1
|
Guo L, Wang Q, Wu Q, Wang C, Chen B. β-Cyclodextrin based magnetic hyper-crosslinked polymer: A recyclable adsorbent for effective preconcentration of triazine herbicides in complex sample matrices. Food Chem 2025; 463:141219. [PMID: 39276543 DOI: 10.1016/j.foodchem.2024.141219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
High efficiency enrichment and trace analysis of triazine herbicide residues are crucial for ensuring environmental and food safety. Herein, a series of magnetic hyper-crosslinked polymers (CD-gs-MHCPs) were synthesized with different crosslinkers, which might possess different pore structure and surface area, so they might dispay variable adsorption performance. CD-gs-MHCP2 with dichloroxylene as crosslinker delivered superior adsorption ability for triazine herbicides (THs). The synergistic effect of hydrogen bonds, hydrophobic interaction, π-π stacking interaction and pore adsorption were proved to be the main adsorption mechanism. Combined CD-gs-MHCP2 based magnetic solid-phase extraction (MSPE) with high-performance liquid chromatography, the quantitative analysis of THs in river water and vegetable samples (zucchini, pakchoi) was achieved. Under the optimal conditions, the enrichment factors for three different samples ranged from 94 to 244 and low detection limit (S/N = 3) of the four THs were obtained from 0.05 to 0.15 ng mL-1 for river water and 0.31-3.10 ng g-1 for vegetable samples. The method recoveries were in the range of 86.2 %-120 % with relative standard deviations lower than 7.4 %. This work not only offers a new strategy for fabrication β-CD-based HCPs, but also provided a practical and effective method for efficient isolation and sensitive detection of trace THs residues in complex samples.
Collapse
Affiliation(s)
- Linna Guo
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
2
|
Wang Y, Wang Y, Chen Y, Zheng X, Han J, Jing X, Yang J. Detection of triazine herbicides in water, juice, and tea using deep eutectic solvent-based emulsive liquid-liquid microextraction combined with high-performance liquid chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:368-376. [PMID: 39641147 DOI: 10.1039/d4ay01823k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This study developed a deep eutectic solvent-based emulsive liquid-liquid microextraction method combined with high-performance liquid chromatography (DES-ELLME-HPLC) for the detection of triazine herbicides. The technique was validated for food sample detection. Hydrophobic DES was prepared by using tributylphosphine oxide and octanoic acid to replace toxic solvents. In ELLME, the prepared DES was mixed with distilled water and then added to samples for emulsification. During the emulsion, triazine herbicides are transferred from the sample to the extractant. The limit of detection was 0.008 mg L-1, while the extraction recoveries ranged between 84.8% and 102.0%, exhibiting relative standard deviations between 0.3 and 4.9%. This pre-treatment technique is simple, fast, and green and can be applied to water, juice, and tea samples. Compared with traditional ELLME, DES pre-treatment solves the singularity of the extractant selection and allows the technique to be applied to multiple pesticides.
Collapse
Affiliation(s)
- Yulin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yuxin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Yarong Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Xiaojiao Zheng
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jiajun Han
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Jiali Yang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
3
|
Zou PC, Zhang Y, Bian Y, Du RZ, Qian M, Feng XS, Du C, Zhang XY. Triazoles in the environment: An update on sample pretreatment and analysis methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117156. [PMID: 39383824 DOI: 10.1016/j.ecoenv.2024.117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Triazoles, due to their high bactericidal performance, have been widely used in the agricultural, clinical, and chemical industry. However, triazoles have been proven to cause endocrine-toxic and organ impairment in humans as a potentially toxic substance. Besides, because of the improper use and difficulty of degradation, triazoles pesticide residues left in the environment could pose a threat to the environment. Therefore, the rapid, reliable, accurate, and high-sensitivity triazoles analysis methods are significantly essential to effectively monitor their presence in various samples and safeguard human health. This review aims to summarize and update the progress of the pretreatment and analytical methods of triazole fungicides in environmental samples from 2012 to 2024. Common pretreatment methods used to extract and purify targets include simple steps (e.g., protein precipitation and coated blade spray), liquid-liquid extraction, solid-phase extraction, and various microextraction methods such as liquid-phase microextraction and solid-phase microextraction, among others. Detection methods mainly include liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, supercritical fluid chromatography, sensing methods, and capillary electrophoresis. In addition, we elaborate and compare the advantages and disadvantages of different pretreatment and analytical methods, and their development prospects are discussed.
Collapse
Affiliation(s)
- Pei-Chen Zou
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Rong-Zhu Du
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Cheng Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Xin-Yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
4
|
Phirisi N, Płotka-Wasylka J, Bunkoed O. A magnetic imprinted polymer nano-adsorbent with embedded quantum dots and mesoporous carbon for the microextraction of triazine herbicides. J Chromatogr A 2024; 1726:464977. [PMID: 38735117 DOI: 10.1016/j.chroma.2024.464977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
A magnetic molecularly imprinted polymer (MMIP) adsorbent incorporating amino-functionalized magnetite nanoparticles, nitrogen-doped graphene quantum dots and mesoporous carbon (MIP@MPC@N-GQDs@Fe3O4NH2) was fabricated to extract triazine herbicides from fruit juice. The embedded magnetite nanoparticles simplified the isolation of the adsorbent from the sample solution. The N-GQDs and MPC enhanced adsorption by affinity binding with triazines. The MIP layer provided highly specific recognition sites for the selective adsorption of three target triazines. The extracted triazines were determined by high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD). The developed method exhibited linearity from 1.5 to 100.0 µg L-1 with a detection limit of 0.5 µg L-1. Recoveries from spiked fruit juice samples were in the range of 80.1- 108.4 %, with a relative standard deviation of less than 6.0 %. The developed MMIP adsorbent demonstrated good selectivity, high extraction efficiency, ease of fabrication and use, and good stability.
Collapse
Affiliation(s)
- Nurhasima Phirisi
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12G. Narutowicza Street, 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Opas Bunkoed
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
5
|
Zhang Y, Zhang D, Liu H, Sun B. Photostimulus-Responsive Peptide Dot-Centered Covalent Organic Polymers: Effective Pesticide Sensing via Enhancing Accessibility. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14208-14217. [PMID: 38445958 DOI: 10.1021/acsami.4c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Pesticide detection and monitoring are necessary for human health as the overapplication has serious consequences for environmental pollution. Herein, a proper modulation strategy was implemented to construct the photostimulus-responsive peptide-dot-centered covalent organic polymer (P-PCOP) nanoarchitecture for selective sensing of pesticides. The as-constructed P-PCOP was prepared at room temperature by using amino-containing peptide dots as a building block instead of common organic molecules, and the merits of P-PCOP enable it to reduce the steric hindrance of recognition, enhance the interfacial contact of the target, and facilitate the accessibility of sites, which promises to improve the sensitivity. The P-PCOF exhibited a low detection limit of 0.38 μg L-1 to cartap over the range of 1-80 μg L-1 (R2 = 0.9845), and the recoveries percentage in real samples was estimated to be 93.39-105.82%. More importantly, the DFT calculation confirmed the selective recognition ability of P-PCOP on chemical pesticides. In conjunction with a smartphone-integrated portable reading device, on-site chemical sensing is achieved. The proper modulation strategy of fixing a functional guest on the COP system contributes to the advanced structure-chemical properties that are conducive to their applications in chemical sensing.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Dianwei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
6
|
Xu Y, Bao J, Ning Y, Wang W, Wang AJ, Feng JJ. Porous poly(bismaleimide-co-divinylbenzene) microspheres as dispersive solid-phase extraction adsorbent coupled to high-performance liquid chromatography for the determination of triazine herbicide residues in vegetable samples. J Sep Sci 2024; 47:e2300746. [PMID: 38471966 DOI: 10.1002/jssc.202300746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
In this work, monodisperse and nano-porous poly(bismaleimide-co-divinylbenzene) microspheres with large specific surface area (427.6 m2 /g) and rich pore structure were prepared by one-pot self-stable precipitation polymerization of 2,2'-bis[4-(4-maleimidophenoxy) phenyl] propane and divinylbenzene. The prepared poly(bismaleimide-co-divinylbenzene) microspheres were employed as dispersive solid-phase extraction (DSPE) adsorbent for the extraction of triazine herbicides. Under optimized conditions, good linearities were obtained between the peak area and the concentration of triazine herbicides in the range of 1-400 µg/L (R2 ≥ 0.9987) with the limits of detection of 0.12-0.31 µg/L. Triazine herbicides were detected using the described approach in vegetable samples (i.e., cucumber, tomato, and maize) with recoveries of 93.6%-117.3% and relative standard deviations of 0.4%-3.5%. In addition, the recoveries of triazine herbicides remained above 80.7% after being used for nine DSPE cycles, showing excellent reusability of poly(bismaleimide-co-divinylbenzene) microspheres. The adsorption of poly(bismaleimide-co-divinylbenzene) microspheres toward triazine herbicides was a monolayer and chemical adsorption. The adsorption mechanism between triazine herbicides and adsorbents might be a combination of hydrogen bonding, electrostatic interaction, and π-π conjugation. The results confirmed the potential use of the poly(bismaleimide-co-divinylbenzene) microspheres-based DSPE coupled to the high-performance liquid chromatography method for the detection of triazine herbicide residues in vegetable samples.
Collapse
Affiliation(s)
- Yang Xu
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, China
| | - Jingyi Bao
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, China
| | - Yuhan Ning
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, China
| | - Weiping Wang
- College of Pharmaceutical Engineering and Biotechnology, College of Cosmetics, Zhejiang Pharmaceutical University, Ningbo, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Jiu-Ju Feng
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
7
|
A magnetic solid-phase extraction sorbent based on ionic liquid-derived nitrogen and sulfur co-doped ordered mesoporous carbon for the analysis of triazine herbicides in fruit juices. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Aryl ketones-derived porous organic polymer for enrichment and sensitive detection of phenylurea herbicides in water, tea drink and mushroom samples. J Chromatogr A 2022; 1685:463621. [DOI: 10.1016/j.chroma.2022.463621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
9
|
Wang Q, Tang R, Xu M, Wang J, Li S, Liu W, Hao L, Zhang S, Zhou J, Wang C, Wu Q, Wang Z. Sustainable synthesis of hydroxyl-functional porous organic framework as novel adsorbent for effective removal of organic micropollutants from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115952. [PMID: 35985270 DOI: 10.1016/j.jenvman.2022.115952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Organic micropollutants (OMPs) in water resources are a growing threat to aquatic ecosystems and human health. Efficient removal of polar OMPs is very challenging because of their high hydrophility. Synthesizing novel adsorbent capable of high-efficiently removing hydrophilic and hydrophobic micropollutants is highly desirable for water remediation. Here, using natural proanthocyanidin as building units, a novel hydroxyl-functional porous organic framework (denoted as PC-POF) with amphiphilic feature was synthesized through facile azo coupling reaction. Five sulfonamide antibiotics were selected as model OMPs for adsorption study. Adsorption experiments demonstrated a more rapid and efficient sulfonamides capture ability of the PC-POF than that of the most reported adsorbents due to strong hydrogen bonding, π stacking and electrostatic interactions. The PC-POF can be easily recovered and reused at least 5 times without obvious decline in adsorption performance. Moreover, experiments conducted at environmentally relevant concentrations (μg L-1) further confirmed a notable adsorption performance of the PC-POF even when the sulfonamides solution was rapidly passed through the PC-POF packed column. The PC-POF also showed good adsorption performance for other micropollutants like neonicotinoid insecticides, nitroimidazole antibiotics and triazine herbicides, indicating a promising prospect. This work provides a new strategy to construct amphiphilic adsorbent by using renewable resources for pollutants removal.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ranxiao Tang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mingming Xu
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Junmin Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shuofeng Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shuaihua Zhang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Junhong Zhou
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| |
Collapse
|
10
|
Selahle SK, Mpupa A, Nqombolo A, Nomngongo PN. A nanostructured o-hydroxyazobenzene porous organic polymer as an effective sorbent for the extraction and preconcentration of selected hormones and insecticides in river water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
Li S, Zhou X, Wang Q, Liu W, Hao L, Wang C, Wang Z, Wu Q. Facile synthesis of hypercrosslinked polymer as high-efficiency adsorbent for the enrichment of nitroimidazoles from water, honey and chicken meat. J Chromatogr A 2022; 1682:463527. [PMID: 36174374 DOI: 10.1016/j.chroma.2022.463527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Design and fabrication of functionalized hypercrosslinked polymers (HCPs) for enhancing their performance by using green renewable monomers has attracted considerable research interest. In this study, hydroxyl‑functional HCP (labeled as OHHCP) was prepared via the knitting method by applying natural naringenin as a monomer for the first time. Due to the good hydrophilicity and strong H-bonding ability, the OHHCP showed high extraction capacity for nitroimidazoles. Thus, it was successfully applied as a potent adsorbent for solid phase extraction of five nitroimidazoles in water, honey and chicken meat, followed by high-performance liquid chromatography-diode array detector analysis. At the optimized conditions, the limit of detections (S/N = 3) of the proposed method for water, honey and chicken samples were 0.02 - 0.06 ng mL-1, 0.5 - 1.0 ng g-1 and 0.8 - 1.0 ng g-1, respectively. The recoveries were 80.0 - 110%, and the relative standard deviations were below 10.0%. The OHHCP also displayed good application prospects for other organic compounds with H-bonding capability. This study highlights the facile preparation of OH-functionalized HCPs from renewable and natural resources as potent adsorbents for polar compounds.
Collapse
Affiliation(s)
- Shuofeng Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Xin Zhou
- Department of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Qianqian Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
12
|
Fluorine-functionalized conjugated microporous polymer as adsorbents for solid-phase extraction of nine perfluorinated alkyl substances. J Chromatogr A 2022; 1681:463457. [DOI: 10.1016/j.chroma.2022.463457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
|
13
|
Wang Q, Wang T, Zhang Y, Ma J, Tuo Y. Preparation and evaluation of a chitosan modified biochar as an efficient adsorbent for pipette tip-solid phase extraction of triazine herbicides from rice. Food Chem 2022; 396:133716. [PMID: 35870243 DOI: 10.1016/j.foodchem.2022.133716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/19/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023]
Abstract
The low allowable limit of triazine herbicides (THs) in rice makes it imperative to develop novel sample pretreatment methods for extraction and preconcentration of THs. Herein, a phosphoric acid activated biochar (PBC) was prepared and modified by chitosan (CS). For THs with different polarities, CS-PBC with multiple interaction sites exhibited satisfactory chemisorption. On this basis, a CS-PBC-based pipette tip-solid phase extraction (PT-SPE) was developed combined with HPLC to extract THs from rice. Low limits of detection (1.41-3.35 ng g-1), satisfactory linearity (0.01-2.00 μg g-1, R2 > 0.9974) and recoveries (96.13-116.25 %) were obtained with acceptable inter-day and intra-day precision (RSD ≤ 13.60 %). CS-PBC showed superior performance to three commercial single-mode adsorbents and comparable results to a hydrophilic-lipophilic balance adsorbent. The study explored the feasibility of PT-SPE for extracting THs from rice and broadened the application of plant biochar as an environmentally-friendly matrix in food sample pretreatment.
Collapse
Affiliation(s)
- Qing Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China.
| | - Tingting Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China.
| | - Jiaxing Ma
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yiqian Tuo
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
14
|
Zhang S, Wang R, Wu Y, Chen Z, Tong P, He Y, Lin Z, Cai Z. One-Pot Synthesis of Magnetic Covalent Organic Frameworks for Highly Efficient Enrichment of Phthalate Esters from Fine Particulate Matter. J Chromatogr A 2022; 1667:462906. [DOI: 10.1016/j.chroma.2022.462906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
|
15
|
Selahle SK, Mpupa A, Nomngongo PN. Combination of zeolitic imidazolate framework-67 and magnetic porous porphyrin organic polymer for preconcentration of neonicotinoid insecticides in river water. J Chromatogr A 2021; 1661:462685. [PMID: 34879307 DOI: 10.1016/j.chroma.2021.462685] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
A nanostructured material composed of zeolitic imidazolate framework-67 and magnetic porous porphyrin organic polymer (ZIF-67@MPPOP) was successfully synthesized and applied for the enrichment of neonicotinoid insecticides in river water. The analytes were detected and quantified using high performance liquid chromatography coupled with diode array detector (HPLC-DAD) and liquid chromatography mass spectrometry (LC-MS). Influential experimental parameters were optimized using response surface methodology based on Box Behnken design. The adsorption capacities were 69.46, 80.53, 85.39 and 90.0 mg g-1 for thiamethoxam, imidacloprid, acetamiprid and clothianidin, respectively. At optimal experimental conditions, low limit of detection (LOD), limit of quantification (LOQ) and linearity were 0.0091-0.04 µg L-1, 0.04-0.13 µg L-1 and (0.04-600 µg L-1), respectively. The relative standard deviation used to evaluate the reproducibility and repeatability of the method was less than 5%. Finally, the method was employed for determination of four neonicotinoid insecticides in river water.
Collapse
Affiliation(s)
- Shirley Kholofelo Selahle
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; DSI/NRF SARChI, Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Anele Mpupa
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; DSI/NRF SARChI, Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; DSI/NRF SARChI, Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa; DSI/Mintek Nanotechnology Innovation Center, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
16
|
Wu C, Ning X, Chen X, Ma J, Zhao Q, Zhao L, Zhu G, Shi S. Multi-functional porous organic polymers for highly-efficient solid-phase extraction of β-agonists and β-blockers in milk. RSC Adv 2021; 11:28925-28933. [PMID: 35478535 PMCID: PMC9038154 DOI: 10.1039/d1ra04481h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022] Open
Abstract
A simple, accurate, and highly sensitive analytical method was developed in this study for the determination of ten β-agonists and five β-blockers in milk. In this method, new adsorbent phosphonic acid-functionalized porous organic polymers were synthesized through a direct knitting method. The synthesis procedure of the materials and the extraction conditions (such as the composition of loading buffer and eluent) were optimized. Benefitting from the high surface area (545–804 m2 g−1), multiple functional framework and good porosity, the phosphonic acid-functionalized porous organic polymers showed a high adsorption rate and high adsorption capacity for β-agonists (224 mg g−1 and 171 mg g−1 for clenbuterol and ractopamine, respectively). The analytes were quantified by ultra-high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry. It showed a good linearity (with R2 ranging from 0.9950 to 0.9991 in the linear range of 3–5 orders of magnitude), with low limits of quantification ranging from 0.05 to 0.25 ng g−1. The limits of detection of the method for the analytes were measured to be in the range of 0.02 to 0.1 ng g−1. The recoveries of target analytes from real samples on the material were in the range of 62.4–119.4% with relative standard deviations of 0.6–12.1% (n = 4). Moreover, good reproducibility of the method was obtained with the interday RSD being lower than 11.7% (n = 5) and intraday RSD lower than 12.2% (n = 4). The proposed method was accurate, reliable and convenient for the simultaneous analysis of multiple β-agonists and β-blockers. Finally, the method was successfully applied for the analysis of such compounds in milk samples. Novel phosphonic acid-functionalized porous organic polymers were synthesized through direct knitting method. It shows high adsorption efficiency and high adsorption capacity for multiple β-agonists and β-blockers analysis.![]()
Collapse
Affiliation(s)
- Ci Wu
- Liaoning Academy of Inspection and Quarantine Dalian 116000 China .,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Technology Centre of Dalian Customs District Washington DC 20057 USA
| | - Xingshuang Ning
- Technology Centre of Dalian Customs District Dalian 116600 China
| | - Xi Chen
- Technology Centre of Dalian Customs District Dalian 116600 China
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Technology Centre of Dalian Customs District Washington DC 20057 USA
| | - Qun Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Li Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Guozhi Zhu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Song Shi
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
17
|
Current Strategies for Studying the Natural and Synthetic Bioactive Compounds in Food by Chromatographic Separation Techniques. Processes (Basel) 2021. [DOI: 10.3390/pr9071100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The present study summarizes the new strategies including advanced equipment and validation parameters of liquid and gas chromatography methods i.e., thin-layer chromatography (TLC), column liquid chromatography (CLC), and gas chromatography (GC) suitable for the identification and quantitative determination of different natural and synthetic bioactive compounds present in food and food products, which play an important role in human health, within the period of 2019–2021 (January). Full characteristic of some of these procedures with their validation parameters is discussed in this work. The present review confirms the vital role of HPLC methodology in combination with different detection modes i.e., HPLC-UV, HPLC-DAD, HPLC-MS, and HPLC-MS/MS for the determination of natural and synthetic bioactive molecules for different purposes i.e., to characterize the chemical composition of food as well as in the multi-residue analysis of pesticides, NSAIDs, antibiotics, steroids, and others in food and food products.
Collapse
|
18
|
Luo J, Jiang L, Ruan G, Li C, Du F. Fabrication and application of a MIL-68(In)-NH 2 incorporated high internal phase emulsion polymeric monolith as a solid phase extraction adsorbent in triazine herbicide residue analysis. RSC Adv 2021; 11:20439-20445. [PMID: 35479924 PMCID: PMC9033987 DOI: 10.1039/d1ra02619d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
In this work, a metal–organic framework MIL-68(In)–NH2 incorporated high internal phase emulsion polymeric monolith (MIL-68(In)–NH2/polyHIPE) was prepared and applied as a solid phase extraction adsorbent for the extraction and detection of trace triazine herbicides in environmental water samples by coupling with HPLC-UV detection. The fabricated material showed good adsorption for simazine, prometryn, and prometon in water samples because of π–π interactions and hydrogen bonding interactions. Under optimal conditions, the maximum adsorption capacity of simazine, prometon and prometryn was 800 μg g−1, 800 μg g−1 and 6.01 mg g−1, respectively. The linearities were 10–800 ng mL−1 for simazine, prometon and prometryn. The limits of detection were 31–97 ng L−1, and the recoveries were 85.6–118.2% at four spiked levels with relative standard deviations lower than 5.0%. The method has a high sensitivity for the determination of three triazine herbicides in environmental water samples. MIL-68(In)–NH2 incorporated high internal phase emulsion polymeric monoliths were fabricated and applied to extract and determine triazine herbicide residues in environmental water samples.![]()
Collapse
Affiliation(s)
- Jinhua Luo
- College of Biological and Environmental Engineering, Changsha University Changsha 410022 China +86-731-84250583 +86-731-84261506
| | - Liping Jiang
- College of Biological and Environmental Engineering, Changsha University Changsha 410022 China +86-731-84250583 +86-731-84261506.,College of Chemistry and Bioengineering, Guilin University of Technology Guangxi 541004 China
| | - Guihua Ruan
- College of Chemistry and Bioengineering, Guilin University of Technology Guangxi 541004 China
| | - Chengyong Li
- College of Biological and Environmental Engineering, Changsha University Changsha 410022 China +86-731-84250583 +86-731-84261506.,Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University Changsha 410022 China
| | - Fuyou Du
- College of Biological and Environmental Engineering, Changsha University Changsha 410022 China +86-731-84250583 +86-731-84261506.,College of Chemistry and Bioengineering, Guilin University of Technology Guangxi 541004 China
| |
Collapse
|
19
|
Xu W, Li J, Feng J, Wang Z, Zhang H. In-syringe temperature-controlled liquid-liquid microextraction based on solidified floating ionic liquid for the simultaneous determination of triazine and phenylurea pesticide in vegetable protein drinks. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122721. [PMID: 33957354 DOI: 10.1016/j.jchromb.2021.122721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/08/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022]
Abstract
A novel in-syringe temperature-controlled liquid-liquid microextraction based on solidified floating ionic liquid (in-syringe TC-LLME-SFIL) combined with high performance liquid chromatography was developed for the simultaneous determination of monuron, chlorotoluron, atrazine, monolinuron, propazine and prometryn in commercial vegetable protein drinks. The samples were deproteinized by trichloroacetic acid and further cleaned up by solid phase extraction column. The ionic liquid tributyldodecylphosphonium tetrafluoroborate ([P4 4 4 12]BF4) was used as extraction solvent and dispersed into the depurated sample solution to form fine droplets with the assistance of heating and vortex. With the help of an ice bath, the ionic liquid phase solidified and floated on the surface of aqueous phase. After separation from the aqueous phase, the solidified ionic liquids were dissolved with acetonitrile and the resulting solution was analyzed by high performance liquid chromatography. Some extraction parameters, including type and amount of adsorbent, type and amount of ionic liquids, amount of NaCl, melting temperature and time of ionic liquid, vortex time, pH of sample solution, ice bath temperature and time, were investigated and optimized by single-factor experiment, Plackett-Burman design and Box-Behnken design. The results showed that good linearities (r ≥ 0.9994) were obtained in the concentration range of 7.8-1000.0 μg/L. The limits of detection and quantification were in the range of 0.25-2.59 μg/L and 0.82-8.63 μg/L, respectively. The spiked recoveries were 81.26-118.42% with the relative standard deviation (RSD, n = 3) lower than 8.17%. The present method was successfully applied to the simultaneous determination of triazine and phenylurea herbicides in vegetable protein drinks.
Collapse
Affiliation(s)
- Weili Xu
- College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, PR China
| | - Jilong Li
- College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, PR China
| | - Ji Feng
- College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, PR China
| | - Zhibing Wang
- College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, PR China; College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Hanqi Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| |
Collapse
|
20
|
Xu M, Guo L, Wang Y, Wang Q, Hao L, Wang C, Wu Q, Wang Z. Heterocyclic frameworks as efficient sorbents for solid phase extraction-high performance liquid chromatography analysis of nitroimidazoles in chicken meat. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Nano-sized FeO@SiO-molecular imprinted polymer as a sorbent for dispersive solid-phase microextraction of melatonin in the methanolic extract of , biological, and water samples. Talanta 2021; 221:121620. [DOI: 10.1016/j.talanta.2020.121620] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
|
22
|
Li S, Tan J, Li X. Synthesis of Novel
4ʹ-Hydroxy-2ʹ,3-diaryl-3,4,4ʹ,5ʹ-tetrahydro-2H,2ʹH,6H-spiro[thiazolo[3,2-a][1,3,5]triazine-7,3ʹ-thiophen]-6-one Derivatives via Sulfa-Michael/Aldol
Cascade Reactions. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Celiker T, Suerkan A, Altinisik S, Akgun M, Koyuncu S, Yagci Y. Hollow microspherical carbazole-based conjugated polymers by photoinduced step-growth polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00822f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new photochemical approach for the synthesis of metal-free three-dimensional hollow spherical conjugated polymers is described.
Collapse
Affiliation(s)
- Tugba Celiker
- Istanbul Technical University, Department of Chemistry, 34469, Maslak, Istanbul, Turkey
| | - Ali Suerkan
- Istanbul Technical University, Department of Chemistry, 34469, Maslak, Istanbul, Turkey
| | - Sinem Altinisik
- Canakkale Onsekiz Mart University, Department of Chemical Engineering, 17100, Canakkale, Turkey
| | - Mert Akgun
- Canakkale Onsekiz Mart University, Science and Technology Application and Research Center, 17100, Canakkale, Turkey
| | - Sermet Koyuncu
- Canakkale Onsekiz Mart University, Department of Chemical Engineering, 17100, Canakkale, Turkey
| | - Yusuf Yagci
- Istanbul Technical University, Department of Chemistry, 34469, Maslak, Istanbul, Turkey
- Faculty of Science, Chemistry Department, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A 2020; 1637:461822. [PMID: 33360779 DOI: 10.1016/j.chroma.2020.461822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023]
Abstract
Sample preparation is one of the most crucial steps in analytical processes. Commonly used methods, including solid-phase extraction, dispersive solid-phase extraction, dispersive magnetic solid-phase extraction, and solid-phase microextraction, greatly depend on the extraction materials. In recent decades, a vast number of materials have been studied and used in sample preparation for chromatography. Due to the unique structural properties, extraction materials significantly improve the performance of extraction devices. Endowing extraction materials with suitable structural properties can shorten the pretreatment process and improve the extraction efficiency and selectivity. To understand the structure-performance relationships of extraction materials, this review systematically summarizes the structural properties, including the pore size, pore shape, pore volume, accessibility of active sites, specific surface area, functional groups and physicochemical properties. The mechanisms by which the structural properties influence the extraction performance are also elucidated in detail. Finally, three principles for the design and synthesis of extraction materials are summarized. This review can provide systematic guidelines for synthesizing extraction materials and preparing extraction devices.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tao Ning
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
25
|
Wu Q, Song Y, Wang Q, Liu W, Hao L, Wang Z, Wang C. Combination of magnetic solid-phase extraction and HPLC-UV for simultaneous determination of four phthalate esters in plastic bottled juice. Food Chem 2020; 339:127855. [PMID: 32858384 DOI: 10.1016/j.foodchem.2020.127855] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022]
Abstract
A magnetic o-hydroxyazobenzene (M-HAzo) porous organic polymer was facilely prepared by a green azo coupling reaction in aqueous solution. The prepared M-HAzo was applied as a new adsorbent for the first time to pre-concentrate phthalate esters (PAEs) from plastic bottled juice, followed by their determination with high performance liquid chromatography-ultraviolet detection. The effects of various parameters, i.e., the mass ratio of the Fe3O4@SiO2 to HAzo, extraction time, ionic strength, pH of the sample, desorption conditions were optimized. Under the optimized conditions, the M-HAzo based method exhibited good performance in terms of linear range (0.3-50.0 μg L-1), detection limit (0.08-0.50 μg L-1), accuracy (recovery of 78.0-115.0%) and repeatability (relative standard deviation of 2.9-7.8%). This work provides a sensitive method for analysis of PAEs at trace levels in drinks, which is featured with high sensitivity, simple operation and environmentally-friendly merit and will have a promising potential in analysis of other organic pollutants.
Collapse
Affiliation(s)
- Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Yuhong Song
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
26
|
Zhu D, Fang X, Chen Y, Shan M, Jiang R, Qiu Z, Luo H. Structure-activity relationship analysis of Panax ginseng glycoproteins with cytoprotective effects using LC-MS/MS and bioinformatics. Int J Biol Macromol 2020; 158:S0141-8130(20)33180-9. [PMID: 32437814 DOI: 10.1016/j.ijbiomac.2020.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022]
Abstract
Panax ginseng glycoproteins (PGG) has been shown biological activity, but researches in this field are rarely reported. In this paper, PGG were prepared by reflux and then purified with macroporous resin column. Further separation and purification of PGG using high performance liquid chromatography (HPLC) and two major components (PGG-1, PGG-2) were obtained. The molecular weights were calculated by gel permeation chromatography (GPC), and the results are 1.5 KDa and 8.2 KDa respectively. The MTT assay was used to study the cytoprotective effects of PGG, the results exhibited that PGG had significant effect (P < 0.01), and showed an obvious dose-effect relationship. Anti-apoptosis experiment results showed that PGG and PGG-2 can inhibit Aβ-induced apoptosis in SH-SY5Y cells (P < 0.05), and PGG-2 displayed better activity. The structures of N- and O-glycan were determined by combination of LC-MS/MS and methylation analysis. The computed parameters of PGG determined by MS including the theoretical isoelectric point (pI), instability index, aliphatic index and grand average of hydropathicity (GRAVY) were summarized systematically. The distinct differences between two parts would affect the behavior of PGG in vivo. The results of activity test and bioinformatics analysis would guide the study of PGG in pharmacokinetics and mechanism.
Collapse
Affiliation(s)
- Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Jilin Jice Inspection Technology Co., Ltd., Changchun, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yinghong Chen
- Jilin Academy of Chinese Medicine and Material Medica Science, Changchun, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ruizhi Jiang
- Jilin Academy of Chinese Medicine and Material Medica Science, Changchun, China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|