1
|
Wang X, Wang N, Dai J, Miao D, Dai Y, Xu S, You Z, Hou H, Wang W, Zhang Y. Tailoring enzyme modified starch through high-moisture extrusion: Unraveling structure-property relationships. Int J Biol Macromol 2024; 282:137140. [PMID: 39488313 DOI: 10.1016/j.ijbiomac.2024.137140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
The conventional method of producing enzyme modified starch (ES) involves using a dilute starch suspension, which necessitated substantial heat expenditure for drying the product and resulted in significant energy waste. Improved extrusion cooking technology (IECT) could extrude materials under high moisture, and it is a new physical modification technology. A comprehensive investigation was undertaken to produce enzyme modified starch (ES) with varying dextrose equivalent (DE) using IECT. The study systematically explored the effects of different screw speeds on the resulting IECT-ES properties. And principal component analysis and artificial neural network analysis were used to explore the correlation between data and the synaptic weight relationships. Results indicated that Maltese cross of IECT-ES disappeared, the R1047/1022 and R995/1022 decreased to 0.7305 and 0.9012 respectively, the full width at half maximum at 480 cm-1 increased to 26.81 %, light transmittance increased to 21.20 % and DE value rose to 14.19 % at 300 rpm. The properties evolution of IECT-ES was closely related to changes in structure and conditions. This study aimed to evaluate the effectiveness of IECT as an alternative method for producing enzyme modified starch. The findings provide valuable insights into more energy-efficient starch modification processes.
Collapse
Affiliation(s)
- Xuan Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ning Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jingqi Dai
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Di Miao
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Shaobin Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhaohong You
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yong Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
2
|
Farooq MA, Yu J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024; 13:2770. [PMID: 39272535 PMCID: PMC11395633 DOI: 10.3390/foods13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The physical modification of starch to produce resistant starch (RS) is a viable strategy for the glycemic index (GI) lowering of foods and functionality improvement in starchy food products. RS cannot be digested in the small intestine but can be fermented in the colon to produce short-chain fatty acids rather than being broken down by human digestive enzymes into glucose. This provides major health advantages, like better blood sugar regulation, weight control, and a lower chance of chronic illnesses. This article provides a concise review of the recent developments in physical starch modification techniques, including annealing, extrusion, high-pressure processing, radiation, and heat-moisture treatment. Specifically, the focus of this paper is on the alteration of the crystalline structure of starch caused by the heat-moisture treatment and annealing and its impact on the resistance of starch to enzymatic hydrolysis, as well as the granular structure and molecular arrangement of starch caused by extrusion and high-pressure processing, and the depolymerization and crosslinking that results from radiation. The impacts of these alterations on starch's textural qualities, stability, and shelf life are also examined. This review demonstrates how physically modified resistant starch can be used as a flexible food ingredient with both functional and health benefits. These methods are economically and ecologically sustainable since they successfully raise the RS content and improve its functional characteristics without the need for chemical reagents. The thorough analysis of these methods and how they affect the structural characteristics and health advantages of RS emphasizes the material's potential as an essential component in the creation of functional foods that satisfy contemporary dietary and health requirements.
Collapse
Affiliation(s)
- Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan 64200, Pakistan
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
3
|
Mhaske P, Farahnaky A, Majzoobi M. Advancements in Pulse Starches: Exploring Non-Thermal Modification Methods. Foods 2024; 13:2493. [PMID: 39200420 PMCID: PMC11353720 DOI: 10.3390/foods13162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The surge in the global demand for plant-based proteins has catapulted pulse protein into the spotlight. To ensure economic viability and sustainable production, it is crucial to utilize pulse starch, a by-product of plant protein fractionation. Despite the increasing interest in pulse starches, there is a notable gap in knowledge regarding their modifications and applications compared to cereal and tuber starches. Non-thermal techniques such as electron beam radiation, static high pressure, microfluidization, and cold plasma are emerging as innovative methods for starch modification. These techniques offer significant advantages, including enhanced safety, environmental sustainability, and the development of unique functional properties unattainable through conventional methods. However, challenges such as equipment availability, high costs, and energy consumption hinder their widespread adoption. In light of the growing emphasis on "clean and green labelling" and effective "waste management" in food production, evaluating non-thermal techniques for pulse starch modification is critical. This review aims to thoroughly assess these non-thermal techniques and their combinations, offering valuable insights for researchers and the food industry. By maximizing the potential of pulse starches in innovative food applications, it provides a comprehensive guide for effective non-thermal methods that add value and align with sustainable practices.
Collapse
Affiliation(s)
- Pranita Mhaske
- AFB International, 3 Research Park Drive, St. Charles, MO 63304, USA;
| | - Asgar Farahnaky
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia;
| | - Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia;
| |
Collapse
|
4
|
Wang X, Hao Z, Liu N, Jin Y, Wang B, Bian Y, Yu Y, Wang T, Xiao Y, Yu Z, Zhou Y. Influence of the structure and physicochemical properties of OSA modified highland barley starch based on ball milling assisted treatment. Int J Biol Macromol 2024; 259:129243. [PMID: 38199535 DOI: 10.1016/j.ijbiomac.2024.129243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
This study aimed to investigate the influence of ball milling assisted treatment on the degree of substitution of octenyl succinic anhydride (OSA) modified highland barley starch (HBS) and on the physicochemical properties and structure of HBS. Scanning electron microscopy (SEM) findings showed that with the increasing of ball milling time, the surface morphology of OSA modified HBS became rougher and rougher and the particle morphology and crystal structure were damaged. When the pretreatment time of ball milling was 40 min, the degree of substitution of OSA modified HBS was 1.32 times higher than that of the conventional modification method. In addition, the longer the ball milling assistant, the longer the short-range ordering of the OSA modified HBS significantly decreased, and the relative crystallinity decreased (from 16.68 % to 7.93 %), leading to a decrease in thermal stability too. However, it greatly enhanced the aging resistance and flowability. In terms of emulsification properties, the emulsification properties of OSA modified HBS increased from 60.67 % to 75.67 %. Therefore, the HBS with better freeze-thaw stability and higher degree of substitution can be prepared by ball milling pretreatment and OSA modification, which provides technical support for further development of starch resources.
Collapse
Affiliation(s)
- Xin Wang
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Nini Liu
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yongqing Jin
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Baixue Wang
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiran Bian
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiyang Yu
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Taosuo Wang
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Wang N, Dai J, Miao D, Li C, Yang X, Shu Q, Zhang Y, Dai Y, Hou H, Xu S. Influence of enzymatic modification on the basis of improved extrusion cooking technology (IECT) on the structure and properties of corn starch. Int J Biol Macromol 2023; 253:127274. [PMID: 37804624 DOI: 10.1016/j.ijbiomac.2023.127274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Enzymatic modification can directly affect the structure and properties of starch, but generally causes high energy consumption in drying process. Improved extrusion cooking technology (IECT) itself is a starch modification technology. In this work, a co-extrusion method of starch with 42 % moisture and enzyme was adopted to reveal the effects of different enzyme dosages on the structure and properties of corn starch. After enzyme treatment on the basis of IECT, starch granules were broken into fragments without the occurrence of clear Maltese cross. R1047/1022 and R995/1022 values, peak intensity of Raman spectra and gelatinization temperature decreased, and the full width at half maximum at 480 cm-1 of Raman spectra raised. Moreover, the bound water proportion decreased from 87.44 % to 85.84 % ∼ 78.67 %, and the maximum light transmittance and dextrose equivalent values increased to 34.13 % and 26.14, respectively. The solubility of starch granules was all above 60 %. Findings supported that the mechanochemical effect of IECT on starch was conducive to the enzymatic modification.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Jingqi Dai
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Di Miao
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chen Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Xiaoyan Yang
- Shandong Provincial Key Laboratory of Fat & Oil Deep-processing, Binzhou, Shandong 256500, China; Shandong Bohi Industry Co., Ltd., Binzhou, Shandong 256500, China
| | - Quanxian Shu
- Shandong Provincial Key Laboratory of Fat & Oil Deep-processing, Binzhou, Shandong 256500, China; Shandong Bohi Industry Co., Ltd., Binzhou, Shandong 256500, China
| | - Yong Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China.
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Shaobin Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| |
Collapse
|
6
|
Wang N, Li C, Miao D, Dai Y, Zhang H, Zhang Y, Hou H, Ding X, Wang W, Li C, Wang B. Effect of improved extrusion cooking technology (IECT) on structure, physical properties and in vitro digestibility of starch. Int J Biol Macromol 2023; 252:126436. [PMID: 37604420 DOI: 10.1016/j.ijbiomac.2023.126436] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Extrusion can modify the structure and physical properties of starch, while the extent of improved extrusion cooking technology (IECT) affects the starch with high moisture content and different crystal types remaining unclear. Therefore, the influence of IECT at different screw speeds on the structure, physical properties and in vitro digestibility of corn (A-type), potato (B-type) and pea (C-type) starches with high moisture content (42 %) was explored. Results indicated that IECT treatment caused similar variations on structure, physical properties, and in vitro digestibility of the 3 types of starches. The contents of slowly digestible starch (SDS) and resistant starch (RS) decreased by IECT treatment, accompanied by a reduction of crystallinity, enthalpy of gelatinization, gelatinization temperature and viscosity, while the content of rapidly digestible starch (RDS) and the ratio of bound water increased. And the changes in in vitro digestibility of starch were closely related to the damage to starch structure caused by IECT. Furthermore, most of starch granules were in the agglomeration stage by appropriate IECT treatment, which induced the exposure of a great quantity of enzyme binding sites to enhance the in vitro digestibility.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Chen Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Di Miao
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China.
| | - Hong Zhang
- College of Life Science, Dezhou University, Dezhou, Shandong 253023, China
| | - Yong Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Xiuzhen Ding
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Cheng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Bin Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| |
Collapse
|
7
|
Wang N, Li C, Miao D, Hou H, Dai Y, Zhang Y, Wang B. The effect of non-thermal physical modification on the structure, properties and chemical activity of starch: A review. Int J Biol Macromol 2023; 251:126200. [PMID: 37567534 DOI: 10.1016/j.ijbiomac.2023.126200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Non-thermal physical treatments has obvious advantages in regulating the structure and properties of starch compared with chemical treatment. Hance, this article summarized and compared the effects of three kinds of non-thermal physical treatments including grinding and ball milling, high hydrostatic pressure and ultrasonic on the structure, properties and chemical activity of starches from different plants. The potential applications of non-thermal physical modified starch were introduced. And strategies to solve the problems in the current research were put forward. It is found that although starch has a dense structure, the starch granules could be deformed under three kinds of non-thermal physical treatments, which could damage the granule morphology, microstructure, and crystal structure of starch, reduce particle size, increase solubility and swelling power, and promote starch gelatinization. Three kinds of non-thermal physical treated starch could be used as flocculant thickener, starch based edible films and fat substitutes. Non-thermal physical treatments caused the structure of starch to undergo three stages, which were similar to mechanochemical effects. When starch was in the stress stage and the transition stage from aggregation to agglomeration, its active sites significantly increase and move inward, ultimately leading to a significant increase in the chemical activity of starch.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Chen Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Di Miao
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China.
| | - Yong Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Bin Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| |
Collapse
|
8
|
Chi C, Lian S, Zou Y, Chen B, He Y, Zheng M, Zhao Y, Wang H. Preparation, multi-scale structures, and functionalities of acetylated starch: An updated review. Int J Biol Macromol 2023; 249:126142. [PMID: 37544556 DOI: 10.1016/j.ijbiomac.2023.126142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Acetylated starch has been widely used as food additives. However, there was limited information available regarding the impact of acetylation on starch structure and functionalities, as well as the advanced acetylation technologies. This review aimed to summarize current methods for starch acetylation and discuss the structure and functionalities of acetylated starch. Innovative techniques, such as milling, microwave, pulsed electric fields, ultrasonic, and extrusion, could be employed for environmental-friendly synthesis of acetylated starch. Acetylation led to the degradation of starch structures and weakening of the interactions between starch molecules, resulting in the disorganization of starch multi-scale ordered structure. The introduction of acetyl groups retarded the self-reassembly behavior of starch, leading to increased solubility, clarity, and softness of starch-based hydrogels. Moreover, the acetyl groups improved water/oil absorption capacity, emulsifiability, film-forming properties, and colonic fermentability of starch, while reduced the susceptibility of starch molecules to enzymes. Importantly, starch functionalities were largely influenced by the decoration of acetyl groups on starch molecules, while the impact of multi-scale ordered structures on starch physicochemical properties was relatively minor. These findings will aid in the design of structured acetylated starch with desirable functionalities.
Collapse
Affiliation(s)
- Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Suyang Lian
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yiqing Zou
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Mingmin Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yingting Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongwei Wang
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| |
Collapse
|
9
|
Wang Q, Li J, Shi Y, Cong T, Liu H, Gao Y. Preparation of lauric acid esterified starch by ethanol solvothermal process and its Pickering emulsion. Int J Biol Macromol 2023; 248:125941. [PMID: 37487998 DOI: 10.1016/j.ijbiomac.2023.125941] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
In this paper, the esterification modification of different kinds of starches such as waxy maize, normal maize, high-amylose maize, cassava and potato in high temperature closed system were studied by solvothermal method. The oil-in-water Pickering emulsion were prepared with esterified starches as granule stabilizer. The microscopic state of granules in the emulsion and the physical and oxidation stability of emulsion were studied. The results show that starches are not gelatinized and can be esterified at a temperature (100 °C) much higher than that of gelatinization, and the granule morphology is almost unchanged. DS (degree of substitution) values of esterified starches range from 0.0333 to 0.0512. Pickering emulsion with 50 vol% oil volume fraction prepared with 3.0 wt% granule concentration did not show any instability such as oil-water separation after storage at room temperature for 30 days. Atomic force microscope (AFM) analysis showed that all esterified starch granules had the characteristics of granular cold-water swelling starch (GCWSS). The granules completely swelled into a dense molecular chain in the emulsion, and this three-dimensional network structure improved the stability of emulsion. Therefore, the preparation of esterified starch granules by ethanol solvothermal method is a simple and effective method.
Collapse
Affiliation(s)
- Qian Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Juanjuan Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Yu Shi
- R&D center, Valiant Co. Ltd., Yantai 264000, PR China
| | - Tianxing Cong
- R&D center, Valiant Co. Ltd., Yantai 264000, PR China
| | - Huitao Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Yuan Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
10
|
Dong Y, Dai Y, Xing F, Hou H, Wang W, Ding X, Zhang H, Li C. Exploring the influence mechanism of water grinding on the gel properties of corn starch based on changes in its structure and properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4858-4866. [PMID: 36918962 DOI: 10.1002/jsfa.12554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/07/2023] [Accepted: 03/14/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND At present, most studies have focused on the preparation of modified starches by dry grinding. As an excellent starch plasticizer, water might enhance the action of grinding on the structure of starch granules, and water grinding might improve the gel properties of starch. Therefore, this article explored the influence mechanism of water grinding on the gel properties of corn starch based on the changes in its structure and properties. RESULTS The results showed that water grinding could make water enter the starch granules and hydrate the starch molecules, and the starch gelatinized after water grinding for 20 min. Thus, water enhanced the action of grinding on the structure of the starch granules. Under the plasticization and grinding action of water grinding, the mechanochemical effect of the starch granules occurred. When the starch was in the aggregation stage (7.5-10 min), the crystallinity of the starch increased, and the starch molecules rearranged into a more stable structure, which increased apparent viscosity (η), elastic modulus (G') and viscous modulus (G″) of the starch gels. CONCLUSION Therefore, appropriate water grinding (10 min) contributed to increasing the viscoelasticity of starch gels. This study provided a theoretical foundation for research on improving the properties of starch by mechanical modification in future. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| | - Fu Xing
- Shandong Drug and Food Vocational College, Weihai, Shandong, 264210, People's Republic of China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| | - Xiuzhen Ding
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| | - Hui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| | - Cheng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| |
Collapse
|
11
|
Bangar SP, Singh A, Ashogbon AO, Bobade H. Ball-milling: A sustainable and green approach for starch modification. Int J Biol Macromol 2023; 237:124069. [PMID: 36940765 DOI: 10.1016/j.ijbiomac.2023.124069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Ball-milling is a low-cost and green technology that offers mechanical actions (shear, friction, collision, and impact) to modify and reduce starch to nanoscale size. It is one of the physical modification techniques used to reduce the relative crystallinity and improve the digestibility of starch to their better utility. Ball-milling alters surface morphology, improving the overall surface area and texture of starch granules. This approach also can improve functional properties, including swelling, solubility, and water solubility, with increased energy supplied. Further, the increased surface area of starch particles and subsequent increase in active sites enhance chemical reactions and alteration in structural transformations and physical and chemical properties. This review is about current information on the impact of ball-milling on the compositions, fine structures, morphological, thermal, and rheological characteristics of starch granules. Furthermore, ball-milling is an efficient approach for the development of high-quality starches for applications in the food and non-food industries. There is also an attempt to compare ball-milled starches from various botanical sources.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, SC, USA.
| | - Arashdeep Singh
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | | | - Hanuman Bobade
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
12
|
Wang N, Dong Y, Dai Y, Zhang H, Hou H, Wang W, Ding X, Zhang H, Li C. Influences of high hydrostatic pressure on structures and properties of mung bean starch and quality of cationic starch. Food Res Int 2023; 165:112532. [PMID: 36869532 DOI: 10.1016/j.foodres.2023.112532] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
It is difficult to improve the quality of chemical-modified starch by traditional technology. Hence, in this study, mung bean starch with poor chemical activity was used as raw material, the native starch was treated and the cationic starch was prepared under high hydrostatic pressure (HHP) at 500 MPa and 40 °C. By studying the changes in the structure and properties of native starch after HHP treatment, the influence mechanism of HHP on improving the quality of cationic starch was analyzed. Results showed high pressure could make water and etherifying agent enter the starch granules through pores, and HHP made the structure of starch undergone three stages similar to mechanochemical effect. After HHP treated for 5 and 20 min, the degree of substitution, reaction efficiency and other qualities of cationic starch increased remarkably. Hence, proper HHP treatment could help to improve the chemical activity of starch and quality of cationic starch.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Ying Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China.
| | - Hong Zhang
- College of Life Science, Dezhou University, Dezhou, Shandong 253023, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Xiuzhen Ding
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Hui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Cheng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| |
Collapse
|
13
|
Ge X, Hu Y, Shen H, Liang W, Sun Z, Zhang X, Ospankulova G, Muratkhan M, Kh KZ, Li W. Electron beam irradiation application for improving the multiscale structure and enhancing physicochemical and digestive properties of acetylated naked barley. Food Chem 2023; 404:134674. [DOI: 10.1016/j.foodchem.2022.134674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/19/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022]
|
14
|
Yu S, Wu Y, Li Z, Wang C, Zhang D, Wang L. Effect of different milling methods on physicochemical and functional properties of mung bean flour. Front Nutr 2023; 10:1117385. [PMID: 36908915 PMCID: PMC9998992 DOI: 10.3389/fnut.2023.1117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
There needs to be more information concerning the effect of different milling methods on the physicochemical properties of whole-grain mung bean flour. Therefore, the physicochemical properties of whole grain mung bean flour were analyzed using universal grinders (UGMB), ball mills (BMMB), and vibration mills (VMMB). The results showed that the particle size of the sample after ultrafine grinding treatment was significantly reduced to 21.34 μm (BMMB) and 26.55 μm (VMMB), and the specific surface area was increased. The particle distribution was uniform to a greater extent, and the color was white after treatment. Moreover, the water holding capacity (WHC), oil holding capacity (OHC), and swelling power (SP) increased, and the bulk density and solubility (S) decreased. The Rapid Viscosity Analyzer (RVA) indicated that the final viscosity of the sample after ultrafine grinding was high. Furthermore, rheological tests demonstrated that the consistency coefficient K, shear resistance, and viscosity were decreased. The results of functional experiments showed that the treated samples (BMMB and VMMB) increased their capacity for cation exchange by 0.59 and 8.28%, respectively, bile acid salt adsorption capacity increased from 25.56 to 27.27 mg/g and 26.38 mg/g, and nitrite adsorption capacity increased from 0.58 to 1.17 mg/g and 1.12 mg/g.
Collapse
Affiliation(s)
- Shibo Yu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanchun Wu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhenjiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Quality Supervision, Inspection and Testing Center of Agricultural Processed Products Ministry of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China.,Quality Supervision, Inspection and Testing Center of Agricultural Processed Products Ministry of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
15
|
Zhao Z, Dai Z, Jiang X, Yu L, Hu M, Peng J, Zhou F. Influence and Optimization of Long-time Superfine Grinding on the Physicochemical Features of Green Tea Powder. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Asymmetrical flow field-flow fractionation combined with liquid chromatography enables rapid, quantitative, and structurally informative detection of resistant starch. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Effect of Mechanical Grinding on the Physicochemical, Structural, and Functional Properties of Foxtail Millet ( Setaria italica (L.) P. Beauv) Bran Powder. Foods 2022; 11:foods11172688. [PMID: 36076873 PMCID: PMC9455772 DOI: 10.3390/foods11172688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the functional, physicochemical, and structural characteristics of foxtail millet bran powder with different particle sizes. The morphological analysis revealed that the surface roughness declined in conjunction with the particle sizes of the millet bran powder. The Fourier-transform infrared (FTIR) spectra showed that none of the samples generated any additional chemical functional groups. A decrease in the particle sizes of the millet bran powder increased their dissemination and surface areas, as well as the bulk density, tap density, water-holding capacity (WHC), angle of repose (θ) and angle of slide (α), and peak temperature, while the oil holding capacity (OHC) and crystallinity index (CI) value declined. Moreover, fine millet bran powder (54.7 μm) exhibited a higher protein, fat, soluble dietary fiber (SDF), total phenolic content, and antioxidant capacity than its coarse counterpart.
Collapse
|
18
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
19
|
Wang P, Li Y, Qu Y, Wang B, Sun J, Miao C, Huang M, Huang H, Zhang C. Improving gelling properties of myofibrillar proteins incorporating with cellulose micro/nanofibres. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Peng Wang
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
| | - Yan Li
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
| | - Yujiao Qu
- College of Chemical & Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 China
| | - Baowei Wang
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
| | - Jingxin Sun
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
- Qingdao Special Food Research Institute Qingdao 266109 China
| | - Chunwei Miao
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
| | - Ming Huang
- National R&D Branch Center for Poultry Meat Processing Technology Huangjiaoshou Food Sci. & Tech. Co., Ltd. Nanjing 211226 China
| | - He Huang
- Newhope Liuhe Group Co., Ltd. Qingdao 266000 China
| | | |
Collapse
|
20
|
Tian X, Wang Z, Wang X, Ma S, Sun B, Wang F. Mechanochemical effects on the structural properties of wheat starch during vibration ball milling of wheat endosperm. Int J Biol Macromol 2022; 206:306-312. [PMID: 35240210 DOI: 10.1016/j.ijbiomac.2022.02.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Pure wheat endosperm was fully ground in a vibratory ball mill and structural changes in wheat starch were measured to assess the effect of mechanochemical action during the grinding process. Vibratory ball milling changed the endosperm granule size to ~30 μm (D50). There was a significant increase in damaged starch content, and this was positively correlated with the grinding time. The relative crystallinity of starch decreased by 5% after milling 105 min, and the short-range order decreased. The damaged structure of amylopectin starch decreased with milling time, as detected macroscopically by the peak viscosity and final viscosity of milling samples. Overall, the in vitro digestion results showed that mechanical modification caused irregular defects inside wheat starch crystals, increased the sensitivity of wheat starch to enzymes, enhanced the hydrolysis rate three-fold, and increased the maximum starch hydrolysis by 50%. Mechanochemistry effects was used to analyze the quality changes in wheat milling.
Collapse
Affiliation(s)
- Xiaoling Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fengcheng Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
21
|
Chakraborty I, N P, Mal SS, Paul UC, Rahman MH, Mazumder N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02761-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractNative starch is subjected to various forms of modification to improve its structural, mechanical, and thermal properties for wider applications in the food industry. Physical, chemical, and dual modifications have a substantial effect on the gelatinization properties of starch. Consequently, this review explores and compares the different methods of starch modification applicable in the food industry and their effect on the gelatinization properties such as onset temperature (To), peak gelatinization temperature (Tp), end set temperature (Tc), and gelatinization enthalpy (ΔH), studied using differential scanning calorimetry (DSC). Chemical modifications including acetylation and acid hydrolysis decrease the gelatinization temperature of starch whereas cross-linking and oxidation result in increased gelatinization temperatures. Common physical modifications such as heat moisture treatment and annealing also increase the gelatinization temperature. The gelatinization properties of modified starch can be applied for the improvement of food products such as ready-to-eat, easily heated or frozen food, or food products with longer shelf life.
Collapse
|
22
|
Wu Z, Qiao D, Zhao S, Lin Q, Zhang B, Xie F. Nonthermal physical modification of starch: An overview of recent research into structure and property alterations. Int J Biol Macromol 2022; 203:153-175. [PMID: 35092737 DOI: 10.1016/j.ijbiomac.2022.01.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
To tailor the properties and enhance the applicability of starch, various ways of starch modification have been practiced. Among them, physical modification methods (micronization, nonthermal plasma, high-pressure, ultrasonication, pulsed electric field, and γ-irradiation) are highly potential for starch modification considering its safety, environmentally friendliness, and cost-effectiveness, without generating chemical wastes. Thus, this article provides an overview of the recent advances in nonthermal physical modification of starch and summarizes the resulting changes in the multi-level structures and physicochemical properties. While the effect of these techniques highly depends on starch type and treatment condition, they generally lead to the destruction of starch granules, the degradation of molecules, decreases in crystallinity, gelatinization temperatures, and viscosity, increases in solubility and swelling power, and an increase or decrease in digestibility, to different extents. The advantages and shortcomings of these techniques in starch processing are compared, and the knowledge gap in this area is commented on.
Collapse
Affiliation(s)
- Zhuoting Wu
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China.
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
23
|
Tian X, Wang X, Ma S, Sun B, Li L, Wang Z. Study of the ball milling condition effect on physicochemical and structural characteristics of wheat flour. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoling Tian
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Xiaoxi Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Binghua Sun
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Li Li
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Zhen Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| |
Collapse
|
24
|
Lin Z, Liu L, Qin W, Wang A, Nie M, Xi H, Chen Z, He Y, Wang F, Tong L. Changes in the quality and
in vitro
digestibility of brown rice noodles with the addition of ultrasound‐assisted enzyme‐treated red lentil protein. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zexue Lin
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Lu Liu
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Wanyu Qin
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Aixia Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Mengzi Nie
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Huihan Xi
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Zhiying Chen
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Yue He
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Fengzhong Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Li‐Tao Tong
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| |
Collapse
|
25
|
Wang C, Xu Y, Yu B, Xiao A, Su Y, Guo H, Zhang H, Zhang L. Analysis of Sour Porridge Microbiota and Improvement of Cooking Quality via Pure Culture Fermentation Using Lacticaseibacillus paracasei Strain SZ02. Front Microbiol 2021; 12:712189. [PMID: 34512590 PMCID: PMC8428527 DOI: 10.3389/fmicb.2021.712189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
The microbial composition of sour porridge at different fermentation times was analyzed through high-throughput sequencing, and a pure culture fermentation process was established to optimize production process and improve the edible quality of the porridge. In natural fermentation, Firmicutes and Proteobacteria were abundant throughout the process. Specifically, Aeromonas, Acinetobacter, and Klebsiella were dominant on fermentation days 1–5 (groups NF-1, NF-3, and NF-5), while Lactobacillus and Acetobacter gradually became the dominant bacteria on fermentation day 7 (group NF-7). Further, we isolated one strain of acid-producing bacteria from sour porridge, identified as Lacticaseibacillus paracasei by 16SrRNA sequencing and annotated as strain SZ02. Pure culture fermentation using this strain significantly increased the relative starch and amylose contents of the porridge, while decreasing the lipid, protein, and ash contents (P < 0.05). These findings suggest that sour porridge produced using strain SZ02 has superior edible qualities and this strategy may be exploited for its industrial production.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yunhe Xu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Bin Yu
- Department of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Aibo Xiao
- Liaoning Agricultural Development Service Center, Shenyang, China
| | - Yuhong Su
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Haonan Guo
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Huajiang Zhang
- Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Lili Zhang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
26
|
Liu Z, Fu Y, Zhang J, Shen Q. Comparison on physicochemical properties of mung bean flour and isolated starch under different level of high static pressure. Cereal Chem 2021. [DOI: 10.1002/cche.10472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhenyu Liu
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Yongxia Fu
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Jing Zhang
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Qun Shen
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| |
Collapse
|
27
|
Tian X, Wang X, Ma S, Sun B, Qian X, Gu Y. Effect of different milling mechanical forces on the structures and properties of wheat flour. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaoling Tian
- College of Food Science and Engineering Henan University of Technology Zhengzhou450001China
| | - Xiaoxi Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou450001China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou450001China
| | - Binghua Sun
- College of Food Science and Engineering Henan University of Technology Zhengzhou450001China
| | - Xiaojie Qian
- College of Food Science and Engineering Henan University of Technology Zhengzhou450001China
| | - Yujuan Gu
- College of Food Science and Engineering Henan University of Technology Zhengzhou450001China
| |
Collapse
|
28
|
Chen L, Dai Y, Hou H, Wang W, Ding X, Zhang H, Li X, Dong H. Effect of high pressure microfluidization on the morphology, structure and rheology of sweet potato starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106606] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Valderrama Bravo MDC, Sánchez Lara MJ, Contreras Padilla M, Pahua Ramos ME, Jiménez Ambriz S. Effect of wet grinding and drying of the nixtamal on physicochemical, morphologic, and vibrational properties of flours and rheological changes of masa. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María del Carmen Valderrama Bravo
- Departamento de Ingeniería y Tecnología Facultad de Estudios Superiores Cuautitlán Universidad Nacional Autónoma de México (UNAM) Cuautitlán Izcalli Mexico
- Departamento de Matemáticas Facultad de Estudios Superiores Cuautitlán Universidad Nacional Autónoma de México (UNAM) Cuautitlán Izcalli Mexico
| | - Miguel Joaquín Sánchez Lara
- Departamento de Ingeniería y Tecnología Facultad de Estudios Superiores Cuautitlán Universidad Nacional Autónoma de México (UNAM) Cuautitlán Izcalli Mexico
| | - Margarita Contreras Padilla
- Centro Académico de Innovación y Desarrollo de Productos. Facultad de Ingeniería Universidad Autónoma de Querétaro Santiago de Querétaro Mexico
| | - María Elena Pahua Ramos
- Departamento de Ciencias Químicas Facultad de Estudios Superiores Cuautitlán Universidad Nacional Autónoma de México (UNAM) Cuautitlán Izcalli Mexico
| | - Sergio Jiménez Ambriz
- Unidad de Investigación de Granos y Semillas Facultad de Estudios Superiores Cuautitlán Universidad Nacional Autónoma de México (UNAM) Cuautitlán Izcalli Mexico
| |
Collapse
|
30
|
Alvarado N, Abarca RL, Urdaneta J, Romero J, Galotto MJ, Guarda A. Cassava starch: structural modification for development of a bio-adsorber for aqueous pollutants. Characterization and adsorption studies on methylene blue. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03149-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
A review of milling damaged starch: Generation, measurement, functionality and its effect on starch-based food systems. Food Chem 2020; 315:126267. [DOI: 10.1016/j.foodchem.2020.126267] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
|
32
|
Li C, Liu Y, Feng H, Ma S. Effect of superfine grinding on the physicochemical properties of bulbs of Fritillaria unibracteata Hsiao et K.C. Hsia powder. Food Sci Nutr 2019; 7:3527-3537. [PMID: 31763003 PMCID: PMC6848833 DOI: 10.1002/fsn3.1203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/15/2019] [Accepted: 08/12/2019] [Indexed: 11/28/2022] Open
Abstract
This work aimed to determine the influence of superfine grinding on the physicochemical properties of bulbs of Fritillaria unibracteata Hsiao et K.C. Hsia (BFU) powder. For this purpose, fine powder (FP) and two superfine powders (SPs) were obtained via superfine and conventional grinding methods. The properties of different powders were studied and compared. Compared with FP, SPs exhibited higher values in terms of the angle of repose, swelling capacity, ethanol extraction yield, total alkaloid content, and imperialine content, while lower values in terms of particle size and bulk density. Especially, the total alkaloid content of SP-I increased by 66.7%. Proper grinding is more conducive to reduce particle size and improve alkaloid content. FTIR analysis indicates that no new functional groups produced after superfine grinding. XRD analysis suggests that grinding treatment lead to decreases in the crystallinity. Therefore, superfine grinding displays immense potential in the BFU application.
Collapse
Affiliation(s)
- Cai‐xia Li
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Qinghai‐Tibet Plateau Biological ResourcesXiningChina
| | - Ying‐ying Liu
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Qinghai‐Tibet Plateau Biological ResourcesXiningChina
| | - Hai‐sheng Feng
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Qinghai‐Tibet Plateau Biological ResourcesXiningChina
| | - Shi‐zhen Ma
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Qinghai‐Tibet Plateau Biological ResourcesXiningChina
| |
Collapse
|