foodchem.2019.125742] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Extracts from the edible insects Acheta domesticus and Tenebrio molitor were obtained by ultrasound-assisted extraction (UAE) and pressurized-liquid extraction (PLE) using ethanol (E) or ethanol:water (E:W). Characterization by GC-MS was performed and total phenolic compounds (TPC), antioxidant activity (DPPH) and pancreatic lipase inhibitory capacity were assayed. Most extracts, mainly ethanolic extracts, predominantly presented lipids as free fatty acids, followed by aminoacids, organic acids, carbohydrates, hydrocarbons and sterols. The UAE-E:W extracts were different, being characterized by organic acids for A. domesticus, or aminoacids for T. molitor. All the extracts exhibited antioxidant activity, which correlated with TPC values, being the E:W extracts the most effective. All the extracts showed inhibitory activity of lipase, although those from T. molitor and extracted by PLE were the most effective. Therefore, bioactive insect extracts can be selectively obtained by advanced methods of extraction, being aqueous ethanol preferred for antioxidant activity and PLE for inhibitory lipase activity.
Collapse
|
37
|
Bhagyawant SS, Narvekar DT, Gupta N, Bhadkaria A, Gautam AK, Srivastava N. Chickpea (Cicer arietinum L.) Lectin Exhibit Inhibition of ACE-I, α-amylase and α-glucosidase Activity. Protein Pept Lett 2019; 26:494-501. [PMID: 30919768 DOI: 10.2174/0929866526666190327130037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. METHODS Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. RESULTS Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 µg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. CONCLUSION Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.
Collapse
Affiliation(s)
| | | | - Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | - Amita Bhadkaria
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | - Ajay Kumar Gautam
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | - Nidhi Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
38
|
Herrera T, Navarro Del Hierro J, Fornari T, Reglero G, Martin D. Acid hydrolysis of saponin-rich extracts of quinoa, lentil, fenugreek and soybean to yield sapogenin-rich extracts and other bioactive compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3157-3167. [PMID: 30536393 DOI: 10.1002/jsfa.9531] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Typical hydrolysis times of saponins generally do not take into consideration the effect of time on the degradation of the target compounds, namely sapogenins. When producing natural extracts, it should be borne in mind that conducting hydrolysis to yield a target compound might also affect the final composition of the extracts in terms of other bioactive compounds. In our study, saponin-rich extracts from fenugreek, quinoa, lentil, and soybean were produced and their acid hydrolysis to give sapogenin-rich extracts was conducted over different periods (0-6 h). The disappearance of saponins and appearance of sapogenins was analyzed using high-performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS) and gas chromatography-mass spectrometry (GC-MS), respectively. The impact of hydrolysis on the phytosterols and tocopherol in the extracts was also evaluated. RESULTS Fenugreek showed the highest saponin content (169 g kg-1 ), followed by lentil (20 g kg-1 ), quinoa (15 g kg-1 ), and soybean (13 g kg-1 ). Hydrolysis for 1 h caused the complete disappearance of saponins and the greatest release of sapogenins. Hydrolyzed fenugreek and quinoa extracts contained the highest amounts of sapogenins and minor fractions of phytosterols and tocopherol. Hydrolyzed extracts of lentil and soybean contained a major fraction of phytosterols and a low fraction of sapogenins. In all cases, sapogenins decreased after 1 h of hydrolysis, phytosterols slightly decreased, and tocopherol was unaffected. Standards of diosgenin and oleanolic acid also showed this decreasing pattern under acid hydrolysis conditions. CONCLUSION Hydrolysis times of 1 h for saponin-rich extracts from the assayed seeds guarantee the maximum transformation to sapogenin-rich extracts, along with phytosterols and tocopherol. Fenugreek and quinoa seeds are preferred for this. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Teresa Herrera
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, UAM, Madrid, Spain
| | - Joaquín Navarro Del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, UAM, Madrid, Spain
| | - Tiziana Fornari
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, UAM, Madrid, Spain
| | - Guillermo Reglero
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, UAM, Madrid, Spain
- Imdea-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, UAM, Madrid, Spain
| |
Collapse
|