1
|
Paparella R, Panvino F, Leonardi L, Pucarelli I, Menghi M, Micangeli G, Tarani F, Niceta M, Rasio D, Pancheva R, Fiore M, Tarani L. Water-Soluble Vitamins: Hypo- and Hypervitaminosis in Pediatric Population. Pharmaceutics 2025; 17:118. [PMID: 39861765 PMCID: PMC11768360 DOI: 10.3390/pharmaceutics17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Water-soluble vitamins, comprising the B-complex vitamins and vitamin C, are essential for normal growth, cellular metabolism, and immune function in pediatric populations. Due to limited storage in the body, these vitamins require consistent intake to prevent deficiencies. Pediatric populations, particularly infants and young children, face a heightened risk of both deficiency and, in rare cases, toxicity due to varying dietary intake and increased developmental needs. This review explores the clinical importance of water-soluble vitamins, focusing on hypo- and hypervitaminosis in children. METHODS A narrative review of the recent literature on the sources, recommended intakes, deficiency symptoms, and potential toxicities associated with each water-soluble vitamin was conducted. RESULTS Deficiencies in water-soluble vitamins can lead to diverse clinical outcomes, such as neurological, hematological, and immune-related symptoms, depending on the specific vitamin involved. Pediatric populations with increased nutritional needs, such as those experiencing rapid growth or with malabsorption conditions, are particularly vulnerable to vitamin insufficiencies. Conversely, although uncommon, excessive intake of certain water-soluble vitamins may cause mild toxicity, primarily gastrointestinal or neurological. CONCLUSIONS Monitoring water-soluble vitamin levels and providing tailored nutritional support are critical to prevent the adverse effects of hypo- and hypervitaminosis in children. Further research is needed to refine pediatric nutritional guidelines and address the specific needs of young patients, supporting optimal health outcomes.
Collapse
Affiliation(s)
- Roberto Paparella
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy (L.T.)
| | - Fabiola Panvino
- Department of Human Neuroscience, Section of Child and Adolescent Neuropsychiatry, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy (L.T.)
| | - Ida Pucarelli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy (L.T.)
| | - Michela Menghi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy (L.T.)
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy (L.T.)
| | - Francesca Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy (L.T.)
| | - Marcello Niceta
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy (L.T.)
- Department of Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00100 Rome, Italy
| | - Debora Rasio
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rouzha Pancheva
- Department of Hygiene and Epidemiology, Faculty of Public Health, Medical University Prof Dr Paraskev Stoyanov, 9002 Varna, Bulgaria
| | - Marco Fiore
- Department of Sensory Organs, Institute of Biochemistry and Cell Biology (IBBC-CNR), Sapienza University of Rome, 00161 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy (L.T.)
| |
Collapse
|
2
|
Zhao S, Shi J, Cai S, Xiong T, Cai F, Li S, Chen X, Fan C, Mei X, Sui Y. Impact of rice variety, cooking equipment and pretreatment method on the quality of lightly milled rice. Food Chem 2024; 451:139271. [PMID: 38663245 DOI: 10.1016/j.foodchem.2024.139271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 05/26/2024]
Abstract
Lightly milled rice is a healthier choice compared to refined white rice. In this study, the effects of variety, cooking equipment and pretreatment method on the quality of six varieties of lightly milled rice from China after cooking was investigated through physics, chemistry and instrumental analysis method. Nanjing-No.5055 has the best eating quality, Xiadao-No.1 has higher appearance score, and Fengliangyouxiang-No.1 has the lowest glycemic index. Compared with microwave oven and electric cooker, steamer has a more significant positive impact on component retention, eating quality and sensory quality, but the former has lower cooking time and higher glycemic index. Soaking can effectively improve the water absorption rate, thus reducing hardness. Cleaning affects component retention but is beneficial for sensory quality. The most obvious variation in organizational structure can be observed in the steamer and soaking processes. These findings could serve as a valuable reference for the processing of lightly milled rice.
Collapse
Affiliation(s)
- Shishan Zhao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Jianbin Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Sha Cai
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Tian Xiong
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Cai
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaobin Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xueling Chen
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chuanhui Fan
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xin Mei
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Yong Sui
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
3
|
Nguyen TTL, Pham TMN, Ho TB, Ly-Nguyen B. Optimization of Vitamin B1, B2, and B6 Absorption in Nang Tay Dum Floating Rice Grains. Foods 2024; 13:2650. [PMID: 39272416 PMCID: PMC11393852 DOI: 10.3390/foods13172650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
As reported by the FAO, in 2022, approximately 735 million people experienced undernourishment, underscoring the critical need for effective strategies to address micronutrient deficiencies. Among these strategies, the mass fortification of staple foods, particularly rice-a dietary staple for half of the global population-has emerged as one of the most effective approaches. Conventional milling processes diminish the nutritional content of rice, necessitating the development of fortification methods to enhance its nutrient profile. This study investigates advanced fortification techniques to improve the nutritional value of rice, focusing on vitamins B1, B2, and B6, with guidelines from the US Institute of Medicine's Dietary Reference Intakes. The results indicate that implementing ultrasonic treatments and optimal soaking conditions (60 °C for 60 min) significantly enhances the absorption of these vitamins. Effective parameters included a concentration of 1500 ppm for vitamin B1 and higher levels for vitamins B2 and B6, with a rice-to-vitamin solution ratio of 1:4. These conditions yielded an absorbed vitamin B1 content of 1050 mg/kg, bringing the fortified rice closer to meeting recommended intake levels. Given the global average daily consumption of 100 g of rice per person, this research demonstrates the feasibility of fortifying rice to address nutrient deficiencies effectively and contribute to improved dietary health worldwide. Further enhancement of vitamin B2 and B6 levels remains essential for optimal fortification, highlighting the potential of fortified rice as a sustainable solution for improving global nutrition.
Collapse
Affiliation(s)
- Thi Thao Loan Nguyen
- Institute of Food and Biotechnology, Can Tho University, Can Tho City 900000, Vietnam
- Faculty of Chemical and Food Technology, Ho Chi Minh City Industry and Trade College, Ho Chi Minh City 700000, Vietnam
| | - Thi Mong Nghi Pham
- Institute of Food and Biotechnology, Can Tho University, Can Tho City 900000, Vietnam
| | - Thanh Binh Ho
- Faculty of Agriculture and Natural Resources, An Giang University, Vietnam National University, Ho Chi Minh City, Long Xuyen 880000, Vietnam
| | - Binh Ly-Nguyen
- Institute of Food and Biotechnology, Can Tho University, Can Tho City 900000, Vietnam
| |
Collapse
|
4
|
Wahyuni S, Asnani A, Khaeruni A, Dewi NDP, Sarinah S, Faradilla RHF. Study on physicochemical characteristics of local colored rice varieties (black, red, brown, and white) fermented with lactic acid bacteria (SBM.4A). JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:3035-3042. [PMID: 37790923 PMCID: PMC10542439 DOI: 10.1007/s13197-023-05813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 10/05/2023]
Abstract
In this study, the physicochemical properties of local colored rice flour were studied after modification through fermentation with lactic acid bacteria (LAB) SBM.4A. SBM.4A was LAB isolated from the rice washing water and was in the cladogram of the Pediococcus pentosaceus strain SRCM102739 CP028266.1 and Pediococcus pentosaceus strain SRCM102738 CP028264.1. The studied rice varieties were wakacinda (white rice), wakawondu (red rice), warumbia (brown rice), and wakaombe (black rice). Characterizations of both fermented and native rice flour included chemical composition, FTIR profile, crystallinity, morphology, and pasting properties. Fermentation did not introduce new chemical functional groups to the flour and only slightly increased crystallinity from approximately 22.5% to 25.05%. In contrast, fermentation greatly affected the chemical composition and pasting properties of rice flour. Protein content of the fermented flour increased up to 214% relative to the native rice flour. Effect of fermentation on pasting properties varied between rice varieties. Increase in peak and final viscosities was observed in red, brown, and black rice. The opposite effect was found in white rice. However, fermentation improved the stability of flour to retrogradation for all rice varieties. These showed that the fermentation improved the properties of the local-colored rice flour and may widen their application as food ingredients.
Collapse
Affiliation(s)
- Sri Wahyuni
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Halu Oleo, Kendari, Sulawesi Tenggara 93132 Indonesia
| | - Asnani Asnani
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, Universitas Halu Oleo, Kendari, Indonesia
| | - Andi Khaeruni
- Department of Plant Protection, Faculty of Agriculture, Universitas Halu Oleo, Kendari, Indonesia
| | - Novi Dian Puspita Dewi
- Department of Chemistry, Faculty of Math and Natural Science, Universitas Halu Oleo, Kendari, Indonesia
| | - Sarinah Sarinah
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Halu Oleo, Kendari, Sulawesi Tenggara 93132 Indonesia
| | - R. H. Fitri Faradilla
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Halu Oleo, Kendari, Sulawesi Tenggara 93132 Indonesia
| |
Collapse
|
5
|
Sun M, Cai Z, Li C, Hao Y, Xu X, Qian K, Li H, Guo Y, Liang A, Han L, Shang H, Jia W, Cao Y, Wang C, Ma C, White JC, Xing B. Nanoscale ZnO Improves the Amino Acids and Lipids in Tomato Fruits and the Subsequent Assimilation in a Simulated Human Gastrointestinal Tract Model. ACS NANO 2023; 17:19938-19951. [PMID: 37782568 DOI: 10.1021/acsnano.3c04990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
With the widespread use of nanoenabled agrochemicals, it is essential to evaluate the food safety of nanomaterials (NMs)-treated vegetable crops in full life cycle studies as well as their potential impacts on human health. Tomato seedlings were foliarly sprayed with 50 mg/L ZnO NMs, including ZnO quantum dots (QDs) and ZnO nanoparticles once per week over 11 weeks. The foliar sprayed ZnO QDs increased fruit dry weight and yield per plant by 39.1% and 24.9, respectively. It also significantly increased the lycopene, amino acids, Zn, B, and Fe in tomato fruits by 40.5%, 15.1%, 44.5%, 76.2%, and 12.8%, respectively. The tomato fruit metabolome of tomatoes showed that ZnO NMs upregulated the biosynthesis of unsaturated fatty acids and sphingolipid metabolism and elevated the levels of linoleic and arachidonic acids. The ZnO NMs-treated tomato fruits were then digested in a human gastrointestinal tract model. The results of essential mineral release suggested that the ZnO QDs treatment increased the bioaccessibility of K, Zn, and Cu by 14.8-35.1% relative to the control. Additionally, both types of ZnO NMs had no negative impact on the α-amylase, pepsin, and trypsin activities. The digested fruit metabolome in the intestinal fluid demonstrated that ZnO NMs did not interfere with the normal process of human digestion. Importantly, ZnO NMs treatments increased the glycerophospholipids, carbohydrates, amino acids, and peptides in the intestinal fluids of tomato fruits. This study suggests that nanoscale Zn can be potentially used to increase the nutritional value of vegetable crops and can be an important tool to sustainably increase food quality and security.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zeyu Cai
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Hao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinxin Xu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Hao Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaozu Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Anqi Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Heping Shang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yini Cao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education,Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven 06511, Connecticut, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
| |
Collapse
|
6
|
Kumari A, Roy A. Enhancing micronutrient absorption through simultaneous fortification and phytic acid degradation. Food Sci Biotechnol 2023; 32:1235-1256. [PMID: 37362807 PMCID: PMC10290024 DOI: 10.1007/s10068-023-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Phytic acid (PA), an endogenous antinutrient in cereals and legumes, hinders mineral absorption by forming less bioavailable, stable PA-mineral complexes. For individual micronutrients, the PA-to-mineral molar ratio below the critical level ensures better bioavailability and is achieved by adding minerals or removing PA from cereals and pulses. Although several PA reduction and fortification strategies are available, the inability to completely eradicate or degrade PA using available techniques always subdues fortification's impact by hindering fortified micronutrient absorption. The bioavailability of micronutrients could be increased through simultaneous PA degradation and fortification. Following primary PA reduction of the raw material, the fortification step should also incorporate additional essential control stages to further PA inactivation, improving micronutrient absorption. In this review, the chemistry of PA interaction with metal ions, associated controlling parameters, and its impact on PA reduction during fortification is also evaluated, and further suggestions were made for the fortification's success.
Collapse
Affiliation(s)
- Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand India
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand India
| |
Collapse
|
7
|
Sumczynski D, Fišera M, Salek RN, Orsavová J. The Effect of Flake Production and In Vitro Digestion on Releasing Minerals and Trace Elements from Wheat Flakes: The Extended Study of Dietary Intakes for Individual Life Stage Groups. Nutrients 2023; 15:2509. [PMID: 37299472 PMCID: PMC10255177 DOI: 10.3390/nu15112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
This thorough study analyses the amounts of 43 minerals and trace elements in non-traditional wheat grains, flakes, and undigested flake portions using ICP-MS and establishes declines in their respective contents after the flake production. It also identifies appropriate dietary intakes, in vitro digestibility values, retention factors, and metal pollution indexes. The element contents in wheat flakes are lower than in wheat grains after the hydrothermal treatment process, and their declines are: Na (48-72%), Ce (47-72%), Sr (43-55%), Tl (33-43%), Ti (32-41%), U (31-44%), Ho (29-69%), Cr (26-64%), Zr (26-58%), Ag (25-52%), and Ca (25-46%). The flakes significantly contributed to the recommended dietary intake or adequate intake of particular elements for men of all categories as follows: Mn (143%) > Mo > Cu > Mg ≥ Cr > Fe (16%); for women: Mn (up to 183%) > Mo > Cu > Cr ≥ Mg > Fe (7-16%); for pregnant women aged 19-30: Mn (165%) > Mo > Cu > Mg > Cr (25%); and finally, for lactating women: Mn (127%) > Mo > Cu > Mg > Cr (17%). The contributions to the provisional tolerable weekly or monthly intakes of all toxic elements were established as being within the official limits. The daily intakes for non-essential elements were also calculated. The retention factors were calculated to assess the element concentrations in the undigested part using the digestibility values (87.4-90.5%). The highest retention factors were obtained for V (63-92%), Y (57-96%), Ce (43-76%), Pb (34-58%), Tl (32-70%), Ta (31-66%), and Ge (30-49%). K, Mg, P, Zn, Ba, Bi, Ga, Sb, Cu, Ni, and As appear to be released easily from flake matrices during digestion. The metal pollution index has been confirmed as being lower for non-traditional wheat flakes when compared with grains. Importantly, 15-25% of the metal pollution index assessed for native flakes remains in the undigested flake portion after in vitro digestion.
Collapse
Affiliation(s)
- Daniela Sumczynski
- Department of Food Analysis and Chemistry, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Miroslav Fišera
- Department of Food Analysis and Chemistry, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Richardos Nikolaos Salek
- Department of Food Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Jana Orsavová
- Language Centre, Tomas Bata University in Zlín, Štefánikova 5670, 760 01 Zlín, Czech Republic
| |
Collapse
|
8
|
Adetola OY, Taylor JRN, Duodu KG. Can consumption of local micronutrient- and absorption enhancer-rich plant foods together with starchy staples improve bioavailable iron and zinc in diets of at-risk African populations? Int J Food Sci Nutr 2023; 74:188-208. [PMID: 36843328 DOI: 10.1080/09637486.2023.2182740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Iron and zinc deficiencies remain prevalent in developing countries, often due to monotonous starchy diets that are low in bioavailable minerals. This review addresses the question as to whether consumption of starchy staple foods in Africa together with micronutrient-dense and absorption enhancer-rich plant foods can enhance iron and zinc bioavailability in the diets of at-risk populations. While green leafy vegetables (GLVs) fortification of starchy staples can improve mineral contents, especially iron, it may not improve bioavailable iron and zinc, due to GLVs' high contents of mineral absorption inhibitors, notably polyphenols, phytate and calcium. Fruits, although low in minerals, could improve bioavailable iron and zinc in the staples because of their high ascorbic and citric acid and/or β-carotene contents, which can form soluble chelates with the minerals. More human studies are needed to establish whether such a technology or fortification strategy can improve bioavailable iron and zinc in African-type plant-based diets.
Collapse
Affiliation(s)
- Oluyimika Y Adetola
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield, South Africa
| | - John R N Taylor
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield, South Africa
| | - K G Duodu
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
9
|
Guo H, Punvittayagul C, Vachiraarunwong A, Phannasorn W, Wongpoomchai R. Cancer chemopreventive potential of cooked glutinous purple rice on the early stages of hepatocarcinogenesis in rats. Front Nutr 2022; 9:1032771. [PMID: 36618678 PMCID: PMC9812574 DOI: 10.3389/fnut.2022.1032771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer prevention using dietary phytochemicals holds great potential, particularly in the alternative treatment of liver cancer. Our previous study found that the methanol extract of cooked purple rice performed various biological functions including antioxidant, anti-inflammatory, and antimutagenic activities in in vitro assays. This study aimed to evaluate the chemopreventive effects of cooked glutinous purple rice extract (CRE) obtained from routine rice cooking method on diethylnitrosamine (DEN)-induced hepatic preneoplastic lesions in rats, along with its inhibitory mechanisms. CRE containing γ-oryzanols and high amounts of polyphenolic compounds, particularly cyanidin-3-glucoside, was fed to rats over a period 15 weeks. Additionally, injections of triple DEN at a concentration of 100 mg/kg BW were administered to rats once a week during the second, third, and fourth weeks of the experiment. The results revealed that CRE did not induce the formation of glutathione S-transferase placental form (GST-P) positive foci as a precancerous lesion during rat hepatocarcinogenesis, indicating non-carcinogenicity. Furthermore, CRE significantly reduced the number and size of GST-P positive foci in DEN-initiated rats. It also modulated microenvironment homeostasis by reducing the number of PCNA positive hepatocytes and by enhancing the number of apoptotic positive hepatocytes in the livers of DEN-initiated rats. Using RT-PCR analysis, CRE decreased the mRNA expression of some proinflammatory mediators, including interleukin-6, interleukin-1 beta, inducible nitric oxide synthase and cyclooxygenase 2, by attenuating the expression of cyclin E, the proliferation marker, while also inducing the expression of the apoptotic gene, Bcl2 associated X. The inhibitory mechanism at the early stages of hepatocarcinogenesis of CRE may be involved with the attenuation of cell proliferation, the enhancement of apoptosis, and the modulation of the proinflammatory system. Anthocyanins, flavonoids, and γ-oryzanol represent a group of promising chemopreventive agents in cooked glutinous purple rice extract. The outcomes of this study can provide an improved understanding of the potential role of the phytochemicals contained in cooked purple glutinous rice with regard to cancer alleviation.
Collapse
Affiliation(s)
- Huina Guo
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand,School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Charatda Punvittayagul
- Center of Veterinary Diagnosis and Technology Transfer, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arpamas Vachiraarunwong
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Warunyoo Phannasorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand,*Correspondence: Rawiwan Wongpoomchai,
| |
Collapse
|
10
|
Kesik S, Çatak J, Ada K, Yaman M. Cooking Losses and Bioaccessibility of Thiamine by In Vitro Gastrointestinal System in Selected Legumes. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2148593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sultan Kesik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Jale Çatak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Kübra Ada
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Mustafa Yaman
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| |
Collapse
|
11
|
Quality Assessment of the Protein Ingredients Recovered by Ultrasound-Assisted Extraction from the Press Cakes of Coconut and Almond Beverage Preparation. Foods 2022; 11:foods11223693. [PMID: 36429285 PMCID: PMC9689247 DOI: 10.3390/foods11223693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
The manufacture of vegetal beverages has the drawback of producing large amounts of press cakes that are generally used as feed components. This work had the objective of valorizing the press cakes deriving from almond and coconut drinks production by using ultrasound-assisted extraction (UAE) to obtain protein ingredients for human use. Starting from coconut and almond press cakes, whose initial protein contents were 19.7% and 18.6%, respectively, the UAE treatment allowed liquid fractions to be obtained that were then freeze-dried: the extraction yields were 24.4 g dry extract/100 g press cake in case of coconut and 49.3 g dry extract/100 g press cake in case of almond. The protein contents of these dried materials were 30.10% and 22.88%, respectively. The quality of the extracted protein ingredients was assessed in term of phytic acid content, protein profile, techno-functional features, and antioxidant properties. The sonication had also a favorable effect on digestibility.
Collapse
|
12
|
Investigation of the vitamins B1, B2, and B6 vitamers bioaccessibilities of canned, dried legumes after in vitro gastrointestinal digestion system. Food Res Int 2022; 160:111671. [DOI: 10.1016/j.foodres.2022.111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
|
13
|
Gandhi H, Toor BS, Kaur A, Kaur J. Effect of processing treatments on physicochemical, functional and thermal characteristics of lentils (Lens Culinaris). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Rezaei M, Alizadeh Sani M, Amini M, Shariatifar N, Alikord M, Arabameri M, Chalipour A, Hazrati Reziabad R. Influence of cooking process on the content of water-soluble B vitamins in rice marketed in Iran. Food Sci Nutr 2022; 10:460-469. [PMID: 35154682 PMCID: PMC8825727 DOI: 10.1002/fsn3.2690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to analyze the effect of cooking method on thiamin (B1), riboflavin (B2), and pyridoxine (B6) vitamin content of rice samples consumed in Iran by using high-performance liquid chromatography technique. The amount of B1, B2, and B6 obtained ranged from 2.98 to 15.89, 1.15 to 22.19, and 0.96 to 4.44 μg/g, respectively, for the boiling method. In the traditional method, these vitamins had a concentration between 4.09 and 29.55, 4.87 and 16.19, and 1.52 and 12.18 μg/g, respectively. However, limit of detection (LOD) values for B1, B2, and B6 vitamins were 0.159, 0.090, and 0.041 μg/ml, respectively. Multivariate methods and heatmap visualization were applied to estimate the correlation among the type and amount of vitamins and cooking methods. According to heatmap findings, B1 and B6 vitamins and the cooking method had the closest accessions, representing that this variable had similar trends. Nevertheless, it can be concluded that the traditional cooking method can maintain more vitamins in rice samples.
Collapse
Affiliation(s)
- Mohammad Rezaei
- Department of Environmental Health EngineeringSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Mahmood Alizadeh Sani
- Department of Environmental Health EngineeringSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Mohsen Amini
- Department of Medicinal ChemistryFaculty of PharmacyDrug Design and Development Research CenterThe Institute of Pharmaceutical Sciences (TIPS)Tehran University of Medical SciencesTehranIran
| | - Nabi Shariatifar
- Department of Environmental Health EngineeringSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Mahsa Alikord
- Department of Environmental Health EngineeringSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Majid Arabameri
- Food Safety Research Center (salt)Semnan University of Medical SciencesSemnanIran
| | - Anita Chalipour
- Food and Drug AdministrationTehran University of Medical SciencesTehranIran
| | - Reza Hazrati Reziabad
- Department of Environmental Health EngineeringSchool of Public HealthTehran University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
16
|
Wang D, Pham VT, Steinert RE, Zhernakova A, Fu J. Microbial vitamin production mediates dietary effects on diabetic risk. Gut Microbes 2022; 14:2154550. [PMID: 36474346 PMCID: PMC9733697 DOI: 10.1080/19490976.2022.2154550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Adequate levels of essential vitamins are important for the prevention of diabetes. While the main efforts to address this are currently focused on the intake of vitamin supplements, improving and maintaining intrinsic vitamin production capacity, which is determined by gut microbes, has received insufficient attention. In this study, we systematically investigated the relationship between gut microbial vitamin production and factors related to diabetes and cardiometabolic health in a deeply phenotyped cohort, Lifelines-DEEP (N = 1,135). We found that blood glucose-related factors, lipids, circulating inflammation, and fecal short-chain fatty acids are associated with gut microbial vitamin production. Use of laxatives and metformin are associated with increased levels of vitamin B1/B6 biosynthesis pathways. We further reveal a mediatory role for microbial vitamin B1/B2 production on the influence of fruit intake on diabetes risk. This study provides preliminary evidence for microbiome-targeted vitamin metabolism interventions to promote health.
Collapse
Affiliation(s)
- Daoming Wang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen9713AV, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen9713AV, the Netherlands
| | - Van T. Pham
- Global R&D Center Human Nutrition and Care (HNC), DSM Nutritional Products Ltd, Basel, Switzerland
| | - Robert E. Steinert
- Global R&D Center Human Nutrition and Care (HNC), DSM Nutritional Products Ltd, Basel, Switzerland
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen9713AV, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen9713AV, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen9713AV, the Netherlands
| |
Collapse
|
17
|
Effect of different thermal processing methods on potentially toxic metals in the seafood, Penaeus vannamei, and the related human health risk assessment. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Aiello G, Li Y, Xu R, Boschin G, Juodeikiene G, Arnoldi A. Composition of the Protein Ingredients from Insoluble Oat Byproducts Treated with Food-Grade Enzymes, Such as Amylase, Cellulose/Xylanase, and Protease. Foods 2021; 10:foods10112695. [PMID: 34828977 PMCID: PMC8623069 DOI: 10.3390/foods10112695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
The manufacture of plant-based drinks has the drawback of a huge production of underexploited press cakes. In particular, the oat press cake is mainly used in feed formulation, whereas added-value applications in human nutrition are scarce. Considering that enzymatic treatments may be useful to improve the nutritional quality of these insoluble byproducts, this study aimed to evaluate whether the treatment with some food-grade enzymes, such as amylase, cellulase/xylanase, protease, and their combination, may be useful to achieve this goal. Proteomic and peptidomic studies showed that the enzymatic treatments improved the protein extraction yields and induced a release of low molecular weight (LMW) peptides that were demonstrated to provide a useful antioxidant activity. In the treated oat press cake proteins, the concentration of the bound phenolic compounds was decreased, with the exception of caffeic acid, which was increased, and avenanthramides, which remained unchanged. Finally, the enzymatic treatment decreased the concentration of phytic acid. All these results indicate that the enzymatic treatments may be useful to ameliorate the nutritional profile of these protein ingredients, before their inclusion in different food products.
Collapse
Affiliation(s)
- Gilda Aiello
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, 00166 Rome, Italy
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (Y.L.); (R.X.); (G.B.); (A.A.)
- Correspondence: ; Tel.: +39-0250319293
| | - Yuchen Li
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (Y.L.); (R.X.); (G.B.); (A.A.)
| | - Ruoxian Xu
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (Y.L.); (R.X.); (G.B.); (A.A.)
| | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (Y.L.); (R.X.); (G.B.); (A.A.)
| | - Grazina Juodeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania;
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (Y.L.); (R.X.); (G.B.); (A.A.)
| |
Collapse
|
19
|
Tiozon RJN, Sartagoda KJD, Fernie AR, Sreenivasulu N. The nutritional profile and human health benefit of pigmented rice and the impact of post-harvest processes and product development on the nutritional components: A review. Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34709089 DOI: 10.1080/10408398.2021.1995697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pigmented rice has attracted considerable attention due to its nutritional value, which is in large conferred by its abundant content of phenolic compounds, considerable micronutrient concentrations, as well as its higher resistant starch and thereby slower digestibility properties. A wide range of phenolic compounds identified in pigmented rice exhibit biological activities such as antioxidant activity, anti-inflammatory, anticancer, and antidiabetic properties. Post-harvest processes significantly reduce the levels of these phytochemicals, but recent developments in processing methods have allowed greater retention of their contents. Pigmented rice has also been converted to different products for food preservation and to derive functional foods. Profiling a large set of pigmented rice cultivars will thus not only provide new insights into the phytochemical diversity of rice and the genes underlying the vast array of secondary metabolites present in this species but also provide information concerning their nutritional benefits, which will be instrumental in breeding healthier rice. The present review mainly focuses on the nutritional composition of pigmented rice and how it can impact human health alongside the effects of post-harvest processes and product development methods to retain the ambient level of phytochemicals in the final processed form in which it is consumed.
Collapse
Affiliation(s)
- Rhowell Jr N Tiozon
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines.,Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kristel June D Sartagoda
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
20
|
Evaluation of the Validity of a Food Frequency Questionnaire and 24-Hour Dietary Recall to Assess Dietary Iron Intake in Children and Adolescents from the South American Youth/Child Cardiovascular and Environmental Study. J Acad Nutr Diet 2021; 122:384-393. [PMID: 34463258 DOI: 10.1016/j.jand.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/07/2021] [Accepted: 07/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND A food frequency questionnaire (FFQ) for South American children and adolescents was developed, but its validity for assessing dietary iron intake has not been evaluated. OBJECTIVE To evaluate the validity of the FFQ and 24-hour dietary recalls (24h-DR) for assessing dietary iron intake in children and adolescents. DESIGN The South American Youth/Child Cardiovascular and Environmental study is a multicenter observational study, conducted in five South American cities: Buenos Aires (Argentina), Lima (Peru), Medellin (Colombia), Sao Paulo, and Teresina (Brazil). The FFQ assessed dietary intake over the previous 3 months, and the 24h-DR was completed three times (2 weekdays and 1 weekend day) with a minimum 5-day interval between recalls. Blood samples were collected to assess serum iron, ferritin, and hemoglobin levels. PARTICIPANTS AND SETTING Data of 99 children (aged 3 to 10 years) and 50 adolescents (aged 11 to 17 years) from public and private schools were collected during 2015 to 2017. MAIN OUTCOME MEASURES Dietary iron intake calculated from the FFQ (using the sum of daily iron intake in all food/food groups) and 24h-DR (mean of 3 days using the multiple source method). STATISTICAL ANALYSES PERFORMED Dietary iron intake in relation to blood biomarkers were assessed using Spearman rank correlations adjusted for sex, age, and total energy intake, and the quadratic weighted κ coefficients for agreement. RESULTS Spearman correlations showed very good coefficients (range = 0.78 to 0.85) for the FFQ in both age groups; for the 24h-DR, the coefficients were weak in children and adolescents (range = 0.23 to 0.28). The agreement ranged from 59.9% to 72.9% for the FFQ and from 63.9% to 81.9% for the 24h-DR. CONCLUSION The South American Youth/Child Cardiovascular and Environmental study FFQ exhibited good validity to rank total dietary iron intake in children and adolescents, and as well as the 24h-DR, presented good strength of agreements when compared with serum iron and ferritin levels.
Collapse
|
21
|
Hor PK, Goswami D, Ghosh K, Takó M, Halder SK, Mondal KC. Preparation of rice fermented food using root of Asparagus racemosus as herbal starter and assessment of its nutrient profile. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2021; 2:147-156. [PMID: 38624716 PMCID: PMC8331993 DOI: 10.1007/s43393-021-00046-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/05/2022]
Abstract
The popularity of traditional fermented food products is based on their healthiness. The addition of a starter brings consistent, desirable, and predictable food changes with improved nutritive, functional, and sensory qualities. The addition of a mixture of plant residues as a starter or source of microbes is an age-old practice to prepare traditional fermented food and beverages, and most of the reported data on traditional foods were based on the analysis of the final product. The contribution of an individual starter component (plant residue) is not experimentally substantiated for any traditional fermented food, but this data are very essential for the formulation of an effective starter. In this study, Asparagus racemosus, which used as a common ingredient of starter for preparation of rice fermented food in the Indian sub-continent, was used as a starter for the preparation of rice fermented food under laboratory scale, and its microbial and nutrient profile was evaluated. The fermented product was a good source of lactic acid bacteria, Bifidobacterium sp., yeast, etc. The food product was acidic and enriched with lactic acid and acetic acid with titratable acidity of 0.65%. The content of protein, fat, minerals, and vitamins (water-soluble) was considerably improved. Most notably, oligosaccharide (G3-matotriose), unsaturated fatty acids (ω3, ω6, ω7, and ω9), and a pool of essential and non-essential amino acids were enriched in the newly formulated food. Thus, the herbal starter-based rice fermented food would provide important macro- and micronutrients. They could also deliver large numbers of active microorganisms for the sustainability of health. Therefore, the selected plant part conferred its suitability as an effective starter for the preparation of healthier rice-based food products. Graphic abstract
Collapse
Affiliation(s)
- Papan Kumar Hor
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Debabrata Goswami
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, India
| | - Miklós Takó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102 India
| |
Collapse
|
22
|
Kataria A, Sharma S, Dar B. Changes in phenolic compounds, antioxidant potential and antinutritional factors of Teff (
Eragrostis tef
) during different thermal processing methods. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ankita Kataria
- Department of Food Science & Technology Punjab Agricultural University Ludhiana Punjab141004India
| | - Savita Sharma
- Department of Food Science & Technology Punjab Agricultural University Ludhiana Punjab141004India
| | - B.N. Dar
- Department of Food Technology Islamic University of Science & Technology AwantiporaJK‐192122India
| |
Collapse
|
23
|
Garg M, Sharma A, Vats S, Tiwari V, Kumari A, Mishra V, Krishania M. Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Front Nutr 2021; 8:586815. [PMID: 34222296 PMCID: PMC8241910 DOI: 10.3389/fnut.2021.586815] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Around the world, cereals are stapled foods and good sources of vitamins A, B, and E. As cereals are inexpensive and consumed in large quantities, attempts are being made to enrich cereals using fortification and biofortification in order to address vitamin deficiency disorders in a vulnerable population. The processing and cooking of cereals significantly affect vitamin content. Depending on grain structure, milling can substantially reduce vitamin content, while cooking methods can significantly impact vitamin retention and bioaccessibility. Pressure cooking has been reported to result in large vitamin losses, whereas minimal vitamin loss was observed following boiling. The fortification of cereal flour with vitamins B1, B2, B3, and B9, which are commonly deficient, has been recommended; and in addition, region-specific fortification using either synthetic or biological vitamins has been suggested. Biofortification is a relatively new concept and has been explored as a method to generate vitamin-rich crops. Once developed, biofortified crops can be utilized for several years. A recent cereal biofortification success story is the enrichment of maize with provitamin A carotenoids.
Collapse
Affiliation(s)
- Monika Garg
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anjali Sharma
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Shreya Vats
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Vandita Tiwari
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anita Kumari
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Vibhu Mishra
- Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali, India
| | - Meena Krishania
- Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali, India
| |
Collapse
|
24
|
Al-Wraikat M, Hou C, Zhao G, Lu H, Zhang H, Lei Y, Ali Z, Li J. Degraded polysaccharide from Lycium barbarum L. leaves improve wheat dough structure and rheology. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Infantile thiamine deficiency: Redefining the clinical patterns. Nutrition 2021; 84:111097. [DOI: 10.1016/j.nut.2020.111097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
|
26
|
Gu R, Chang X, Bai G, Li X, Di Y, Liu X, Sun L, Wang Y. Effects of household cooking methods on changes of tissue structure, phenolic antioxidant capacity and active component bioaccessibility of quinoa. Food Chem 2021; 350:129138. [PMID: 33592364 DOI: 10.1016/j.foodchem.2021.129138] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 11/28/2022]
Abstract
The effects of four household cooking methods including germination (Ger), baking, normal pressure steaming (NPS) and high pressure steaming (HPS) treatments, on tissue structure, tocopherol, antioxidant capacity and active component (ferulic acid and tocopherol) bioaccessibility of different colored quinoa were investigated. The results showed that Ger increased the phenolic contents and antioxidant capacity, but decreased the contents of tocopherol. The steaming processes destroyed the tissue structure of quinoa to a large extent, causing a significant loss of phenolic/flavonoid components and the resultant decreased antioxidant capacity. The baking process had minimum impact on tissue structure and active components due to the protection of hypocotyl-radicle axis. Besides, through in vitro simulated digestion, Ger improved the bioaccessibility of ferulic acid, and steaming processes increased that of tocopherol. Conclusively, to develop the expected nutritional value of quinoa, several alternative cooking methods are provided according to the respective effects.
Collapse
Affiliation(s)
- Ruijuan Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaowen Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Guotao Bai
- Hohhot Customs District People's Republic of China, Hohhot, PR China
| | - Xiang Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yan Di
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
27
|
A systematic review of rice noodles: Raw material, processing method and quality improvement. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Yu C, Zhu L, Zhang H, Bi S, Wu G, Qi X, Zhang H, Wang L, Qian H, Zhou L. Effect of cooking pressure on phenolic compounds, gamma-aminobutyric acid, antioxidant activity and volatile compounds of brown rice. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2020.103127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Fernández-López J, Botella-Martínez C, Navarro-Rodríguez de Vera C, Sayas-Barberá ME, Viuda-Martos M, Sánchez-Zapata E, Pérez-Álvarez JA. Vegetable Soups and Creams: Raw Materials, Processing, Health Benefits, and Innovation Trends. PLANTS 2020; 9:plants9121769. [PMID: 33327480 PMCID: PMC7764940 DOI: 10.3390/plants9121769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
Vegetable soups and creams have gained popularity among consumers worldwide due to the wide variety of raw materials (vegetable fruits, tubers, bulbs, leafy vegetables, and legumes) that can be used in their formulation which has been recognized as a healthy source of nutrients (mainly proteins, dietary fiber, other carbohydrates, vitamins, and minerals) and bioactive compounds that could help maintain the body’s health and wellbeing. In addition, they are cheap and easy to preserve and prepare at home, ready to eat, so in consequence they are very useful in the modern life rhythms that modify the habits of current consumption and that reclaim foods elaborated with natural ingredients, ecologic, vegans, less invasive production processes, agroindustry coproducts valorization, and exploring new flavors and textures. This review focuses on the nutritional and healthy properties of vegetable soups and creams (depending on the raw materials used in their production) highlighting their content in bioactive compounds and their antioxidant properties. Apart from the effect that some processing steps could have on these compounds, innovation trends for the development of healthier soups and creams adapted to specific consumer requirements have also been explored.
Collapse
Affiliation(s)
- Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Carmen Botella-Martínez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Casilda Navarro-Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - María Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Elena Sánchez-Zapata
- Research & Development Pre-Cooked Convenience Food, Surinver El Grupo S.Coop, 03191 Alicante, Spain;
| | - José Angel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
- Correspondence: ; Tel.: +94-96-674-9739
| |
Collapse
|
30
|
Das S, Kumar Singh V, Kumar Dwivedy A, Kumar Chaudhari A, Deepika, Kishore Dubey N. Nanostructured Pimpinella anisum essential oil as novel green food preservative against fungal infestation, aflatoxin B 1 contamination and deterioration of nutritional qualities. Food Chem 2020; 344:128574. [PMID: 33218855 DOI: 10.1016/j.foodchem.2020.128574] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023]
Abstract
Application of synthetic preservatives to control the contamination of stored food commodities with aflatoxin B1 causing considerable loss in nutritional value is a major challenge. However, employment of essential oils for protecting food commodities is much limited due to high volatility, and increased susceptibility to oxidation. Therefore, objective of the present investigation was encapsulation of Pimpinella anisum essential oil in chitosan nanobiopolymer (CS-PAEO-Nm) to improve its bioefficacy, and sensorial suitability for application in food system. The synthesized CS-PAEO-Nm was characterized through SEM, FTIR, and XRD and evaluated for improved biological activity. The CS-PAEO-Nm exhibited improved antifungal (minimum inhibitory concentration = 0.08 μL/mL) and antiaflatoxigenic (minimum aflatoxin inhibitory concentration = 0.07 μL/mL) activities. CS-PAEO-Nm treatment significantly inhibited ergosterol, enhanced leakage of ions and induced impairment in defense enzymes (p < 0.05). In situ minerals and macronutrient preservation, and acceptable sensorial characteristics suggested possible recommendation of nanoencapsulated PAEO as potential safe green food preservative.
Collapse
Affiliation(s)
- Somenath Das
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vipin Kumar Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Kumar Dwivedy
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Chaudhari
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Deepika
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
31
|
Das S, Singh VK, Dwivedy AK, Chaudhari AK, Deepika, Dubey NK. Eugenol loaded chitosan nanoemulsion for food protection and inhibition of Aflatoxin B 1 synthesizing genes based on molecular docking. Carbohydr Polym 2020; 255:117339. [PMID: 33436182 DOI: 10.1016/j.carbpol.2020.117339] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/02/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
The present investigation entails the fabrication and characterization of nanometric emulsion of eugenol (Nm-eugenol) encompassed into chitosan for assessing bio-efficacy in terms of in vitro antifungal actions, antiaflatoxigenic potential, and in situ preservative efficacy against Aspergillus flavus infestation and aflatoxin B1 (AFB1) mediated loss of dietary minerals, lipid triglycerides and alterations in composition of important macronutrients in stored rice. Nm-eugenol characterized by SEM, XRD, and FTIR exhibited biphasic burst release of eugenol. Reduction in ergosterol and methylglyoxal (AFB1-inducer) content after Nm-eugenol fumigation depicted biochemical mechanism of antifungal and antiaflatoxigenic activities. In silico 3D homology docking of eugenol with Ver-1 gene validated molecular mechanism of AFB1 inhibition. Further, significant protection of rice seeds from fungi, AFB1 contamination and preservation against loss of rice minerals, macronutrients and lipids during storage suggested deployment of chitosan as a biocompatible wall material for eugenol encapsulation and application as novel green preservative for food protection.
Collapse
Affiliation(s)
- Somenath Das
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Kumar Dwivedy
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Chaudhari
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Deepika
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
32
|
Kaplan Evlice A, Özkaya H. Effects of wheat cultivar, cooking method, and bulgur type on nutritional quality characteristics of bulgur. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Liu Y, Li Y, Ke Y, Li C, Zhang Z, Liu A, Luo Q, Lin B, He J, Wu W. Processing of four different cooking methods of Oudemansiella radicata: Effects on in vitro bioaccessibility of nutrients and antioxidant activity. Food Chem 2020; 337:128007. [PMID: 32919278 DOI: 10.1016/j.foodchem.2020.128007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 11/19/2022]
Abstract
The purpose of this study is to evaluate the bioaccessibility of nutrients and antioxidant activity of O. radicata after subjecting to four types of domestic cooking and followed by in vitro digestion. The result demonstrated that the group with the lowest amino acid release and the degree of protein hydrolysis (5.6%) was frying, but both reducing sugar content and antioxidant activity were the highest. The composition of fatty acids was different than undigested samples, especially the relative content of linolenic acid was significantly decreased (e.g., 34.49 to 8.23%, boiled). The difference of the minerals bioaccessibility was slightly affected by the cooking method, but mainly related to their natural properties, such as the highest phosphorus (62.73%) and the lowest iron (21.53%) in the steaming. The above data provides a starting point for the design of processes at an industrial and gastronomic level.
Collapse
Affiliation(s)
- Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yiwen Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yu Ke
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Bokun Lin
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jialiang He
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| |
Collapse
|
34
|
Mohammadi F, Marti A, Nayebzadeh K, Hosseini SM, Tajdar-Oranj B, Jazaeri S. Effect of washing, soaking and pH in combination with ultrasound on enzymatic rancidity, phytic acid, heavy metals and coliforms of rice bran. Food Chem 2020; 334:127583. [PMID: 32711273 DOI: 10.1016/j.foodchem.2020.127583] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/23/2020] [Accepted: 07/12/2020] [Indexed: 01/02/2023]
Abstract
Simultaneous reduction in activity of fat destabilizing enzymes (lipase and lipoxygenase), contaminants heavy metals (As, Cd, Pb, and Hg), antinutrient phytic acid and hazardous coliforms in rice bran was investigated. Application of washing, soaking the washed sample at different pH values (2, 6 and 9) alone or in combination with ultrasonication were examined. While washing was beneficial, its low efficiency acquired further treatment, which was prevailed by application of acidic pH and ultrasound (28 kHz) treatments. Free fatty acids and peroxide value, as indicators of enzymes activity, implied the effectiveness of treatments with adverse impact of sonication on peroxide value. Remarkably, reduction of dominant heavy metals (As, Pb and Zn) and phytic acid were synergistically facilitated by sonication. Coliforms growth was inhibited at pH 2 even at the absence of ultrasonic treatment. Evidently, combination of acidic pH and ultrasound is a practical approach to improve rice bran stability and safety.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy
| | - Kooshan Nayebzadeh
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyede Marzieh Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrouz Tajdar-Oranj
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Jazaeri
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Bonto AP, Jearanaikoon N, Sreenivasulu N, Camacho DH. High uptake and inward diffusion of iron fortificant in ultrasonicated milled rice. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Kumar SR, Sadiq MB, Anal AK. Comparative study of physicochemical and functional properties of pan and microwave cooked underutilized millets (proso and little). Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Xia Q, Tao H, Li Y, Pan D, Cao J, Liu L, Zhou X, Barba FJ. Characterizing physicochemical, nutritional and quality attributes of wholegrain Oryza sativa L. subjected to high intensity ultrasound-stimulated pre-germination. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106827] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Wang M, Wang J, Fu L, Al-Wraikat M, Lin S, Lu P, Shan L, Fan J, Zhang B. Degradation of polysaccharides from Lycium barbarum L. leaves improves bioaccessibility and gastrointestinal transport of endogenous minerals. Int J Biol Macromol 2020; 143:76-84. [DOI: 10.1016/j.ijbiomac.2019.11.243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/10/2023]
|
39
|
Doh H, Lee MH, Park HJ. Effect of different cooking methods on the content and bioaccessibility of iodine components in abalone (Haliotis discus hannai). Food Chem 2019; 301:125197. [PMID: 31357004 DOI: 10.1016/j.foodchem.2019.125197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 01/16/2023]
Abstract
The present study aimed to evaluate the changes in total iodine and iodine species (iodide, iodate, 3-iodo-l-tyrosine, and 3,5-diiodo-l-tyrosine) content in abalone after different treatments (raw, semi-drying, steaming, grilling, and boiling) and in-vitro digestion using high-performance liquid chromatography-inductively coupled plasma-mass spectroscopy (HPLC-ICP-MS). The highest reduction in iodine content was found in boiled abalone (64.95%), followed by steamed (32.40%) and grilled (32.11%) abalones. There is no significant difference between iodine content of raw and semi-dried abalone. Absorption efficiency was determined by an in vitro digestion procedure using simulated gastro/intestinal solutions. Unlike total iodine content after cooking, absorption efficiency increased after cooking. Absorption efficiency of semi-dried abalone is the highest (28.53%), followed by boiled (23.85%), grilled (22.62%), steamed (21.51%), and raw (12.20%) abalones. Iodide was the major form of iodine present in the abalone after cooking and in vitro digestion. No iodate was observed, and the organic iodine content was very low.
Collapse
Affiliation(s)
- Hansol Doh
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min Hyeock Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| | - Hyun Jin Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|