1
|
The tris[4-(2-thienyl)phenyl]amine-based conjugated microporous polymers synthesized via direct arylation polymerization for fluorescence-sensing iodine and nitrophenols. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Liu Y, Zhou P, Wu Y, Su X, Liu H, Zhu G, Zhou Q. Fast and efficient "on-off-on" fluorescent sensor from N-doped carbon dots for detection of mercury and iodine ions in environmental water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154357. [PMID: 35259368 DOI: 10.1016/j.scitotenv.2022.154357] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
A kind of nitrogen doped carbon dots (N-CDs) was facilely fabricated from polyethyleneimine and anhydrous citric acid, and which was adopted to develop a neoteric "on-off" and "off-on" fluorescent sensor for rapidly and efficiently sensing Hg2+ and I-. The fluorescence of N-CDs was notably quenched (off) in the existence of Hg2+ derived from strong interaction and the electron transfer between N-CDs and Hg2+, while the quenched fluorescence of the N-CDs and Hg2+ system was strikingly regained by addition of I- (on) resulted from the separation of N-CDs and Hg2+ due to the higher binding preference between Hg2+ and I-. Under optimal conditions, the linear detection ranges were 0.01-20 μM for Hg2+ and 0.025-7 μM for I-, respectively. Meanwhile, the detection limits could be down to 3.3 nM for Hg2+ and 8.5 nM for I-, respectively. Satisfied recoveries had also been gained for measuring Hg2+ and I- in practical water samples. The constructed "on-off-on" fluorescent sensor provided a simple, rapid, robust and reliable platform for detecting Hg2+ and I- in environmental applications.
Collapse
Affiliation(s)
- Yongli Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Penghui Zhou
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yalin Wu
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 10037, China
| | - Xiaoyan Su
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huanjia Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China.
| |
Collapse
|
3
|
Geng TM, Fang XC, Wang FQ, Zhu F. Azine- and azo-based flexible covalent organic frameworks for fluorescence sensing nitro-aromatic compounds and iodine and adsorbing iodine. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Dispersive liquid-liquid microextraction and diffuse reflectance-Fourier transform infrared spectroscopy for iodate determination in food grade salt and food samples. Food Chem 2022; 368:130810. [PMID: 34403996 DOI: 10.1016/j.foodchem.2021.130810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022]
Abstract
A novel method based on diffused reflectance Fourier-transform infrared spectroscopy (DRS-FTIR) was employed for iodate determination in food grade salt and food products. The method attained sensitivity that was comparable to or better than that in most of the contemporary spectrophotometric methods. This was realized through a combination of azo dye formation and dispersive liquid-liquid microextraction of dye when a 37-fold enrichment was obtained. FT-IR enabled integrating alternative target peak, and freedom in sample solvent composition relative to UV-visible spectrophotometry where the solvent polarity, pH, and presence of ions may affect the spectral properties of the measurable coloured species. Food samples containing iodide or covalently bonded iodine were oxidized with alkaline permanganate for mineralization and iodate formation. Optimization of both reaction conditions was carried out by means of response surface methodology. The method had a linear range 0.04-10 mg kg-1 iodate and limit of detection of 4.4 µg kg-1.
Collapse
|
5
|
Corsaro C, Neri G, Santoro A, Fazio E. Acrylate and Methacrylate Polymers' Applications: Second Life with Inexpensive and Sustainable Recycling Approaches. MATERIALS (BASEL, SWITZERLAND) 2021; 15:282. [PMID: 35009430 PMCID: PMC8746205 DOI: 10.3390/ma15010282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Polymers are widely employed in several fields thanks to their wide versatility and the easy derivatization routes. However, a wide range of commercial polymers suffer from limited use on a large scale due to their inert nature. Nowadays, acrylate and methacrylate polymers, which are respectively derivatives of acrylic or methacrylic acid, are among the most proposed materials for their useful characteristics like good biocompatibility, capping ability toward metal clusters, low price, potentially recyclability and reusability. Here, we discuss the advantages and challenges of this class of smart polymers focusing our attention on their current technological applications in medical, electronic, food packaging and environmental remediation fields. Furthermore, we deal with the main issue of their recyclability, considering that the current commercial bioplastics are not yet able to meet the global needs as much as to totally replace fossil-fuel-based products. Finally, the most accredited strategies to reach recyclable composites based on acrylic polymers are described.
Collapse
Affiliation(s)
- Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, 98166 Messina, Italy;
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.N.); (A.S.)
| | - Antonio Santoro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.N.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, 98166 Messina, Italy;
| |
Collapse
|
6
|
Dourado CS, Domingues IFF, de Oliveira Magalhães L, Casarin F, Ribeiro ML, Braga JWB, Dias ACB. Optimization of a saccharin molecularly imprinted solid-phase extraction procedure and evaluation by MIR hyperspectral imaging for analysis of diet tea by HPLC. Food Chem 2021; 367:130732. [PMID: 34384980 DOI: 10.1016/j.foodchem.2021.130732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023]
Abstract
Saccharin was determined based on a new molecularly imprinted solid-phase extraction (MISPE) procedure. The polymer was synthesized with a hybrid monomer of metacrylic acid and 3-amino propril tetraethoxysilane and saccharin as template. After the synthesis, the saccharin removal from the MIP was verified by the UV analysis of the solutions used in the template removal procedure, as well as by the direct MIP analysis using FTIR hyperspectral image and chemometrics. The residual saccharin concentrations observed in the image analysis revealed a narrow concentration distribution consistent with a homogenous material. The MISPE was performed with homemade cartridges containing 200 mg of the MIP. The results obtained with standards and diet tea samples confirmed high affinity, adsorption capacity and selectivity of the MIP. The MISPE cartridge exhibited recoveries of 100 ± 3% in six extraction cycles. The diet tea analysis showed a significant reduction of the interferences, which can considerable simplifies the HPLC-UV analysis.
Collapse
Affiliation(s)
- Camila Santos Dourado
- Institute of Chemistry, University of Brasilia - UnB, Brasilia, DF 70910-900, Brazil
| | | | | | - Fabiana Casarin
- Institute of Chemistry, University of Brasilia - UnB, Brasilia, DF 70910-900, Brazil
| | - Millene Lopes Ribeiro
- Institute of Chemistry, University of Brasilia - UnB, Brasilia, DF 70910-900, Brazil
| | | | | |
Collapse
|
7
|
Optical pH Sensing in Milk: A Small Puzzle of Indicator Concentrations and the Best Detection Method. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Optical chemical sensors can yield distinctively different responses that are dependent on the method applied for readout and evaluation. We therefore present a comprehensive study on the pH determined non-continuously with optical sensors in real milk samples by either photometry or colorimetry (via the RGB-readout of digital images) compared to the pH values obtained electrochemically by potentiometry. Additionally, the photometric determination of pH was conducted with single-wavelength and a dual wavelength ratiometric evaluation of the absorbance. It was found that both the precision and accuracy of the pH determined by photometry benefit from lower concentrations of bromocresol purple, which served as the pH indicator inside the sensor membrane. A further improvement is obtained by the ratiometric evaluation of the photometric sensor response. The pH values obtained from the colorimetric evaluation, however, gain in precision and accuracy if a higher concentration of the indicator is immobilized inside the sensor membrane. This has a major impact on the future fabrication of optical pH sensor membranes because they can be better tuned to match to the most precise and accurate range of the planned detection method.
Collapse
|
8
|
Yu F, Huang H, Shi J, Liang A, Jiang Z. A new gold nanoflower sol SERS method for trace iodine ion based on catalytic amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119738. [PMID: 33812234 DOI: 10.1016/j.saa.2021.119738] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
As one of the essential trace elements in metabolism, iodine is crucial to maintain the normal physiological functions. Therefore, based on health and environmental protection, it is very important to realize sensitive detection of iodide ion. Herein, we developed a simple, rapid and sensitive method for the determination of iodide ion. Trypsin was used as an ideal template for the synthesis of gold nanoflower sol (AuNFs) with anisotropic surface structure and good stability. It exhibits highly active surface enhanced Raman scattering (SERS) effect and can be used as facile SERS sol substrate. The TMBox generated by the catalytic oxidation reaction of TMB-chloramine T-iodide ion is used as the SERS probe. The enhanced SERS signal intensity is linearly related to the iodide ion with high sensitivity. In addition, TMB has fluorescence effect, and the colored TMBox can produce RRS signal due to polymerization. Based on this, a quad-mode detection method of SERS, RRS, fluorescence and colorimetry for quantitative detection of trace iodide ions was established, and this method can be applied to the detection of iodide ions in natural water and drinking water.
Collapse
Affiliation(s)
- Faxin Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Hanbing Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Jinling Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
9
|
Gupta M, Dsouza A. Salting-out homogeneous liquid-liquid microextraction for the spectrophotometric determination of iodate in food grade salt. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Geng T, Liu M, Zhang C, Hu C, Xia H. The preparation of covalent triazine‐based framework via Friedel‐Crafts reaction of 2,4,6‐trichloro‐1,3,5‐triazine with
N
,
N
′‐diphenyl‐
N
,
N
′‐di(
m
‐tolyl)benzidine for capturing and sensing to iodine. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tongmou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical EngineeringAnqing Normal University Anqing China
| | - Min Liu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical EngineeringAnqing Normal University Anqing China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical EngineeringAnqing Normal University Anqing China
| | - Chen Hu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical EngineeringAnqing Normal University Anqing China
| | - Hong‐Yu Xia
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical EngineeringAnqing Normal University Anqing China
| |
Collapse
|
11
|
Geng TM, Hu C, Liu M, Zhang C, Xu H, Wang X. The influences of the structure of thiophene-based conjugated microporous polymers on the fluorescence sensing properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj02912b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three thiophene-based conjugated microporous polymers (CMPs: TTPTh, DBTh, and TBTh) were prepared by Sonogashira–Hagihara cross-coupling polymerization, and their structures were characterized by FTIR, ss 13C NMR, and elemental analyses.
Collapse
Affiliation(s)
- Tong-Mou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Chen Hu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Min Liu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Heng Xu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Xie Wang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| |
Collapse
|
12
|
Dynamic gas extraction of iodine in combination with a silver triangular nanoplate-modified paper strip for colorimetric determination of iodine and of iodine-interacting compounds. Mikrochim Acta 2019; 186:188. [DOI: 10.1007/s00604-019-3300-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/22/2022]
|