1
|
Yang H, Chen R, Dai L, Ren B, Yang F, Xu YJ, Li Q. Construction of a reaction-based fluorescent sensor for tandem detection of Cu 2+ and glutathione in wine. Food Chem 2025; 464:141632. [PMID: 39423546 DOI: 10.1016/j.foodchem.2024.141632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The purpose of this study was to develop a novel reaction-based fluorescent sensor for the detection of Cu2+ and glutathione in real wine samples. The sensor, tris-(2-pyridyl)-methylamine rhodol derivative, was synthesized and validated for the tandem and selective detection of both Cu2+ and glutathione. The sensor exhibited a strong linear correlation between fluorescence intensity and Cu2+ concentration ranging from 100 to 900 nM, while the in situ generated Cu2+ ensemble selectively detected glutathione with a robust linear response from 3 to 30 μM. The detection limits for Cu2+ and glutathione were as low as 28 nM and 0.60 μM, respectively. Additionally, the sensor enabled quantitative detection of Cu2+ and glutathione in real wine samples. This work provides the first reaction-based fluorescence sensor with an "on-off-on" fluorescence response for the tandem detection of Cu2+ and glutathione in wine, offering potential applications in food and beverage quality control.
Collapse
Affiliation(s)
- Han Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Renqiang Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Linjun Dai
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Boquan Ren
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Feng Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Qing Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| |
Collapse
|
2
|
Guo C, Cui E, Xu X, Yang D. Ionophore-based nanospheres enable selective and sensitive fluorescence detection of copper ions. Talanta 2025; 281:126855. [PMID: 39265420 DOI: 10.1016/j.talanta.2024.126855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
A novel ionophore-based fluorescent nanosensor has been successfully fabricated for the sensitive and selective detection of Cu2+ ions. The nanosensor was constructed through self-assembly of amphiphilic block copolymers, incorporating elesclomol as a Cu2+ ionophore and long-chain dialkylcarbocyanines (DiD) as a fluorescent dye. This design exhibits an "ON/OFF" fluorescence response, where Cu2⁺ ions are selectively sequestered within the nanosensors, resulting in fluorescence quenching of DiD. This strategy enables rapid and highly selective Cu2⁺ sensing with remarkable fluorescence quenching efficiency (up to 93.5 %) and an exceptionally low detection limit of 28.6 nM. The linear detection range extends over two orders of magnitude (0.05-10 μM). Furthermore, the feasibility of this nanosensor for practical applications was confirmed through successful determination of Cu2+ in real water and beer samples, with excellent recovery rates. This nanosensor offers advantages of simplicity, rapidity, and cost-effectiveness, holding significant potential for sensitive and selective Cu2+ detection in various biological and environmental samples.
Collapse
Affiliation(s)
- Chao Guo
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Enna Cui
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiaonan Xu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Dongzhi Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Meng Y, Wang Y, Zhan Z, Chen Y, Zhang C, Peng W, Ying B, Chen P. Fructose@histone synergistically improve the performance of DNA-templated Cu NPs: rapid analysis of LAM in tuberculosis urine samples using a handheld fluorometer and a smartphone RGB camera. J Mater Chem B 2024; 12:6668-6677. [PMID: 38884176 DOI: 10.1039/d4tb00693c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
This study presented a nanoparticle-enhanced aptamer-recognizing homogeneous detection system combined with a portable instrument (NASPI) to quantify lipoarabinomannan (LAM). This system leveraged the high binding affinity of aptamers, the high sensitivity of nanoparticle cascade amplification, and the stabilization effect of dual stabilizers (fructose and histone), and used probe-Cu2+ to achieve LAM detection at concentrations ranging from 10 ag mL-1 to 100 fg mL-1, with a limit of detection of 3 ag mL-1 using a fluorometer. It can also be detected using an independently developed handheld fluorometer or the red-green-blue (RGB) camera of a smartphone, with a minimum detection concentration of 10 ag mL-1. We validated the clinical utility of the biosensor by testing the LAM in the urine of patients. Forty urine samples were tested, with positive LAM results in the urine of 18/20 tuberculosis (TB) cases and negative results in the urine of 6/10 latent tuberculosis infection cases and 10/10 non-TB cases. The assay results revealed a 100% specificity and a 90% sensitivity, with an area under the curve of 0.9. We believe that the NASPI biosensor can be a promising clinical tool with great potential to convert LAM into clinical indicators for TB patients.
Collapse
Affiliation(s)
- Yanming Meng
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yue Wang
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zixuan Zhan
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yuemei Chen
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chunying Zhang
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Wu Peng
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Binwu Ying
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Zhou J, Luo F, Dong X, Ma H, Guan M, Zhang J, Sun Y, Feng J. An AIE Controlled "Off-On" Cu 2+-Sensitive Probe for Early Detection of Renal Fibrosis. Adv Healthc Mater 2024; 13:e2303944. [PMID: 38444198 DOI: 10.1002/adhm.202303944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/03/2024] [Indexed: 03/07/2024]
Abstract
Early detection of renal fibrosis (RF) is very important given that it is irreversible when it progresses to the terminal stage. A key marker of RF pathogenesis is activation of myomyofibroblasts, and its targeted imaging may be a promising approach for early detection of RF, but no study has directly imaged activation of renal myomyofibroblasts. Cu2+ plays a major role in the fibrotic activity of myofibroblasts. Herein, inspired by that Cu2+ can complex with bovine serum albumin (BSA), BSA-Ag2S quantum dots (QDs) with aggregation-induced emission (AIE) property are synthesized. Then BSA-Ag2S QDs are modified by chitosan (CS) with renal targeting and hyaluronic acid (HA) with myofibroblast targeting to obtain the AIE assay system (QDs@CS@HA). The system is simple to synthesize, and produces a rapid NIR fluorescence signal turn-on response and a low detection limit of 75 × 10-9 m to Cu2+. In addition, cellular and animal experiments have shown that QDs@CS@HA has good biosafety and cell-targeted imaging capability for RF. Based on the successful application of QDs@CS@HA and the mechanism of RF progression in early RF detection, it is expected that QDs@CS@HA may detect RF before the appearance of clinical symptoms.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fusui Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaomeng Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huili Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min Guan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yiwen Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Junfen Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
5
|
Xiao W, Zhang Q, You DH, Li NB, Zhou GM, Luo HQ. Construction of a novel flavonol fluorescent probe for copper (II) ion detection and its application in actual samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124175. [PMID: 38565051 DOI: 10.1016/j.saa.2024.124175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Copper is an essential trace element in the human body, and its level is directly related to many diseases. While the source of copper in human body is mainly intake from food, then the detection of copper ions (Cu2+) in food becomes crucial. Here, we synthesized a novel probe (E)-3-hydroxy-2-styryl-4H-benzo[h]chromen-4-one (NSHF) and explored the binding ability of NSHF for Cu2+ using nuclear magnetic resonance hydrogen spectroscopy (1H NMR), high-resolution mass spectrometry (HRMS), Job's plot method and density functional theory (DFT). NSHF shows the advantages of fast response time, good selectivity and high sensitivity for Cu2+. The fluorescence intensity ratio (F/F0) of NSHF shows a good linear relationship with the concentration of Cu2+ and the detection limit is 0.061 μM. NSHF was successfully applied to the detection of Cu2+ in real samples. In addition, a simple and convenient Cu2+ detection platform was constructed by combining NSHF with a smartphone and a UV lamp, which can realize the rapid detection of Cu2+. This work provides an effective tool for the real-time detection of Cu2+.
Collapse
Affiliation(s)
- Wei Xiao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Dong Hui You
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Guang Ming Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
6
|
Wei D, Lv S, Zuo J, Liang S, Wang J, He T, Liu L. Fabrication of chitosan-based fluorescent hydrogel membranes cross-linked with bisbenzaldehyde for efficient selective detection and adsorption of Fe 2. Int J Biol Macromol 2024; 270:132088. [PMID: 38723821 DOI: 10.1016/j.ijbiomac.2024.132088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
Chitosan, as a natural biomass material, is green, recyclable, sustainable and well biocompatible. The molecular chain is rich in active groups such as amino and hydroxyl groups, and its preparation of fluorescent probes has the advantages of biocompatibility and efficient detection performance. In this study, a bis(benzaldehyde) (BHD) fluorescent functional molecule was designed. Then a series of fluorescent chitosan-based hydrogel films (CSBHD) were prepared using chitosan as raw material and BHD as cross-linking agent. As a fluorescent probe for metal ions, CSBHD was able to efficiently detect Fe2+ with a linear correlation of fluorescence intensity in the range of 0-160 μM, and the limit of detection (LOD) was 0.55 μM. Moreover, it has excellent adsorption performance for Fe2+ ions, with a maximum adsorption capacity of 223.5 g/mg at 500 mg/L Fe2+ concentration. Finally, we characterised the structure and microscopic morphology of CSBHD films and found that CSBHD as a hydrogel film has a high cross-linking density, good water resistance, excellent thermal stability, strong resistance to swelling, and excellent stability in cycling tests. Hence, it has great potential for application in adsorption and detection of Fe2+ ions. It also provides a good strategy for the application of chitosan based fluorescent probe materials in environmental monitoring and heavy metal ion adsorption.
Collapse
Affiliation(s)
- Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jingjing Zuo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shan Liang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jialin Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tingxiang He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
7
|
Sun Y, Mu J, Wang Y, Lü C, Zou LW. Rational synthesis of 1,3,4-thiadiazole based ESIPT-fluorescent probe for detection of Cu 2+ and H 2S in herbs, wine and fruits. Anal Chim Acta 2024; 1297:342379. [PMID: 38438245 DOI: 10.1016/j.aca.2024.342379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Here, 1,3,4-thiadiazole unit was employed as novel excited state intramolecular proton transfer (ESIPT) structure to prepare favorable fluorescent probe. High selectivity and rapid response to Cu2+ was obtained and the settling reaction was also used to recover ESIPT characteristics of probe to achieve sequential detection of H2S. Remarkable color change of solution from colorless to bright yellow and fluorescence emission from green to dark realized the visual detection of Cu2+ by naked eyes and transition of probe into portable fluorescent test strips. As expected, L-E could be utilized to quantitatively sense Cu2+ and H2S in different actual water and food samples including herbs, wine and fruits. The limits of detection for Cu2+ and H2S were as low as 34.5 nM and 38.6 nM. Also, probe L-E achieved real-time, portable, on-site quantitative detection of Cu2+ via a colorimeter and a smartphone platform with limit of detection to 90.3 nM.
Collapse
Affiliation(s)
- Yu Sun
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian, 116029, PR China
| | - Jie Mu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yongchen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian, 116029, PR China
| | - Chengwei Lü
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian, 116029, PR China.
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
8
|
Ruan M, Zhang B, Wang J, Fan G, Lu X, Zhang J, Zhao W. A resorufin-based fluorescent probe for hydrazine detection and its application in environmental analysis and bioimaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6412-6416. [PMID: 37965731 DOI: 10.1039/d3ay01629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Hydrazine (N2H4) is an important industrial raw material that has been widely used in industrial production and agricultural interventions, but its widespread application also inevitably causes environmental pollution. In this study, based on resorufin, we constructed a novel "turn-on" fluorescent probe RFT for the selective detection of hydrazine under complex environmental conditions and in vivo. The probe RFT exhibited excellent stability and selectivity towards the detection of hydrazine with a low detection limit of 260 nM. In addition, RFT was successfully applied to the detection of hydrazine in environmental water samples and living cells. Most importantly, RFT could not only detect the exogenous hydrazine in zebrafish and mice, but also image and visualize the up-regulation of endogenous hydrazine induced by isoniazid in zebrafish.
Collapse
Affiliation(s)
- Minghao Ruan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Bo Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, P. R. China.
| | - Guanwen Fan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Xiaoyan Lu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
9
|
Prete P, Iannaccone D, Proto A, Tobiszewski M, Cucciniello R. Development and validation of an eco-compatible UV-Vis spectrophotometric method for the determination of Cu 2+ in aqueous matrices. Anal Bioanal Chem 2023; 415:5003-5010. [PMID: 37314484 PMCID: PMC10386959 DOI: 10.1007/s00216-023-04785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Cu2+ are ubiquitous ions in the ecosystem and are responsible of serious environmental pollution. Indeed, the development of sensitive methods for Cu2+ detection is an urgent demand. In this work, we proposed a new spectrophotometric method for Cu2+ determination in different water matrices (distilled water, drinking water, wastewater, and river water). The method employs a bio-based organic ligand namely tetrasodium iminodisuccinate (IDS) able to form a stable complex with the analyte with a maximum absorption at 710 nm. Within the linear range of 6.3-381 mg L-1, the limit of detection (LOD) was determined to be as 1.43 mg L-1. Moreover, the recovery data of the spiked analysis of drinking/river/wastewater water samples were also satisfactory and verified the feasibility of the method for the analysis of Cu2+ in natural conditions. Finally, the AGREE assessment tool was used for a quantitative evaluation of the proposed method and reference method, in agreement with the green analytical chemistry principles. The results showed the lower environmental impact of the proposed method and the suitability of this novel approach for Cu2+ in water matrices.
Collapse
Affiliation(s)
- Prisco Prete
- Environmental Chemistry Group (ECG), Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Davide Iannaccone
- Environmental Chemistry Group (ECG), Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Antonio Proto
- Environmental Chemistry Group (ECG), Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Marek Tobiszewski
- Department of Analytical Chemistry, Faculty of Chemistry and EcoTech Center, Gdańsk University of Technology (GUT), 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Raffaele Cucciniello
- Environmental Chemistry Group (ECG), Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
- Centro Interdisciplinare Linceo Giovani, Accademia Nazionale dei Lincei, Via della Lungara, Roma, 10 - 00165, Italy.
| |
Collapse
|
10
|
Sun H, Xu Q, Xu C, Zhang Y, Ai J, Ren M, Liu K, Kong F. Construction of a water-soluble fluorescent probe for copper (II) ion detection in live cells and food products. Food Chem 2023; 418:135994. [PMID: 36989639 DOI: 10.1016/j.foodchem.2023.135994] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
The quality of wine can be affected by excess Cu2+ due to the occurrence of oxidation reactions or precipitation. Therefore, it is essential to use simple and effective testing methods to ensure the Cu2+ content in wine. In this work, we designed and synthesized a rhodamine polymer fluorescent probe (PEG-R). The water solubility of PEG-R was improved by the introduction of polyethylene glycol, which improved the performance and broadened its application in the food field. The PEG-R was characterized by high sensitivity, selectivity and fast response to Cu2+ and was able to complete the response process within 30 s, with approximately 29-fold fluorescence enhancement of the probe after exposure to Cu2+, the limit of detection (LOD) was 1.295 × 10-6 M. The probe can be used for the determination of Cu2+ in living cells, zebrafish, white wine and food products, and it was made into practical gels and test strips.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qingyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chen Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yukun Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jindong Ai
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
11
|
Wang X, Meng Z, Tian X, Kou J, Xu K, Wang Z, Yang Y. A novel coumarin derivative-grafted dialdehyde cellulose-based fluorescent sensor for selective and sensitive detection of Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122378. [PMID: 36716602 DOI: 10.1016/j.saa.2023.122378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
A new fluorescent probe DAC-NCH with specific response to Fe3+ was synthesized via condensation reaction between dialdehyde cellulose and coumarin derivative. This probe exhibited a significant "turn-off" fluorescence response to Fe3+, accompanied by the fluorescence color change from bright pink to colorless. DAC-NCH was highly selective for Fe3+ and could achieve detection within a short time (<3 min). The detection limit of DAC-NCH for Fe3+ was determined to be as low as 91.7 nM. The complexation mechanism of DAC-NCH with Fe3+ was confirmed by Job's plot, FTIR analysis, 1H NMR titration, and density functional theory (DFT) calculations. In addition, DAC-NCH could be used for the determination of Fe3+ in actual water samples, and DAC-NCH-embedded fluorescent membrane was able to serve as a reliable platform for the detection of Fe3+.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuechun Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiali Kou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Guirado-Moreno J, Carreira-Barral I, Ibeas S, García JM, Granès D, Marchet N, Vallejos S. Democratization of Copper Analysis in Grape Must Following a Polymer-Based Lab-on-a-Chip Approach. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16055-16062. [PMID: 36939579 PMCID: PMC10064320 DOI: 10.1021/acsami.3c00395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Quality control in the food industry is of the upmost importance from the food safety, organoleptic and commercial viewpoints. Accordingly, the development of in situ, rapid, and costless analytical tools is a valuable task in which we are working. Regarding this point, the copper content of grape must has to be determined by wineries along the wine production process. For this purpose, grape must samples are sent to laboratories where the copper content is measured usually by flame atomic absorption spectrometry or by inductively coupled plasma mass spectrometry. We herein propose a straightforward, rapid, and inexpensive methodology based both on a film-shaped colorimetric polymer sensor and a smartphone method that at the same time can be used by unskilled personnel. The sensory polymer films change their color upon dipping them on the grape must, and the color evolution is analyzed using the digital color parameters of a picture taken to the film with a smartphone. Furthermore, the analytical procedure is automatically carried out by a smartphone app. The limit of detection of copper of the polymer sensor is 0.08 ppm. Following this approach, 18 production samples coming from the French Groupe ICV company were studied. The copper content of the samples was analyzed by the usual procedure carried out by the company (flame atomic absorption spectrometry) and by the method proposed in this work, ranging this content from 0.41 to 6.08 ppm. The statistical study showed that the results of both methods are fully consistent, showing the validity of the proposed method for the determination of copper in grape must within the frame of wine production wineries and industries.
Collapse
Affiliation(s)
- José
Carlos Guirado-Moreno
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Israel Carreira-Barral
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Saturnino Ibeas
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - José M. García
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Daniel Granès
- Direction
Générale, La Jasse de Maurin, Groupe ICV, 34970 Lattes, France
| | - Nicolas Marchet
- Direction
Générale, La Jasse de Maurin, Groupe ICV, 34970 Lattes, France
| | - Saúl Vallejos
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
13
|
Wang J, Ma T, Wei M, Lan T, Bao S, Zhao Q, Fang Y, Sun X. Copper in grape and wine industry: Source, presence, impacts on production and human health, and removal methods. Compr Rev Food Sci Food Saf 2023; 22:1794-1816. [PMID: 36856534 DOI: 10.1111/1541-4337.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Heavy metals are of particular concern in grape and wine processing, especially copper. The sources of copper are diverse, including vineyard soil, copper-containing pesticides on the fruit surface, copper wine-making equipment, and exogenous addition in winemaking. Copper has potential risks to human nerves, metabolism, and others. It can inhibit yeast growth, delay fermentation, and also mediate oxidation reactions, which has a huge impact on the nutritional quality and sensory quality of fresh wine and aged wine. It is therefore crucial to detect, quantify, and remove copper from grapes and wine. However, the copper situations in the wine industries of various countries are complicated and diverse, and the existing forms of copper are quite different, which makes the research challenging. This review summarizes and analyzes the existence and influence of copper in the wine industry by analyzing the sources of, the current situation regarding, and the detection and removal methods for copper in wine. With the study, a better understanding of copper's impact on wine production will be gained, facilitating further control of copper in wine and helping the wine industry grow.
Collapse
Affiliation(s)
- Jiaqi Wang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot Wine Station, Northwest A&F University, Yangling, China
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Wei
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot Wine Station, Northwest A&F University, Yangling, China
| | - Tian Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shihan Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qinyu Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yulin Fang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot Wine Station, Northwest A&F University, Yangling, China
| | - Xiangyu Sun
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot Wine Station, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Development in Fluorescent OFF-ON Probes Based on Cu 2+ Promoted Hydrolysis Reaction of the Picolinate Moiety. J Fluoresc 2023; 33:401-411. [PMID: 36480123 DOI: 10.1007/s10895-022-03078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Anions and cations have a key role in our normal life. Cu2+ ion is a crucial trace element accountable for the part of several cellular enzymes and proteins, including cytochrome c oxidase, dopamine monooxygenase, Cu/Zn superoxide dismutase, and ceruloplasmin. WHO has found the extreme acceptable level of Cu2+ ions in drinking water is up to 2.0 ppm. Excess use of Cu2+ ions is associated with various human genetic disorders. Thus, the visualization of Cu2+ ions to avoid its toxic effects in chemical and biological systems is significant. In this review we have summarized sensors based on catalytic hydrolysis of picolinate to detect Cu2+ ions. The sensors based on hydrolysis of picolinate are very selective as compared to the other sensors for Cu2+ ions detection. We have focused on describing the structure, spectral properties, detection limits, and bioimaging model of the sensors.
Collapse
|
15
|
Xu C, Liu Q, Chu S, Li P, Wang F, Si Y, Mao G, Wu C, Wang H. A microdots array-based fluoremetric assay with superwettability profile for simultaneous and separate analysis of iron and copper in red wine. Anal Chim Acta 2023; 1254:341045. [PMID: 37005014 DOI: 10.1016/j.aca.2023.341045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
A microdots array-based fluoremetric method with superwettability profile has been developed for the simultaneous and separate detection of Fe3+ and Cu2+ ions in red wine samples. A wettable micropores array was initially designed with high density by using polyacrylic acid (PAA) and hexadecyltrimethoxysilane (HDS), followed by the NaOH etching route. Zinc metal organic frameworks (Zn-MOFs) were fabricated as the fluorescent probes to be immobilized into the micropores array to obtain the fluoremetric microdots array platform. It was found that the fluorescence of Zn-MOFs probes could decrease significantly in the presence of Fe3+ and/or Cu2+ ions towards their simultaneous analysis. Yet, the specific responses to Fe3+ ions could be expected if using histidine to chelate Cu2+ ions. Moreover, the developed Zn-MOFs-based microdots array with superwettability profile can enable the accumulation of targeting ions from the complicated samples without any tedious pre-processing. Also, the cross-contamination of different samples droplets can be largely avoided so as to facilitate the analysis of multiple samples. Subsequently, the feasibility of simultaneous and separate detection of Fe3+ and Cu2+ ions in red wine samples was demonstrated. Such a design of microdots array-based detection platform may promise the wide applications in analyzing Fe3+ and/or Cu2+ ions in the fields of food safety, environmental monitoring, and medical diseases diagnostics.
Collapse
|
16
|
Wei X, Gu Q, Feng Y, Zhang Y, Li Y, Zhang S, Zhang J, Wu S, Yang X, Ye Q, Ding Y, Wang J, Chen M, Wu Q. Sensitive and Selective Detection of Enterococcus faecalis Using a New Turn-on Fluorogenic β-glucosidase Substrate Combined with a Modified Selective Broth. Photochem Photobiol 2023; 99:68-77. [PMID: 35699359 DOI: 10.1111/php.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/02/2022] [Indexed: 01/25/2023]
Abstract
A new, simple-to-synthesize and sensitive turn-on fluorogenic substrate (CFMU-Glu) for β-glucosidase activity was developed. This probe was based on a 7-hydroxycoumarin derivative (CFMU) that could emit green fluorescence and had the low pKa value of 5.61 ± 0.01. CFMU-Glu could be used for sensitive monitoring of the almond βGLU and Enterococcus faecalis (E. faecalis) at the optimal pHs of 6.50 and 7.00, respectively. Moreover, a new sensitive and selective fluorogenic broth (PBF-B) for E. faecalis, utilizing CFMU-Glu and polymyxin B, was also developed. Polymyxin B was discovered to can significantly improve the detection selectivity and signal intensity. The proposed 4-four method using PBF-B and a microcentrifuge tube could provide fluorogenic detection limits of 5.01 × 104 and 1.0 × 105 CFU mL-1 by fluorescence microplate reader and naked eye, respectively; it could also provide a turn-on chromogenic detection limit of 1.0 × 106 CFU mL-1 by naked eye. The proposed method could detect 8 CFU mL-1 of E. faecalis in drinking water, Liangcha (herbal tea) and milk samples within 10 h, without pre-enrichment.
Collapse
Affiliation(s)
- Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Feng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Zhou D, Zhuang Y, Sheng Z. Study on effective synthesis of 7-hydroxy-4-substituted coumarins. HETEROCYCL COMMUN 2022. [DOI: 10.1515/hc-2022-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract
Many coumarin derivatives have good biological activity and application value in fluorescent probes. Therefore, synthetic routes to coumarin derivatives have also attracted the attention of many research groups. In this work, based on the Pechmann coumarin synthesis method, the influence of various Lewis acids on the reaction was discussed, and the optimal synthesis conditions of 7-hydroxy-4-substituted coumarins were explored. Based on the experimental results, a possible mechanism was proposed, which provides a reference for future industrialized production of coumarins.
Collapse
Affiliation(s)
- Dejun Zhou
- Department of Traditional Chinese Medicine, Chengde Medical University , Chengde , 067000 , China
- Shandong Daguan Pharmaceutical Technology Co Ltd , Jinan , Shandong, 250100 , China
| | - Youchao Zhuang
- Shandong Daguan Pharmaceutical Technology Co Ltd , Jinan , Shandong, 250100 , China
| | - Zuntian Sheng
- Shandong Daguan Pharmaceutical Technology Co Ltd , Jinan , Shandong, 250100 , China
| |
Collapse
|
18
|
Liu Y, Yang F, Wei K, Kang M, Liu P, Yang X, Pei M, Zhang G. 5-(thiophene-2-yl)oxazole derived “off-on-off” fluorescence chemosensor for sequential recognition of In3+ and Cr3+ ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
19
|
Electrochemiluminescence detection of Cu2+ ions by nitrogen-doped carbon quantum dots and zinc oxide composites. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Rapid self-calibrating fluorescent detection of copper (II) ions in wine with high accuracy. Food Chem 2022; 405:134984. [DOI: 10.1016/j.foodchem.2022.134984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
21
|
Development of a Rapid and Sensitive Fluorescence Sensing Method for the Detection of Acetaldehyde in Alcoholic Beverages. Foods 2022; 11:foods11213450. [DOI: 10.3390/foods11213450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Acetaldehyde is regarded as an important flavor compound in alcoholic beverages. With the advantages of rapidity, low cost and high sensitivity, fluorescent probe could be used as a new tool for the detection of acetaldehyde. Here, an effective fluorescence sensing method based on fluorescent probe N1 (FPN1) was established in this study. The function of FPN1 relies on the nucleophile substitution reaction and photoinduced electron transfer (PET), resulting in a fluorescence increase. Remarkably, the pretreatment background removal method (BRM) was successfully applied for removal of the interference of pyruvate and acetal. The linearity range (LR), limit of detection (LOD) and recovery of the fluorescence sensing method with BRM were 0.0053–200 mg/L, 0.0016 mg/L and 94.02–108.12%, respectively, which showed a broader detection range and better performance on sensitivity compared with the traditional quantitation using gas chromatography (GC). Furthermore, successful application of the method in real samples indicated the advantages of low-cost and rapidity for small-scale detection while assuring the accuracy, which provides a new strategy for the detection of acetaldehyde concentration in alcoholic beverages.
Collapse
|
22
|
Wang J, Meng Q, Yang Y, Zhong S, Zhang R, Fang Y, Gao Y, Cui X. Schiff Base Aggregation-Induced Emission Luminogens for Sensing Applications: A Review. ACS Sens 2022; 7:2521-2536. [PMID: 36048423 DOI: 10.1021/acssensors.2c01550] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorescence sensing can not only identify a target substrate qualitatively but also achieve the purpose of quantitative detection through the change of the fluorescence signal. It has the advantages of immense sensitivity, rapid response, and excellent selectivity. The proposed aggregation-induced emission (AIE) concept solves the problem of the fluorescence of traditional fluorescent molecules becoming weak or quenched in high concentration or aggregated state conditions. Schiff base fluorescent probes have the advantages of simple synthesis, low toxicity, and easy design. They are often used for the detection of various substances. In this review we cover late developments in Schiff base compounds with AIE characteristics working as fluorescence sensors.
Collapse
Affiliation(s)
- Jingfei Wang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Qingye Meng
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yuhang Fang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.,Weihai Institute for Bionics-Jilin University, Weihai 264400, People's Republic of China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.,Weihai Institute for Bionics-Jilin University, Weihai 264400, People's Republic of China
| |
Collapse
|
23
|
Leng X, Wang D, Mi Z, Zhang Y, Yang B, Chen F. Novel Fluorescence Probe toward Cu2+ Based on Fluorescein Derivatives and Its Bioimaging in Cells. BIOSENSORS 2022; 12:bios12090732. [PMID: 36140117 PMCID: PMC9496130 DOI: 10.3390/bios12090732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022]
Abstract
Copper is an important trace element that plays a crucial role in various physiological and biochemical processes in the body. The level of copper content is significantly related to many diseases, so it is very important to establish effective and sensitive methods for copper detection in vitro and vivo. Copper-selective probes have attracted considerable interest in environmental testing and life-process research, but fewer investigations have focused on the luminescence mechanism and bioimaging for Cu2+ detection. In the current study, a novel fluorescein-based A5 fluorescence probe is synthesized and characterized, and the bioimaging performance of the probe is also tested. We observed that the A5 displayed extraordinary selectivity and sensitivity properties to Cu2+ in contrast to other cations in solution. The reaction between A5 and Cu2+ could accelerate the ring-opening process, resulting in a new band at 525 nm during a larger pH range. A good linearity between the fluorescence intensity and concentrations of Cu2+, ranging from 0.1 to 1.5 equivalent, was observed, and the limit detection of A5 to Cu2+ was 0.11 μM. In addition, the Job’s plot and mass spectrum showed that A5 complexed Cu2+ in a 1:1 manner. The apparent color change in the A5–Cu2+ complex under ultraviolet light at low molar concentrations revealed that A5 is a suitable probe for the detection of Cu2+. The biological test results show that the A5 probe has good biocompatibility and can be used for the cell imaging of Cu2+.
Collapse
Affiliation(s)
- Xin Leng
- College of Life Sciences, Northwest University, Xi’an 710069, China
- College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Du Wang
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, China
| | - Zhaoxiang Mi
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, China
| | - Yuchen Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, China
| | - Bingqin Yang
- College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
- Correspondence: (B.Y.); (F.C.); Tel.: +86-0298-8302-263
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, China
- Correspondence: (B.Y.); (F.C.); Tel.: +86-0298-8302-263
| |
Collapse
|
24
|
Liu P, Hao R, Sun W, Lin Z, Jing T. One-pot synthesis of copper nanocluster/Tb-MOF composites for the ratiometric fluorescence detection of Cu 2. LUMINESCENCE 2022; 37:1793-1799. [PMID: 35946061 DOI: 10.1002/bio.4359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/06/2022]
Abstract
The increasing degradation of ecosystems due to heavy metal residues has led to environment and food contamination, prompting the development of convenient platforms for monitoring heavy metals. Here, a new dual-emission fluorescent sensor CuNCs@Tb@UiO-66-(COOH)2 for the detection of copper ions (Cu2+ ) has been synthesized by one-pot encapsulation of Tb (III) and glutathione-stabilized copper nanoclusters (CuNCs) into metal-organic frameworks (MOFs) UiO-66-(COOH)2 . In this ratiometric sensor, the fluorescence intensity of Tb3+ decreased significantly upon the addition of Cu2+ , while that of CuNCs showed good stability, together with an apparent color change. Therefore, ratiometric fluorescence detection of Cu2+ can be accomplished by measuring the ratio of the fluorescence intensity at the 450 nm (F450 ) wavelength of CuNCs to the 548 nm (F548 ) emission of Tb3+ in the fluorescence spectra of the CuNCs@Tb@UiO-66-(COOH)2 suspension. Moreover, the obtained fluorescent probe shows good results in the detection of actual samples. This work can provide the basis of method for the exploration of ratiometric fluorescence and visual sensors of trace pollutants analysis in complicated samples.
Collapse
Affiliation(s)
- Piaotong Liu
- College of Chemical Engineering, Qinghai University, Xining, China
| | - Rusi Hao
- College of Chemical Engineering, Qinghai University, Xining, China
| | - Wenliang Sun
- College of Chemical Engineering, Qinghai University, Xining, China
| | - Ziyi Lin
- College of Chemical Engineering, Qinghai University, Xining, China
| | - Tianfeng Jing
- College of Chemical Engineering, Qinghai University, Xining, China
| |
Collapse
|
25
|
Leng X, She M, Jin X, Chen J, Ma X, Chen F, Li J, Yang B. A Highly Sensitive and Selective Fluorescein-Based Cu 2+ Probe and Its Bioimaging in Cell. Front Nutr 2022; 9:932826. [PMID: 35832048 PMCID: PMC9271948 DOI: 10.3389/fnut.2022.932826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022] Open
Abstract
Copper is a vital trace metal in human body, which plays the significant roles in amounts of physiological and pathological processes. The application of copper-selective probe has attracted great interests from environmental tests to life process research, yet a few of sensitive Cu2+ tests based on on-site analysis have been reported. In this paper, a novel fluorescein-based fluorescent probe N4 was designed, synthesized, and characterized, which exhibited high selectivity and sensitivity to Cu2+ comparing with other metal ions in ethanol–water (1/1, v/v) solution. The probe N4 bonded with Cu2+ to facilitate the ring-opening, and an obvious new band at 525 nm in the fluorescence spectroscopy appeared, which could be used for naked-eye detection of Cu2+ within a broad pH range of 6–9. Meanwhile, a good linearity between the fluorescence intensity and the concentrations of Cu2+ ranged 0.1–1.5 eq. was observed, and the limit of detection of N4 to Cu2+ was calculated to be as low as 1.20 μm. In addition, the interaction mode between N4 and Cu2+ was found to be 1:1 by the Job's plot and mass experiment. Biological experiments showed that the probe N4 exhibited low biological toxicity and could be applied for Cu2+ imaging in living cells. The significant color shift associated with the production of the N4-Cu2+ complex at low micromolar concentrations under UV light endows N4 with a promising probe for field testing of trace Cu2+ ions.
Collapse
Affiliation(s)
- Xin Leng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.,Biomedicine Key Laboratory of Shaanxi Province, Xi'an, China.,Lab of Tissue Engineering, Faculty of Life Science & Medicine, The College of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| | - Mengyao She
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.,Biomedicine Key Laboratory of Shaanxi Province, Xi'an, China.,Lab of Tissue Engineering, Faculty of Life Science & Medicine, The College of Life Sciences, Northwest University, Xi'an, China
| | - Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, China
| | - Jiao Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.,Biomedicine Key Laboratory of Shaanxi Province, Xi'an, China.,Lab of Tissue Engineering, Faculty of Life Science & Medicine, The College of Life Sciences, Northwest University, Xi'an, China
| | - Xuehao Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.,Biomedicine Key Laboratory of Shaanxi Province, Xi'an, China.,Lab of Tissue Engineering, Faculty of Life Science & Medicine, The College of Life Sciences, Northwest University, Xi'an, China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| | - Bingqin Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| |
Collapse
|
26
|
One-step synthesis of nitrogen-doped carbon quantum dots for paper-based electrochemiluminescence detection of Cu2+ ions. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Kavitha S, Mary Jelastin Kala S, Anand Babu Christus A, Ravikumar A. Colorimetric determination of cysteine and copper based on the peroxidase-like activity of Prussian blue nanocubes. RSC Adv 2021; 11:37162-37170. [PMID: 35496385 PMCID: PMC9043537 DOI: 10.1039/d1ra06838e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Prussian blue nanocubes were synthesized via a hydrothermal method. Significantly, the redox couple Ni3+/Ni2+ provided rich oxidation and reduction reactions, which enhance catalytic activity. Furthermore, PBNCs mimic peroxidase activity which could oxidise colourless tetramethyl benzidine (TMB) to a blue colour (TMB+) in the presence of H2O2. Thus, it can be used as a colorimetric sensing platform for detecting cysteine and Cu2+. The addition of cysteine to a TMB + PBNCs sensing system decreases the intensity of the blue colour in the solution with a decrease in the absorption peak at 652 nm in the UV visible spectrum. Subsequently, the addition of Cu2+ into the TMB + PBNCs + Cys sensing system increases the intensity of the blue colour due to complex formation of Cu and cysteine. Therefore, the change in intensity of the blue colour of TMB is directly proportional to the concentration of Cys and Cu2+. As a result, this sensing system is highly sensitive and selective with an effective low detection limit of 0.002 mM for cysteine and 0.0181 mM for Cu2+. Furthermore, this method was applied to the detection of cysteine and copper in spiked real samples and gave satisfactory results.
Collapse
Affiliation(s)
- S Kavitha
- Research and Department of Chemistry, St. Xavier's College (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India) Tirunelveli-627002 Tamil Nadu India +91 9486558124
| | - S Mary Jelastin Kala
- Research and Department of Chemistry, St. Xavier's College (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India) Tirunelveli-627002 Tamil Nadu India
| | - A Anand Babu Christus
- Department Chemistry, SRM Institute of Science and Technology, Ramapuram Campus Ramapuram-600089 Chennai Tamil Nadu India
| | - A Ravikumar
- General Practice Center, The Seventh Affiliated Hospital, Southern Medical University Foshan 528244 P. R. China
- Institute of Environment and Health, South China Hospital, Health Science Center, Shenzhen University Shenzhen 518116 P. R. China
| |
Collapse
|
28
|
Li L, Xu K, Huang Z, Xu X, Iqbal J, Zhao L, Du Y. Rapid determination of trace Cu 2+ by an in-syringe membrane SPE and membrane solid-phase spectral technique. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4691-4698. [PMID: 34553721 DOI: 10.1039/d1ay01352a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new in-syringe membrane SPE and solid-phase visible spectral method was proposed for the rapid extraction and visible spectral determination of trace Cu2+. The chelation and membrane SPE can be accomplished in a syringe. The yellow Cu(DDTC)2 complex was separated using a polyethersulfone membrane from the sample solution. Then, the complex can be detected directly on the polyethersulfone membrane utilizing solid-phase visible absorbance spectra without elution. The proposed method simplified the experimental procedure and improved the sensitivity to the μg L-1 level. Furthermore, this method is environmentally friendly since it avoids the use of organic solvents. After the investigation of the influence of different variables on the membrane SPE procedure, water and blood plasma were analyzed to validate the proposed method. A LOD of 0.04 μg L-1 and recoveries of 96.0-103.7% confirmed that the present work can be applied for the determination of trace Cu2+ in water and blood plasma samples.
Collapse
Affiliation(s)
- Long Li
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, China.
| | - Kehan Xu
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
| | - Zuohua Huang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, China.
| | - Xinxin Xu
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, China.
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Liang Zhao
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, China.
| | - Yiping Du
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
29
|
Savran T, Nihan Karuk Elmas S, Akin Geyik G, Bostanci A, Aydin D, Nur Arslan F, Sadi G, Yilmaz I. “Turn‐on” Fluorescence Chemosensor Based Probing of Cu
2+
with Excellent Sensitivity: Experimental Study, DFT Calculations and Application in Living Cells and Natural Waters. ChemistrySelect 2021. [DOI: 10.1002/slct.202101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tahir Savran
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Sukriye Nihan Karuk Elmas
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Gonul Akin Geyik
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Aykut Bostanci
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Duygu Aydin
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Fatma Nur Arslan
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Gökhan Sadi
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| | - Ibrahim Yilmaz
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry 70100 Karaman Turkey
| |
Collapse
|
30
|
A new probe with high selectivity and sensitivity for detecting copper ions in traditional Chinese medicine and water sample. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Wu G, Li Y, Zhang J, Yun W, Xiong Z, Yang L. Simultaneous and ultra-sensitive detection of Cu 2+ and Mg 2+ in wine and beer based on dual DNA tweezers and entropy-driven three-dimensional DNA nanomachine. Food Chem 2021; 358:129835. [PMID: 33933951 DOI: 10.1016/j.foodchem.2021.129835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Simultaneous and ultra-sensitive detection strategy of Cu2+ and Mg2+ in wine and beer was developed based on dual DNA tweezers and entropy-driven three-dimensional DNA nanomachine. The dual DNAzyme can simultaneously respond to two kinds of metal ions and cause two kinds of "turn-on" fluorescent signals. The working principle of this strategy was indirectly proven. In addition, some key experimental parameters were also optimized. Under the optimum conditions, the limit of detection was 10 pM for Cu2+ and 2 nM for Mg2+ respectively which was significantly improved by entropy driven amplification. This strategy also showed good selectivity and specificity. It was successfully used to detect of Cu2+ and Mg2+ in wine and beer with 5.26% to 9.12% of relative standard deviation and 90.4% to 110.5% of recoveries.
Collapse
Affiliation(s)
- Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuting Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiafeng Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Zhengwei Xiong
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
32
|
Duan N, Yang S, Tian H, Sun B. The recent advance of organic fluorescent probe rapid detection for common substances in beverages. Food Chem 2021; 358:129839. [PMID: 33940297 DOI: 10.1016/j.foodchem.2021.129839] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
The beverage industry is confronted with tremendous challenges in terms of quality assurance. The allowed contents of common ingredients such as copper ions, hydrogen sulfide, cysteine and caffeine are stipulated by various governing bodies, and the beverage industry must ensure that it meets these requirements. Due to its unique advantages of high sensitivity, low cost and relatively low toxicity over high-performance liquid chromatography, atomic absorption spectrometry and nanomaterials, the use of organic fluorescent probes for the rapid detection of beverage contents has become a hot research topic. This review summarizes the detection of common substances in wine, tea, mineral water, milk and other beverages. Furthermore, the preparation of test paper and simple colour comparison are discussed to display the rapid qualitative capability of designed probes. To improve the current state of beverage safety, future trends and strategies for fast organic fluorescent probe detection in the beverage industry are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
33
|
Ren M, Xu Q, Bai Y, Wang S, Kong F. Construction of a dual-response fluorescent probe for copper (II) ions and hydrogen sulfide (H 2S) detection in cells and its application in exploring the increased copper-dependent cytotoxicity in present of H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119299. [PMID: 33341745 DOI: 10.1016/j.saa.2020.119299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Multiple types of metal ions and active small molecules (reactive nitrogen species, reactive oxygen species, reactive sulfur species, etc.) exist in living organisms. They have connections to each other and can interact and/or interfere with each other. To investigate the relationship of metal ions and active small molecules in living cells, it is necessary and critical to develop molecular tools that can track two kinds of associated certain metal ions and reactive molecules with multiple fluorescence signals. However, this is a challenging task that requires an ingenious molecular design to achieve this goal. Here, we present a fluorescent probe (D-CN) that can offer fluorescence imaging of H2S and copper (II) ions with different response signals. Recognition of H2S and Cu (II) by the new probe can result in green and red emissions, respectively, providing different signal responses to the two substances in living cells and zebrafish. In addition, we used this probe to visually prove that the cytotoxicity of copper ions in living cells increases in the presence of hydrogen sulfide and could lead to cell apoptosis.
Collapse
Affiliation(s)
- Mingguang Ren
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China.
| | - Qingyu Xu
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Yayu Bai
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Shoujuan Wang
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Fangong Kong
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China.
| |
Collapse
|
34
|
Ying Z, Long Y, Yang F, Dong Y, Li J, Zhang Z, Wang X. Self-powered liquid chemical sensors based on solid-liquid contact electrification. Analyst 2021; 146:1656-1662. [PMID: 33514956 DOI: 10.1039/d0an02126a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Triboelectric nanogenerators (TENGs) have attracted many research endeavors as self-powered sensors for force, velocity, and gas detection based on solid-solid or solid-air interactions. Recently, triboelectrification at liquid-solid interfaces also showed intriguing capability in converting physical contacts into electricity. Here, we report a self-powered triboelectric sensor for liquid chemical sensing based on liquid-solid electrification. As a liquid droplet passed across the tribo-negative sensor surface, the induced surface charge balanced with the electrical double layer charge in the liquid droplet. The competition between the double layer charge and surface charge generated characteristic positive and negative voltage spikes, which may serve as a "binary feature" to identify the chemical compound. The sensor showed distinct sensitivity to three amino acids including glycine, lysine and phenylalanine as a function of their concentration. The versatile sensing ability was further demonstrated on several other inorganic and organic chemical compounds dissolved in DI water. This work demonstrated a promising sensing application based on the triboelectrification principle for biofluid sensor development.
Collapse
Affiliation(s)
- Zhihua Ying
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA. and College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Yin Long
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Fan Yang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Yutao Dong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Ziyi Zhang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
35
|
Pan J, Yu J, Qiu S, Zhu A, Liu Y, Ban X, Li W, Yu H, Li L. A novel dibenzimidazole-based fluorescent probe with high sensitivity and selectivity for copper ions. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Zhang C, Zhang Y, Li M, Gong S, Gao Y, Yang Y, Wang Z, Wang S. A novel AIE fluorescent probe based on myrtenal for Cu 2+ detection in a near-perfect aqueous medium and bioimaging in vegetables and zebrafish. NEW J CHEM 2021. [DOI: 10.1039/d1nj02662c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An AIE-active fluorescent probe MHTS with good sensitivity and selectivity for the detection of Cu2+ was synthesized from myrtenal.
Collapse
Affiliation(s)
- Chenglong Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingxin Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuai Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Gao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
37
|
Kou H, Pang S, Yang B, Wang M, Ding J, Zhang Z, Yang X. A dual-emission ratiometric fluorescent nanoprobe based on silicon nanoparticles and carbon dots for efficient detection of Cu( ii). CrystEngComm 2021. [DOI: 10.1039/d1ce00166c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel dual-emission ratiometric fluorescent nanoprobe of Si NP–CD nanocomposites for highly sensitive and selective detection of Cu2+.
Collapse
Affiliation(s)
- Huiyuan Kou
- School of Chemical Engineering
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Shujie Pang
- School of Chemical Engineering
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Boyu Yang
- School of Chemical Engineering
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Mao Wang
- School of Chemical Engineering
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Juan Ding
- School of Chemical Engineering
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Zhuqing Zhang
- School of Chemical Engineering
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Xudong Yang
- School of Chemical Engineering
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| |
Collapse
|
38
|
The research progress of organic fluorescent probe applied in food and drinking water detection. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213557] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
A hydrophilic polymer-based bifunctional nanosensor for sequential fluorescence sensing of Cu2+ and biothiols and constructing molecular logic gate. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Zhou Z, Tang H, Chen S, Huang Y, Zhu X, Li H, Zhang Y, Yao S. A turn-on red-emitting fluorescent probe for determination of copper(II) ions in food samples and living zebrafish. Food Chem 2020; 343:128513. [PMID: 33158680 DOI: 10.1016/j.foodchem.2020.128513] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022]
Abstract
Herein, we developed a turn-on red-emitting fluorescent probe for the sensitive and selective detection of copper ions (Cu2+) in food samples and living zebrafish. The probe employs a hemicyanine scaffold as the fluorophore and a 2-pyridinecarbonyl group as the recognition receptor and quenching moiety. The 2-pyridinecarbonyl moiety can be specifically cleaved by Cu2+ and results in an approximately 18-fold fluorescence enhancement of the probe, thereby providing a fluorescence turn-on assay for Cu2+. Additionally, the probe exhibited excellent selectivity, high sensitivity, a broad linear relationship (0.020 to 8.0 μM), and a low limit of detection (4.0 nM, S/N = 3) for Cu2+. Concomitantly, the probe exhibited satisfactory analytical performance when used with actual food samples. Moreover, the probe could be used for in situ determination of Cu2+ in both living plant tissues and in living zebrafish.
Collapse
Affiliation(s)
- Zile Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Huihui Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shengyou Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yinghui Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
41
|
Novel fluorescent probe for the ratiometric detection of β-galactosidase and its application in fruit. Food Chem 2020; 328:127112. [DOI: 10.1016/j.foodchem.2020.127112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022]
|
42
|
Wu X, Li Y, Yang S, Tian H, Sun B. A dual-site fluorescent probe for sensitive detection of mercury(II). Microchem J 2020. [DOI: 10.1016/j.microc.2020.105024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
SAVRAN T, KARAGÖZ A, KARUK ELMAS ŞN, AYDIN D, ÖZEN F, KORAN K, ARSLAN FN, GÖRGÜLÜ AO, YILMAZ İ. Fluorescent sensing platform for low-cost detection of Cu2+ by coumarin derivative: DFT calculation and practical application in herbal and black tea samples. Turk J Chem 2020; 44:1148-1163. [PMID: 33488219 PMCID: PMC7751904 DOI: 10.3906/kim-2004-63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/26/2020] [Indexed: 11/03/2022] Open
Abstract
A fluorogenic probe based on a coumarin-derivative for Cu2+ sensing in CH3CN/H2O media (v/v, 95/5, 5.0 μM) was developed and applied in real samples. 3-(4-chlorophenyl)-6,7-dihydroxy-coumarin (MCPC) probe was obtained by synthetic methodologies and identified by spectral techniques. The probe MCPC showed remarkable changes with a "turn-off" fluorogenic sensing approach for the monitoring of Cu2+ at 456 nm under an excitation wavelength of 366 nm. The response time of the probe MCPC was founded as only 1 min. The detection limit of the probe MCPC was recorded to be 1.47 nM. The binding constant and possible stoichiometric ratio (1:1) values were determined by Benesi-Hildebrand and Job's plot systems, respectively. The mechanism of the probe MCPC with Cu2+ was further confirmed by ESI-MS and FT-IR analyses, as well as supported by theoretical calculations. Furthermore, the probe MCPC was successfully employed for the practical applications to sense Cu2+ in different herbal and black tea samples. The proposed sensing method was also verified by ICP-OES method.
Collapse
Affiliation(s)
- Tahir SAVRAN
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, KaramanTurkey
| | - Abdurrahman KARAGÖZ
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, KaramanTurkey
| | - Şükriye Nihan KARUK ELMAS
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, KaramanTurkey
| | - Duygu AYDIN
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, KaramanTurkey
| | - Furkan ÖZEN
- Department of Mathematics and Science, Faculty of Education, Akdeniz University, AntalyaTurkey
| | - Kenan KORAN
- Department of Chemistry, Faculty of Science, Fırat University, ElazığTurkey
| | - Fatma Nur ARSLAN
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, KaramanTurkey
| | | | - İbrahim YILMAZ
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, KaramanTurkey
| |
Collapse
|
44
|
Zheng AQ, Hao YN, Guo TT, Shu Y, Wang JH. A fluorescence imaging protocol for correlating intracellular free cationic copper to the total uptaken copper by live cells. Talanta 2020; 220:121355. [PMID: 32928391 DOI: 10.1016/j.talanta.2020.121355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/26/2023]
Abstract
A variety of fluorescence probes have been developed for fluorescence imaging of metals in biological cells. However, accurate quantification of metals with fluorescent approaches is challenging due to the difficulty in establishing a standard calibration curve in living cells. Herein, a fluorescence imaging protocol is developed for imaging intracellular Cu2+ and its correlation with the cellular uptake of copper. The total amount of intracellular Cu is detected by inductively coupled plasma mass spectrometry (ICP-MS) in parallel. Fluorescence imaging of Cu2+ is accomplished with Rhodamine B derivative modified carbon dots (CDs-Rbh) based on fluorescence resonance energy transfer (FRET) from CDs to rhodamine. Intracellular Cu2+ is correlated with fluorescence ratio at λem 500-600 nm (rhodamine) to λem 425-475 nm (CDs) with excitation at λex 405 nm. It is found that Cu2+ is linearly correlated with the total intracellular uptaken copper content, with a linear correlation between the relative fluorescence ratio in fluorescence imaging and intracellular Cu derived from ICP-MS, including both Cu(I) and Cu(II) species. The linear calibration equation is lg(F2/F1) = 0.00148 m[Cu]-0.3622. This approach facilitates further investigation and elucidation of copper transition in live cells and the evaluation of their cytotoxicity.
Collapse
Affiliation(s)
- An-Qi Zheng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ya-Nan Hao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ting-Ting Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
45
|
Simultaneous determination of five metal ions by on-line complexion combined with micelle to solvent stacking in capillary electrophoresis. Talanta 2020; 209:120578. [PMID: 31892076 DOI: 10.1016/j.talanta.2019.120578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/24/2022]
Abstract
A direct on-line complexion combined with micelle to solvent stacking method was proposed for simultaneous determination of metal ions by capillary electrophoresis coupled diode array detector. During the experiment, a plug of complexing agent was first injected to the inlet of capillary, followed by introducing the micelle-bound metal ions. Then the metal ions produced a micelle-to-solvent stacking effect and interacted with the complexing agent under a positive voltage. Continued application of voltage, the analytes were effectively focused and separated in the capillary zone electrophoresis. Repeatability was ranged from 1.89% to 1.94% for the migration time. The detection limits were 2.66-27.9 ng mL-1 for Ni2+, Co2+, Cu2+, Hg2+ and Cd2+. Furthermore, the developed method showed a great potential for the determination of metal ions in the crayfish, beebread and Dendrobium officinale samples.
Collapse
|
46
|
Arslan FN, Geyik GA, Koran K, Ozen F, Aydin D, Elmas ŞNK, Gorgulu AO, Yilmaz I. Fluorescence "Turn On-Off" Sensing of Copper (II) Ions Utilizing Coumarin-Based Chemosensor: Experimental Study, Theoretical Calculation, Mineral and Drinking Water Analysis. J Fluoresc 2020; 30:317-327. [PMID: 32016910 DOI: 10.1007/s10895-020-02503-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Herein, we report the preparation of a fluorescent sensor based on coumarin derivative for copper (II) ion sensing in CH3CN/HEPES media. 6,7-dihydroxy-3-(4-(trifluoro)methylphenyl)coumarin (HMAC) sensor was fabricated and analyzed by spectroscopic techniques. The sensor demonstrates "turn on-off" fluorescence quenching in the presence of copper (II) ions at 458 nm. A clear complex between the chemosensor HMAC and copper (II) ions was characterized by ESI-MS as well as the Job's method. Also, the limit of detection (LOD, 3σ/k) value was determined as 24.5 nM in CH3CN/HEPES (95/5, v/v) buffer media (pH = 7.0). This value is lower than the admissible level of copper (II) ions in drinking water (maximum 31.5 μM) reported by EU Water Framework Directive (WFD) and World Health Organization (WHO) guidelines. The theoretical calculations (density functional theory, DFT) have been performed for the geometric optimized structures. As a final stage, real sample analyses have successfully been performed by using HMAC, as well as ICP-OES method. The relative standard deviation for copper (II) in mineral and drinking water samples has been determined to be below 0.15% and recovery values are in the range of 95.48-109.20%.
Collapse
Affiliation(s)
- Fatma Nur Arslan
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.,Van't Hoff Institute for Molecular Sciences, Analytical-Chemistry Group, University of Amsterdam, Amsterdam, Netherlands
| | - Gonul Akin Geyik
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Kenan Koran
- Department of Chemistry, Firat University, Science Faculty, 23119, Elazıg, Turkey
| | - Furkan Ozen
- Department of Mathematics and Science, Akdeniz University, Faculty of Education, 07058, Antalya, Turkey
| | - Duygu Aydin
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Şükriye Nihan Karuk Elmas
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Ahmet Orhan Gorgulu
- Department of Chemistry, Firat University, Science Faculty, 23119, Elazıg, Turkey
| | - Ibrahim Yilmaz
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.
| |
Collapse
|
47
|
Jiang Q, Wang Z, Li M, Song J, Yang Y, Xu X, Xu H, Wang S. A nopinone based multi-functional probe for colorimetric detection of Cu 2+ and ratiometric detection of Ag . Photochem Photobiol Sci 2020; 19:49-55. [PMID: 31793618 DOI: 10.1039/c9pp00297a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual-signal probe PPN based on the natural β-pinene derivative nopinone was synthesized for the colorimetric detection of Cu2+ and ratiometric detection of Ag+. Upon the addition of Ag+, a significant fluorescence change from blue to green was observed with a low detection limit (0.86 μM). However, upon the addition of Cu2+, a significant color change from colorless to yellow was observed with a low detection limit (0.56 μM). The novel probe PPN was applied as a probe for the colorimetric detection of Cu2+ and ratiometric detection of Ag+ with a high selectivity, good sensitivity and fast response time. The detection mechanisms of probe PPN for Cu2+/Ag+ were confirmed by 1H NMR and HRMS-ESI. Besides, probe PPN could sense Cu2+/Ag+ on test strips. Additionally, probe PPN could be applied to quantitatively detect the concentration of Ag+ in water samples and image Ag+ in living cells.
Collapse
Affiliation(s)
- Qian Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonglong Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingxin Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI, 48502, USA
| | - Yiqin Yang
- College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Xu Xu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.,Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI, 48502, USA
| | - Haijun Xu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.,Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI, 48502, USA
| | - Shifa Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China. .,Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI, 48502, USA.
| |
Collapse
|
48
|
Picard-Lafond A, Larivière D, Boudreau D. Revealing the Hydrolysis Mechanism of a Hg 2+-Reactive Fluorescein Probe: Novel Insights on Thionocarbonated Dyes. ACS OMEGA 2020; 5:701-711. [PMID: 31956820 PMCID: PMC6964290 DOI: 10.1021/acsomega.9b03333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
As one of the most toxic metal pollutants, mercury is the subject of extensive research to improve current detection strategies, notably to develop sensitive, selective, fast, and affordable Hg2+-responsive fluorescent probes. Comprehending the sensing mechanism of these molecules is a crucial step in their design and optimization of their performance. Herein, a new fluorescein-based thionocarbonate-appended Hg2+-sensitive probe was synthesized to study the hydrolysis reactions involved in the sensing process. Autohydrolysis was revealed as a significant component of the signal generation mechanism, occurring concurrently with Hg2+-catalyzed hydrolysis. This knowledge was used to investigate the effects of key experimental conditions (pH, temperature, chloride ions) on sensing efficiency. Overall, the chemical and physical properties of this new thionocarbonated dye and the insights into its sensing mechanism will be instrumental in designing reliable and effective portable sensing strategies for mercury and other heavy metals.
Collapse
Affiliation(s)
- Audrey Picard-Lafond
- Département
de chimie and Centre d’optique, photonique et laser
(COPL), Université Laval, Québec, Quebec G1V 0A6, Canada
| | - Dominic Larivière
- Département
de chimie and Centre d’optique, photonique et laser
(COPL), Université Laval, Québec, Quebec G1V 0A6, Canada
| | - Denis Boudreau
- Département
de chimie and Centre d’optique, photonique et laser
(COPL), Université Laval, Québec, Quebec G1V 0A6, Canada
| |
Collapse
|
49
|
Tan Q, Zhang R, Zhang G, Liu X, Qu F, Lu L. Embedding carbon dots and gold nanoclusters in metal-organic frameworks for ratiometric fluorescence detection of Cu 2. Anal Bioanal Chem 2020; 412:1317-1324. [PMID: 31927600 DOI: 10.1007/s00216-019-02353-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/07/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
Herein, a dual-emission metal-organic framework based ratiometric fluorescence nanoprobe was reported for detecting copper(II) ions. In particular, carbon dots (CDs) and gold nanoclusters (AuNCs) were embedded into ZIF-8 (one of the classical metal-organic frameworks) to form CDs/AuNCs@ZIF-8 nanocomposites, which exhibited dual-emission peaks at UV excitation. In the presence of Cu2+, the fluorescence attributed to AuNCs can be rapidly quenched, while the fluorescence of CDs serves as reference with undetectable changes. Therefore, the CDs/AuNCs@ZIF-8 nanocomposites were utilized as a ratiometric fluorescence nanoprobe for sensitive and selective detection of Cu2+. A good linear relationship between the ratiometric fluorescence signal of CDs/AuNCs@ZIF-8 and Cu2+ concentration was obtained in the range of 10-3-103 μM, and the detection limit was as low as 0.3324 nM. The current ratiometric fluorescence nanoprobe showed promising prospects in cost-effective and rapid determination of Cu2+ ions with good sensitivity and selectivity. Furthermore, this nanoprobe has been successfully applied for the quantitative detection of Cu2+ in serum samples, indicating its value of practical application. Graphical abstract Carbon dots (CDs) and gold nanoclusters (AuNCs) were embedded into metal-organic frameworks (ZIF-8) to form CDs/AuNCs@ZIF-8 nanocomposites, which exhibited dual-emission peaks at 365 nm excitation. In the presence of Cu2+, the fluorescence emission peak at 574 nm can rapidly respond by quenching, while the fluorescence at 462 nm serves as reference with undetectable changes.
Collapse
Affiliation(s)
- Qingqing Tan
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ruirui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Guoyan Zhang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Xiaoya Liu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Limin Lu
- Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
50
|
Chen H, Yang P, Li Y, Zhang L, Ding F, He X, Shen J. Insight into triphenylamine and coumarin serving as copper (II) sensors with "OFF" strategy and for bio-imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117384. [PMID: 31336321 DOI: 10.1016/j.saa.2019.117384] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Chemosensing is one of the widest and powerful techniques for response to anions and cations in living systems serving as bio-probes. Meanwhile, copper(II) (Cu(II)) widely exists in the environment and the human body as a common trace element, which plays an necessary role in most physiological processes. Thus, it is extremely urgent to explore means for effective, rapid and convenient detection of Cu(II) in living cells. Herein, we introduce a novel strategy for designing triphenylamine (TS) and coumarin-based (CS) functional sensors for Cu(II) detection with fluorescence "OFF" switching mechanism by blocking intramolecular charge transfer (ICT). Based on this design strategy, we have demonstrated two kinds of fluorophores sensors with aunique new fluorescent dye and excellent photophysical properties, which have shown rapid recognition of Cu(II) via a stoichiometric ratio of 2:1 and the proposed binding mode was confirmed by the single-crystal structure of CS-Cu(II) complex. In addition, we have carried out density functional theory (DFT) calculation with the B3LYP exchange functional employing RB3LYP/6-31G basis sets to get insight into the mechanism of Cu(II)-sensors alongside their optical properties. Furthermore, the sensors were capable of bio-imaging Cu(II) in living cancer cells (HepG2, A549 and Hela) with low cytotoxicity and good biocompatibility shown. Taken together, We expect that this novel strategy would provide new insight into the development of Cu(II) detection techniques and could be used more for biomedical applications.
Collapse
Affiliation(s)
- Hong Chen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Ping Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Yahui Li
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lilei Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|