1
|
Wang X, Qian D, Xu L, Zhao C, Ma X, Han C, Mu Y. Green synthesis of AgNPs and their application in chitosan/polyvinyl alcohol/AgNPs composite sponges with efficient antibacterial activity for wound healing. Int J Biol Macromol 2025:142935. [PMID: 40210066 DOI: 10.1016/j.ijbiomac.2025.142935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Wound infections can cause inflammation and delay healing, which becomes an important obstacle to wound recovery. To overcome this issue, various antibacterial agents have been integrated into wound dressings to prevent infection. Silver nanoparticles (AgNPs) are promising candidates due to their broad-spectrum antibacterial activities and no drug resistance. In this study, Dio-AgNPs were initially obtained by biological synthesis using the flavonoid compound diosmetin (Dio) as a reducing and capping agent. Dio-AgNPs exhibited strong antibacterial activity against S. aureus and E. coli by destroying the bacterial membrane structure and inducing the production of reactive oxygen species (ROS), finally leading to bacterial death. Furthermore, the composite sponges (SP-1, SP-2, and SP-3) for preventing wound infection were formulated using chitosan (CS) and polyvinyl alcohol (PVA) with different concentrations of Dio-AgNPs incorporated. The prepared sponges exhibited interconnected porous structures with water absorption capacities of >33 times their own weight. The wound healing experiments showed that after 14 days, the SP-3 sponge promoted complete wound healing by preventing wound infection, which is comparable to the commercial AgNPs gauze materials. SP-3 sponge also showed good biosafety. This work prepared a novel SP-3 sponge, which offers an effective and safe alternative for treating wound infections.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China
| | - Dandan Qian
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China
| | - Lihuan Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China
| | - Chenhao Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China
| | - Xiaoli Ma
- College of Nursing, Hebei University, Baoding 071000, PR China
| | - Changbao Han
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yajuan Mu
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China.
| |
Collapse
|
2
|
Kim J, Yoon S, Mansoor S, Jung CY, Kim CS, Boo KH. Parasiticidal Activity of Citral Against Enteromyxum leei (myxozoa: myxosporea) in Olive Flounder (Paralichthys olivaceus). Acta Parasitol 2025; 70:74. [PMID: 40119184 DOI: 10.1007/s11686-025-01011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
Myxosporean parasites pose a serious challenge in the aquaculture industry, particularly for species such as olive flounder (Paralichthys olivaceus). Infected fish can experience a range of health issues including stunted growth, degraded flesh quality, and a high mortality rate, significantly impacting farmers and the entire industry. This study explored the effectiveness of essential oil as potential parasiticidal agents against myxosporean parasite infections in olive flounder. Using molecular techniques, we identified Enteromyxum leei as the causative agent of myxosporean parasite infection, and screened essential oils for parasiticidal activity. Fluorescence microscopy revealed that treatment with one essential oil, citral, at 100 µg/mL achieved a parasiticidal rate of ~ 20% after 6 h, which increased to ~ 85% after 12 h of treatment. The parasiticidal rate with 250 µg/mL citral was ~ 60% after 6 h and 100% after 12 h. The results suggest that citral treatment at 100 µg/mL or higher for durations exceeding 12 h could effectively kill E. leei parasites. This study provides a molecular-based technique for determining E. leei infectivity in flounder, and highlights the promising parasiticidal properties of citral as a potential therapeutic agent in aquaculture management strategies.
Collapse
Affiliation(s)
- Jiwon Kim
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Korea
- Department of Biotechnology, College of Applied Life Science (SARI), Jeju National University, Jeju, 63243, Korea
| | - Seonyoung Yoon
- Department of Biotechnology, College of Applied Life Science (SARI), Jeju National University, Jeju, 63243, Korea
| | - Sheikh Mansoor
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Korea
| | | | - Chang Sook Kim
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Korea
- Department of Biotechnology, College of Applied Life Science (SARI), Jeju National University, Jeju, 63243, Korea
| | - Kyung-Hwan Boo
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Korea.
- Department of Biotechnology, College of Applied Life Science (SARI), Jeju National University, Jeju, 63243, Korea.
| |
Collapse
|
3
|
De Farias P, De Sousa RV, Maniglia BC, Pascall M, Matthes J, Sadzik A, Schmid M, Fai AEC. Biobased Food Packaging Systems Functionalized with Essential Oil via Pickering Emulsion: Advantages, Challenges, and Current Applications. ACS OMEGA 2025; 10:4173-4186. [PMID: 39959064 PMCID: PMC11822692 DOI: 10.1021/acsomega.4c09320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
The development of innovative active food packaging is a promising strategy to mitigate food loss and waste while enhancing food safety, extending shelf life, and maintaining overall quality. In this review, Pickering emulsions with essential oils are critically evaluated as active additives for sustainable food packaging films, focusing on their antimicrobial and antioxidant properties, stabilization mechanisms, and physicochemical performances. A bibliometric approach was used to contextualize the current research landscape and new trends. Data were collected from the Web of Science and Scopus databases to find studies published between 2020 and 2024. The analysis of 51 articles shows that cinnamon, clove, and oregano are the most used essential oils, while cellulose and chitosan are the predominant polymer matrices. Pickering emulsions as stabilizers in food science represent a step forward in sustainable emulsion technology. The incorporation of essential oils into biobased films via Pickering emulsions can improve the mechanical and barrier properties, antimicrobial and antioxidant activities, and shelf life of foods. This approach offers a natural, environmentally friendly alternative to conventional materials and is in line with the 2030 Agenda goals for sustainability and responsible consumption. Recent advances show that composite particles combining polysaccharides and proteins have higher stability and functionality compared to single particles due to their optimized interactions at the interfaces. Future research should focus on developing scalable, cost-effective production methods and conducting comprehensive environmental testing and regulatory compliance, particularly for nanotechnology-based packaging. These efforts will be crucial to drive the development of safe and effective biobased active food packaging.
Collapse
Affiliation(s)
- Patrícia
Marques De Farias
- Sustainable
Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| | - Roberta Vieira De Sousa
- Food
and Nutrition Graduate Program, Federal
University of the State of Rio de Janeiro - UNIRIO, Av. Pasteur, 296, Urca, Rio de Janeiro, Rio de Janeiro 22290-240, Brazil
| | - Bianca Chieregato Maniglia
- São
Carlos Institute of Chemistry, University
of São Paulo - USP, Av. Trabalhador São-Carlense, São
Carlos, São Paulo 00000, Brazil
| | - Melvin Pascall
- Food
Science and Technology, The Ohio State University, 2015 Fyffe Road, Columbus, Ohio 43210, United States
| | - Julia Matthes
- Sustainable
Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| | - Anna Sadzik
- Sustainable
Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| | - Markus Schmid
- Sustainable
Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| | - Ana Elizabeth Cavalcante Fai
- Food
and Nutrition Graduate Program, Federal
University of the State of Rio de Janeiro - UNIRIO, Av. Pasteur, 296, Urca, Rio de Janeiro, Rio de Janeiro 22290-240, Brazil
- Laboratory
of Multidisciplinary Practices for Sustainability (LAMPS), Institute
of Nutrition, State University of Rio de
Janeiro - UERJ, R. São
Francisco Xavier, 524, Maracanã, Rio
de Janeiro, Rio de Janeiro 20550-013, Brazil
| |
Collapse
|
4
|
Liu Y, Jiang K, Qin Y, Brennan M, Brennan C, Cao J, Wang Z, Soteyome T. Prediction of the postharvest quality of Boletus wild mushrooms stored with mesoporous silica nanoparticles antibacterial film using Long Short-Term Memory model combined with the Northern Goshawk Optimization (NGO-LSTM). Food Chem 2025; 463:141490. [PMID: 39366091 DOI: 10.1016/j.foodchem.2024.141490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
This study aimed to address the challenge of extending the shelf life of Boletus wild mushrooms, which are prone to environmental and microbial contamination. An antibacterial film composed of polylactic acid (PLA) and mesoporous silica nanoparticles loaded with citral (CMP film) was developed for this purpose. Fifteen quality indices were assessed, and the data were integrated using AHP and TOPSIS to evaluate the film's efficacy. The CMP film effectively maintained the quality of mushroom over time. Additionally, a Nonlinear Global Optimization-Long Short-Term Memory (NGO-LSTM) model was employed to predict storage quality, using seven highly correlated quality indicators. The model achieved a high predictive accuracy, with the R2 exceeding 0.999. This study presents a novel packaging solution and a predictive model that together enhance the storage and quality control of Boletus wild mushrooms.
Collapse
Affiliation(s)
- Yudi Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Kai Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China.
| | - Margaret Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia.
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Thanapop Soteyome
- Rajamangala University of Technology Phra Nakhon, Bangkok 10300, Thailand
| |
Collapse
|
5
|
Deng H, Zhang W, Ramezan Y, Riahi Z, Khan A, Huang Z. Antibacterial and antioxidant plant-derived aldehydes: A new role as cross-linking agents in biopolymer-based food packaging films. Compr Rev Food Sci Food Saf 2025; 24:e70089. [PMID: 39676345 DOI: 10.1111/1541-4337.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
In recent years, biopolymer-based food packaging films have emerged as promising alternatives to petroleum-based plastic food packaging films. Various additives have been explored to enhance their properties, and one such group of additives is natural plant aldehydes. These aldehydes are commonly employed to improve the antibacterial and antioxidant properties of biopolymer-based food packaging films. However, their potential role as cross-linking agents is often overlooked in these applications. This work introduces the properties of commonly used natural plant aldehydes in biopolymer-based food packaging films. Specifically, it summarizes the effects of natural plant aldehydes such as cinnamaldehyde, vanillin, and others on the properties of biopolymer-based food packaging films. Furthermore, the application of biopolymer-based food packaging films functionalized with natural plant aldehydes in food preservation is discussed. This work concludes that various natural plant aldehydes serve as effective antimicrobial agents and antioxidants. They can not only physically interact with biopolymers but also undergo chemical cross-linking reactions with some polymers through Schiff base reactions and Michael addition reactions, thereby further improving the comprehensive properties of the film.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zohreh Riahi
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
6
|
Yi Y, Shan Y, Luan P, Sun Z, Wu X, Ning Z, Chen Z, Zhang Y, Zhao S, Li C. Nanoencapsulation enhances the antimicrobial and antioxidant stability of cyclic lipopeptides for controlling Fusarium graminearum. Food Microbiol 2024; 124:104621. [PMID: 39244372 DOI: 10.1016/j.fm.2024.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Fusarium graminearum not only causes Fusarium head blight (FHB) on wheat but also produces fungal toxins that pose a serious threat to food safety. Biological control is one of the safe and most effective alternative methods. In this study, cyclic lipopeptides (CLPs) produced from Bacillus mojavensis B1302 were extracted and identified by LC-MS/MS. After preparing mesoporous silica nanoparticles-NH2 (MSNsN) and encapsulating CLPs, the characterization analysis showed that the interaction between CLPs and MSNsN enhanced the crystal structure of CLPs-MSNsN. The antimicrobial activity and antioxidant capacity of CLPs-MSNsN stored at 20 °C and 45 °C were decreased more slowly than those of free CLPs with increasing storage time, indicating the enhancement of the antimicrobial and antioxidant stability of CLPs. Moreover, the field control efficacy of long-term stored CLPs-MSNsN only decreased from 78.66% to 63.2%, but the efficacy of free CLPs decreased significantly from 84.34% to 26.01%. The deoxynivalenol (DON) content of wheat grains in the CLPs-MSNsN treatment group was lower than that in the free CLPs treatment group, which showed that long-term stored CLPs-MSNsN reduced the DON content in wheat grains. Further analysis of the action mechanism of CLPs-MSNsN on F. graminearum showed that CLPs-MSNsN could disrupt mycelial morphology, cause cell apoptosis, lead to the leakage of proteins and nucleic acids, and destroy the cell permeability of mycelia. This work puts a novel insight into the antimicrobial and antioxidant stability enhancement of CLPs-MSNsN through encapsulation and provides a potential fungicide to control F. graminearum, reduce toxins and ensure food safety.
Collapse
Affiliation(s)
- Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Luohe, 462300, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China.
| | - Youtian Shan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; Vazyme Biotech Co., Ltd, Nanjing, 210000, China
| | - Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Luohe, 462300, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Xingquan Wu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Zhiwen Ning
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Zhengkun Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Yunxiang Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Shuyun Zhao
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Shahina Z, Dahms TES. A Comparative Review of Eugenol and Citral Anticandidal Mechanisms: Partners in Crimes Against Fungi. Molecules 2024; 29:5536. [PMID: 39683696 DOI: 10.3390/molecules29235536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Candida albicans is an emerging multidrug-resistant opportunistic pathogen that causes candidiasis, superficial infections on the mucosa, nails or skin, and life-threatening candidemia in deep tissue when disseminated through the bloodstream. Recently, there has been a sharp rise in resistant strains, posing a considerable clinical challenge for the treatment of candidiasis. There has been a resurged interest in the pharmacological properties of essential oils and their active components, for example, monoterpenes with alcohol (-OH) and aldehyde (-CHO) groups. Eugenol and citral have shown promising in vitro and in vivo activity against Candida species. Although there is substantial research on the efficacy of these essential oil components against C. albicans, a detailed knowledge of their mycological mechanisms is lacking. To explore the broad-spectrum effects of EOs, it is more meaningful and rational to study the whole essential oil, along with some of its major components. This review provides a comprehensive overview of eugenol and citral anticandidal and antivirulence activity, alone and together, along with the associated mechanisms and limitations of our current knowledge.
Collapse
Affiliation(s)
- Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
8
|
Jose A, Mathew M, Mathew AS, Aswani R, Vimal J, Premnath M, Kanoth BP, Reshmy R, Radhakrishnan EK. Cinnamon essential oil induced microbial stress metabolome indicates its active food packaging efficiency when incorporated into poly vinyl alcohol, engineered with zinc oxide nanoparticles and nanocellulose. Int J Biol Macromol 2024; 278:134115. [PMID: 39047996 DOI: 10.1016/j.ijbiomac.2024.134115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
In the study, Poly Vinyl Alcohol (PVA) films engineered with the nanoparticles and essential oils have been developed as efficient alternative to the currently used food packaging materials. For this, impact of cinnamon essential oil (CEO), on the metabolomic profile of Staphylococcus aureus, Escherichia coli and Aspergillus flavus was analysed. Subsequently, PVA based nanocomposite films CEO, zinc oxide nanoparticles (ZnONPs), and nanocellulose (NC) were synthesised and characterized by FT-IR analysis. By the GC-MS analysis. The presence of ZnONPs enhanced the release of cinnamaldehyde from 31.16 to 44.23 and further enhancement to 71.82 was seen the presence of nanocellulose. The incorporation of NPs was found to enhance the hydrodynamic and mechanical properties of the prepared films. The final developed films, PZNCCEO, showed the least values for WHC and MC which were 56.31 ± 2.12 % and 13.30 ± 0 % respectively. Antimicrobial efficacy could also be demonstrated through the observation on changes in the morphological features of treated S. aureus and E. coli by the FE-SEM. Finally, the developed nanocomposite film was found to have the potential for food packaging as demonstrated through the protection of corn kernals and Vigna unguiculata.
Collapse
Affiliation(s)
- Ashitha Jose
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Maya Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Asha S Mathew
- Department of Biochemistry, BK College for Women, Amalagiri, Kottayam, Kerala, India
| | - R Aswani
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Joseph Vimal
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Manjusha Premnath
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Bipinbal Parambath Kanoth
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| | - R Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur 689122, Kerala, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India.
| |
Collapse
|
9
|
Pinheiro PF, Martins GS, Gonçalves PM, Vasconcelos LC, Dos Santos Bergamin A, Scotá MB, de Resende Santo IS, Pereira UA, Praça-Fontes MM. Synthesis and evaluation of esters obtained from phenols and phenoxyacetic acid with significant phytotoxic and cytogenotoxic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60023-60040. [PMID: 39365538 DOI: 10.1007/s11356-024-35222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
There is a growing demand for herbicides that are more effective than conventional ones yet less harmful to ecosystems. In light of this, this study aimed to synthesize esters from phenols and phenoxyacetic acid, using compounds with known phytotoxic potential as starting materials. Phenoxyacetic acid was first synthesized and then utilized in the synthesis of seven esters through Steglich esterification, employing N,N'-dicyclohexylcarboimide and N,N-dimethylpyridin-4-amine in the presence of phenols (thymol, vanillin, eugenol, carvacrol, guaiacol, p-cresol, and β-naphthol), yielding esters 1-7. All synthesized compounds were characterized using mass spectrometry, 1H, and 13C NMR. These compounds were tested for phytotoxicity to evaluate their effects on the germination and root development of Sorghum bicolor and Lactuca sativa seeds, and for the induction of alterations in the mitotic cycle of meristematic cells of L. sativa roots. Esters 1, 3, 4, and 5 exhibited the most significant phytotoxic activity in both L. sativa and S. bicolor. Alterations in the mitotic index and frequency of chromosomal alterations in L. sativa roots revealed the cytotoxic, genotoxic effects, and the aneugenic mode of action of the tested molecules. These findings suggest that these compounds could serve as inspiration for the synthesis of new semi-synthetic herbicides.
Collapse
Affiliation(s)
- Patrícia Fontes Pinheiro
- Department of Chemistry, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Geisiele Silva Martins
- Departament of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Patrícia Martins Gonçalves
- Department of Chemistry and Physics, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Loren Cristina Vasconcelos
- Departament of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Aline Dos Santos Bergamin
- Departament of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Mayla Bessa Scotá
- Departament of Biology, Federal University of the Espírito Santo, Avenida Fernando Ferraria 514, Goiabeiras, Vitória, ES, 29075-910, Brazil
| | | | - Ulisses Alves Pereira
- Montes Claros Regional Campus, Institute of Agricultural Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, Bairro Universitário, Montes Claros, MG, 39404-547, Brazil
| | - Milene Miranda Praça-Fontes
- Departament of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
10
|
Cui K, Wang Y, Wang M, Zhao T, Zhang F, He L, Zhou L. Inhibitory activity and antioomycete mechanism of citral against Phytophthora capsici. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106067. [PMID: 39277383 DOI: 10.1016/j.pestbp.2024.106067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/17/2024]
Abstract
The natural terpenoid citral has antifungal activity against multiple fungi, but its bioactivity against oomycetes is unclear. Therefore, this study investigated the antioomycete activity and mechanism of citral against Phytophthora capsici, a highly destructive invasive oomycete. Results showed that citral not only had a great inhibition on the mycelial growth of P. capsici (EC50 = 94.15 mg/L), but also had a significant inhibition on multiple spores, such as sporangia formation, zoospore discharge and zoospore germination. Citral at 4000 mg/L exhibited favorable protective (73.33%) and curative efficacy (55.11%) against pepper Phytophthora blight. Citral significantly damaged the hyphal morphology, disrupted the cell membrane integrity, increased the permeability of cell membrane, and increased the glycerol content in P. capsici. A total of 250 upregulated and 288 downregulated proteins were identified in iTRAQ-based quantitative proteomic analysis. Downregulated proteins were mostly enriched in pathways of ABC transporters, cyanoamino acid metabolism and starch and sucrose metabolism, suggesting an inhibition of citral on transmembrane transporter (e.g., ABC transporters) and pathogenicity (e.g., β-glucosidases) proteins. Upregulated proteins were enriched in biosynthesis of unsaturated fatty acids, pyruvate metabolism and glycolysis/gluconeogenesis, suggesting an activation of citral on energy generation proteins, including acyl-CoA oxidase, D-lactate dehydrogenase, pyruvate kinase, acetyl-CoA synthetase and phosphoenolpyruvate carboxykinase. Biochemical and iTRAQ analysis suggested that cell membrane may be the target of citral in P. capsici.
Collapse
Affiliation(s)
- Kaidi Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yinan Wang
- Center for Biological Invasions, Shenyang University, Shenyang 110044, Liaoning, China
| | - Mengke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Fulong Zhang
- Inner Mongolia Kingbo Biotech Co., Ltd., Bayan Nur 015200, Inner Mongolia, China
| | - Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
11
|
Ma M, Li A, Feng J, Wang Z, Jia Y, Ma X, Ning Y. Antifungal mechanism of Lactiplantibacillus plantarum P10 against Aspergillus niger and its in-situ biopreservative application in Chinese steamed bread. Food Chem 2024; 449:139181. [PMID: 38581786 DOI: 10.1016/j.foodchem.2024.139181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Affiliation(s)
- Mengge Ma
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ao Li
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jin Feng
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhixin Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yingmin Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinying Ma
- Hebei Inatural Biotech Co., Ltd, Shijiazhuang 050800, China
| | - Yawei Ning
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
12
|
Tian Y, Wang J, Lan Q, Liu Y, Zhang J, Liu L, Su X, Islam R. Biocontrol Mechanisms of Three Plant Essential Oils Against Phytophthora infestans Causing Potato Late Blight. PHYTOPATHOLOGY 2024; 114:1502-1514. [PMID: 39023506 DOI: 10.1094/phyto-06-23-0216-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Late blight, caused by the notorious pathogen Phytophthora infestans, poses a significant threat to potato (Solanum tuberosum) crops worldwide, impacting their quality as well as yield. Here, we aimed to investigate the potential use of cinnamaldehyde, carvacrol, and eugenol as control agents against P. infestans and to elucidate their underlying mechanisms of action. To determine the pathogen-inhibiting concentrations of these three plant essential oils (PEOs), a comprehensive evaluation of their effects using gradient dilution, mycelial growth rate, and spore germination methods was carried out. Cinnamaldehyde, carvacrol, and eugenol were capable of significantly inhibiting P. infestans by hindering its mycelial radial growth, zoospore release, and sporangium germination; the median effective inhibitory concentration of the three PEOs was 23.87, 8.66, and 89.65 μl/liter, respectively. Scanning electron microscopy revealed that PEOs caused the irreversible deformation of P. infestans, resulting in hyphal shrinkage, distortion, and breakage. Moreover, propidium iodide staining and extracellular conductivity measurements demonstrated that all three PEOs significantly impaired the integrity and permeability of the pathogen's cell membrane in a time- and dose-dependent manner. In vivo experiments confirmed the dose-dependent efficacy of PEOs in reducing the lesion diameter of potato late blight. Altogether, these findings provide valuable insight into the antifungal mechanisms of PEOs vis-à-vis late blight-causing P. infestans. By utilizing the inherent capabilities of these natural compounds, we could effectively limit the harmful impacts of late blight on potato crops, thereby enhancing agricultural practices and ensuring the resilience of global potato food production.
Collapse
Affiliation(s)
- Yongqiang Tian
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jianglai Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Qingqing Lan
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jinfeng Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lu Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xu Su
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China
| | - Rehmat Islam
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
13
|
Zhang B, Lan W, Yan P, Xie J. The antibacterial and inhibition effect of chitosan grafted gentisate acid derivatives against Pseudomonas fluorescens: Attacking multiple targets on structure, metabolism system, antioxidant system, and biofilm. Int J Biol Macromol 2024; 273:133225. [PMID: 38897501 DOI: 10.1016/j.ijbiomac.2024.133225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
This work aimed to investigate the antibacterial ability and potential mechanism of chitosan grafted gentisate acid derivatives (CS-g-GA) against Pseudomonas fluorescens. The results showed that CS-g-GA had a significant suppressive impact on the growth of Pseudomonas fluorescens, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 0.64 mg/mL and 1.28 mg/mL, respectively. Results of scanning electron microscopy (SEM) and alkaline phosphatase (AKPase) confirmed that CS-g-GA destroyed the cell structure thereby causing the leakage of intracellular components. In addition, 1 × MIC of CS-g-GA could significantly inhibit the formation of biofilms, and 74.78 % mature biofilm and 86.21 % extracellular polysaccharide of Pseudomonas fluorescens were eradicated by CS-g-GA at 2 × MIC. The results on the respiratory energy metabolism system and antioxidant system demonstrated that CS-g-GA caused respiratory disturbance and energy limitation by influencing the key enzyme activities. It could also bind to DNA and affect genetic metabolism. From this, it could be seen that CS-g-GA had the potential to control foodborne contamination of Pseudomonas fluorescens by attacking multiple targets.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Peiling Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
14
|
Wang X, Wang B, Hu Y, Zhang Z, Zhang B. Activity-based protein profiling technology reveals malate dehydrogenase as the target protein of cinnamaldehyde against Aspergillus niger. Int J Food Microbiol 2024; 417:110685. [PMID: 38579546 DOI: 10.1016/j.ijfoodmicro.2024.110685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
Cinnamaldehyde displays strong antifungal activity against fungi such as Aspergillus niger, but its precise molecular mechanisms of antifungal action remain inadequately understood. In this investigation, we applied chemoproteomics and bioinformatic analysis to unveil the target proteins of cinnamaldehyde in Aspergillus niger cells. Additionally, our study encompassed the examination of cinnamaldehyde's effects on cell membranes, mitochondrial malate dehydrogenase activity, and intracellular ATP levels in Aspergillus niger cells. Our findings suggest that malate dehydrogenase could potentially serve as an inhibitory target of cinnamaldehyde in Aspergillus niger cells. By disrupting the activity of malate dehydrogenase, cinnamaldehyde interferes with the mitochondrial tricarboxylic acid (TCA) cycle, leading to a significant decrease in intracellular ATP levels. Following treatment with cinnamaldehyde at a concentration of 1 MIC, the inhibition rate of MDH activity was 74.90 %, accompanied by an 84.5 % decrease in intracellular ATP content. Furthermore, cinnamaldehyde disrupts cell membrane integrity, resulting in the release of cellular contents and subsequent cell demise. This study endeavors to unveil the molecular-level antifungal mechanism of cinnamaldehyde via a chemoproteomics approach, thereby offering valuable insights for further development and utilization of cinnamaldehyde in preventing and mitigating food spoilage.
Collapse
Affiliation(s)
- Xin Wang
- Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China
| | - Bowen Wang
- Department of Cultural Heritage and Museology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yulan Hu
- Department of Cultural Heritage and Museology, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhao Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China
| | - Bingjian Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China; Department of Cultural Heritage and Museology, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
15
|
Zhang Y, Li B, Fu M, Wang Z, Chen K, Du M, Zalán Z, Hegyi F, Kan J. Antifungal mechanisms of binary combinations of volatile organic compounds produced by lactic acid bacteria strains against Aspergillusflavus. Toxicon 2024; 243:107749. [PMID: 38710308 DOI: 10.1016/j.toxicon.2024.107749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Aspergillus flavus(A. flavus), a common humic fungus known for its ability to infect agricultural products, served as the subject of investigation in this study. The primary objective was to assess the antifungal efficacy and underlying mechanisms of binary combinations of five volatile organic compounds (VOCs) produced by lactic acid bacteria, specifically in their inhibition of A. flavus. This assessment was conducted through a comprehensive analysis, involving biochemical characterization and transcriptomic scrutiny. The results showed that VOCs induce notable morphological abnormalities in A. flavus conidia and hyphae. Furthermore, they disrupt the integrity of the fungal cell membrane and cell wall, resulting in the leakage of intracellular contents and an increase in extracellular electrical conductivity. In terms of cellular components, VOC exposure led to an elevation in malondialdehyde content while concurrently inhibiting the levels of total lipids, ergosterol, soluble proteins, and reducing sugars. Additionally, the impact of VOCs on A. flavus energy metabolism was evident, with significant inhibition observed in the activities of key enzymes, such as Na+/K+-ATPase, malate dehydrogenase, succinate dehydrogenase, and chitinase. And they were able to inhibit aflatoxin B1 synthesis. The transcriptomic analysis offered further insights, highlighting that differentially expressed genes (DEGs) were predominantly associated with membrane functionality and enriched in pathways about carbohydrate and amino acid metabolism. Notably, DEGs linked to cellular components and energy-related mechanisms exhibited down-regulation, thereby corroborating the findings from the biochemical analyses. In summary, these results elucidate the principal antifungal mechanisms of VOCs, which encompass the disruption of cell membrane integrity and interference with carbohydrate and amino acid metabolism in A. flavus.
Collapse
Affiliation(s)
- Yi Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Bin Li
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Mingze Fu
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Zhirong Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Kewei Chen
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Zsolt Zalán
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Budapest, 1022, Hungary
| | - Ferenc Hegyi
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Budapest, 1022, Hungary
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China.
| |
Collapse
|
16
|
Chou K, Liu J, Lu X, Hsiao HI. Quantitative microbial spoilage risk assessment of Aspergillus niger in white bread reveal that retail storage temperature and mold contamination during factory cooling are the main factors to influence spoilage. Food Microbiol 2024; 119:104443. [PMID: 38225048 DOI: 10.1016/j.fm.2023.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
The present study developed a model for effectively assessing the risk of spoilage caused by Aspergillus niger to identify key control measures employed in bakery supply chains. A white bread supply chain comprising a processing plant and two retail stores in Taiwan was selected in this study. Time-temperature profiles were collected at each processing step in summer and winter. Visual mycelium diameter predictions were validated using a time-lapse camera. Six what-if scenarios were proposed. The mean risk of A. niger contamination per package sold by retailer A was 0.052 in summer and 0.036 in winter, and that for retailer B was 0.037 in summer and 0.022 in winter. Sensitivity analysis revealed that retail storage time, retail temperature, and mold prevalence during factory cooling were the main influencing factors. The what-if scenarios revealed that reducing the retail environmental temperature by 1 °C in summer (from 23.97 °C to 22.97 °C) and winter (from 23.28 °C to 22.28 °C) resulted in a reduction in spoilage risk of 47.0% and 34.7%, respectively. These results indicate that food companies should establish a quantitative microbial risk assessment model that uses real data to evaluate microbial spoilage in food products that can support decision-making processes.
Collapse
Affiliation(s)
- Kelvin Chou
- Department of Food Science, National Taiwan Ocean University, Taiwan
| | - Jinxin Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Taiwan.
| |
Collapse
|
17
|
Lin C, Chen Z, Feng W, Wang R, Wang T. Salting-out effect-mediated size-control of protein nanoparticles towards controllable microstructures for sustained release of eugenol. Food Chem 2024; 439:138080. [PMID: 38070237 DOI: 10.1016/j.foodchem.2023.138080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
Size and monodispersity of solid particles are essential to their structuring behaviors at biphasic interfaces. However, delicate control over biomolecular nanoparticle sizes is challenging. In this study, we prepared monodisperse rice protein (RP) nanoparticles by neutralizing RP solutions (pH 12.0) using combined treatments of cationic exchange resins (CERs) and HCl. CERs absorbed Na+ by releasing H+ without producing salt during neutralization. By compromising the usages of CERs and HCl when preparing RPs, the generation of NaCl can be delicately tailored, leading to controllable nanoparticle sizes from 20 nm to 30 nm. By mixing these nanoparticles with eugenol in an aqueous solution, the nanoparticles accommodated eugenol in their cores due to inward diffusion. Furthermore, such eugenol-contained nanoparticles with different sizes demonstrated tunable releases of eugenol due to size-dependent capillary forces, which can be harnessed for suppression of microbial growth on fruit with prolonged effective eugenol concentration.
Collapse
Affiliation(s)
- Chen Lin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengxing Chen
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Feng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ren Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tao Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Fan S, Yin X, Liu X, Wang G, Qiu W. Enhancing bread preservation through non-contact application of starch-based composite film infused with clove essential oil nanoemulsion. Int J Biol Macromol 2024; 263:130297. [PMID: 38382781 DOI: 10.1016/j.ijbiomac.2024.130297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
In this study, we have successfully produced a corn starch-based composite film through the casting method, formulated with clove essential oil nanoemulsion (NCEO) and corn starch. The physical and chemical changes of the composite films were investigated at various concentrations (10 %, 20 % and 40 %) of NCEO. Furthermore, the non-contact preservation effects of the composite films on bread during 15-day storage were also examined in this study. As the concentration of NCEO increased, the composite films presented a gradual thinning, roughening, and yellowing in appearance. Following this, the water content, water vapor permeability rate, and elongation at break of the films decreased, while their hydrophobicity, tensile strength, antioxidant and antimicrobial activity increased accordingly. Through FT-IR, X-ray diffraction and thermal gravimetric analysis, it was demonstrated that NCEO has strong compatibility with corn starch. Additionally, the indices' analysis indicated that utilizing the composite film incorporating 40 % NCEO can significantly boost the shelf life and quality of bread. Moreover, it was revealed that application of the non-contact treatment with composite film could potentially contribute certain preservation effects towards bread. In light of these findings, the composite film with non-contact treatment exhibits potential as an effective, safe, and sustainable preservation technique for grain products.
Collapse
Affiliation(s)
- Saifeng Fan
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaoyu Yin
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xingxun Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guangyu Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Weifen Qiu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
19
|
Nie H, Liao H, Wen J, Ling C, Zhang L, Xu F, Dong X. Foeniculum vulgare essential oil nanoemulsion inhibits Fusarium oxysporum causing Panax notoginseng root-rot disease. J Ginseng Res 2024; 48:236-244. [PMID: 38465211 PMCID: PMC10920008 DOI: 10.1016/j.jgr.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/12/2024] Open
Abstract
Background Fusarium oxysporum (F. oxysporum) is the primary pathogenic fungus that causes Panax notoginseng (P. notoginseng) root rot disease. To control the disease, safe and efficient antifungal pesticides must currently be developed. Methods In this study, we prepared and characterized a nanoemulsion of Foeniculum vulgare essential oil (Ne-FvEO) using ultrasonic technology and evaluated its stability. Traditional Foeniculum vulgare essential oil (T-FvEO) was prepared simultaneously with 1/1000 Tween-80 and 20/1000 dimethyl sulfoxide (DMSO). The effects and inhibitory mechanism of Ne-FvEO and T-FvEO in F. oxysporum were investigated through combined transcriptome and metabolome analyses. Results Results showed that the minimum inhibitory concentration (MIC) of Ne-FvEO decreased from 3.65 mg/mL to 0.35 mg/mL, and its bioavailability increased by 10-fold. The results of gas chromatography/mass spectrometry (GC/MS) showed that T-FvEO did not contain a high content of estragole compared to Foeniculum vulgare essential oil (FvEO) and Ne-FvEO. Combined metabolome and transcriptome analysis showed that both emulsions inhibited the growth and development of F. oxysporum through the synthesis of the cell wall and cell membrane, energy metabolism, and genetic information of F. oxysporum mycelium. Ne-FvEO also inhibited the expression of 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase and reduced the content of 2-oxoglutarate, which inhibited the germination of spores. Conclusion Our findings suggest that Ne-FvEO effectively inhibited the growth of F. oxysporum in P. notoginseng in vivo. The findings contribute to our comprehension of the antifungal mechanism of essential oils (EOs) and lay the groundwork for the creation of plant-derived antifungal medicines.
Collapse
Affiliation(s)
- Hongyan Nie
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Hongxin Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinrui Wen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Cuiqiong Ling
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Liyan Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Furong Xu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
20
|
Li Q, Wang C, Xiao H, Zhang Y, Xie Y. 2-Hydroxy-4-methoxybenzaldehyde, a more effective antifungal aroma than vanillin and its derivatives against Fusarium graminearum, destroys cell membranes, inhibits DON biosynthesis, and performs a promising antifungal effect on wheat grains. Front Microbiol 2024; 15:1359947. [PMID: 38468857 PMCID: PMC10925628 DOI: 10.3389/fmicb.2024.1359947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Fusarium graminearum (F. graminearum) is a severe pathogen threatening the safety of agriculture and food. This study aimed to explore the antifungal efficacies of several plant-derived natural compounds (vanillin and its derivatives) against the growth of F. graminearum and investigate the antifungal mechanism of 2-hydroxy-4-methoxybenzaldehyde (HMB), the strongest one. The minimum inhibitory concentration (MIC) of HMB in inhibiting mycelial growth was 200 μg/mL. HMB at MIC damaged cell membranes by increasing the permeability by about 6-fold (p < 0.05) as evidenced by propidium iodide (PI) staining. Meanwhile, the content of malondialdehyde (MDA) and glycerol was increased by 45.91 and 576.19% by HMB treatment at MIC, respectively, indicating that lipid oxidation and osmotic stress occurred in the cell membrane. Furthermore, HMB exerted a strong antitoxigenic role as the content of deoxynivalenol (DON) was remarkably reduced by 93.59% at MIC on 7th day. At last, the antifungal effect of HMB against F. graminearum was also confirmed on wheat grains. These results not only revealed the antifungal mechanism of HMB but also suggested that HMB could be applied as a promising antifungal agent in the preservation of agricultural products.
Collapse
Affiliation(s)
- Qian Li
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Chong Wang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Hongying Xiao
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yiming Zhang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yanli Xie
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Yuan YH, Lin XN, Xu XM, Liu LX, Li XJ, Liu YG. Antifungal mechanism of rose, mustard, and their blended essential oils against Cladosporium allicinum isolated from Xinjiang naan and its storage application. J Appl Microbiol 2024; 135:lxae010. [PMID: 38211970 DOI: 10.1093/jambio/lxae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
AIMS To reveal the inhibition mechanism of rose, mustard, and blended essential oils against Cladosporium allicinum isolated from Xinjiang naan, and investigate the effect of the three essential oils on oxidative damage and energy metabolism. METHODS AND RESULTS Rose and mustard essential oils significantly inhibited mycelial growth and spore viability in a dose-dependent relationship. After essential oil treatment, the cell membrane permeability was altered, and significant leakage of intracellular proteins and nucleic acids occurred. SEM observations further confirmed the disruption of cell structure. ROS, MDA, and SOD measurements indicated that essential oil treatment induced a redox imbalance in C. allicinum, leading to cell death. As for energy metabolism, essential oil treatment significantly reduced Na+K+-ATPase, Ca2+Mg2+-ATPase, MDH activity, and CA content, impairing metabolic functions. Finally, storage experiments showed that all three essential oils ensured better preservation of naan, with mustard essential oil having the best antifungal effect. CONCLUSIONS Rose and mustard essential oils and their blends can inhibit C. allicinum at multiple targets and pathways, destroying cell morphological structure and disrupting metabolic processes.
Collapse
Affiliation(s)
- Yu-Han Yuan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
- College of Life Sciences, Linyi University, Linyi 276000, China
| | - Xiang-Na Lin
- College of Life Sciences, Linyi University, Linyi 276000, China
| | - Xiao-Mei Xu
- College of Life Sciences, Linyi University, Linyi 276000, China
| | - Ling-Xiao Liu
- Linyi Academy of Agricultural Sciences, Linyi 276012, China
| | - Xing-Jiang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Yun-Guo Liu
- College of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
22
|
Gao Q, Qi J, Tan Y, Ju J. Antifungal mechanism of Angelica sinensis essential oil against Penicillium roqueforti and its application in extending the shelf life of bread. Int J Food Microbiol 2024; 408:110427. [PMID: 37827052 DOI: 10.1016/j.ijfoodmicro.2023.110427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/07/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
There are a variety of reports on the application of Angelica sinensis essential oil (ASEO) in the biomedical field. However, the antifungal mechanism of ASEO has not been reported. In this study, the antifungal mechanism of ASEO against Penicillium roqueforti was investigated by proteomics and genomics. ASEO can increase the permeability of P. roqueforti cell membrane and decrease the content of lipid and trehalose. With the increase of glycerol content, the HOG signaling pathway can be upregulated. Consistent with the above phenotypic changes, proteomics confirmed that ASEO treatment inhibited the steroid synthesis pathway of P. roqueforti. The significant down-regulation of ERG4, ERG6, ERG25, SMT1, and FDFT1 gene expression confirmed this conclusion. Cluster+activates the MAPK and UPP signaling pathways and ultimately leads to cell apoptosis. The bread shelf life experiment showed that ASEO could extend the shelf life of bread up to day 7. This study provides new evidence for the antifungal activity of ASEO against P. roqueforti and will promote the use of ASEO in the preservation of food and agricultural products.
Collapse
Affiliation(s)
- Qingchao Gao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China; Shandong Technology Innovation Center of Special Food, Qingdao, 266109, People's Republic of China
| | - Jingjing Qi
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China; Shandong Technology Innovation Center of Special Food, Qingdao, 266109, People's Republic of China
| | - Yulong Tan
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China; Shandong Technology Innovation Center of Special Food, Qingdao, 266109, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China; Shandong Technology Innovation Center of Special Food, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
23
|
Almeida HHS, Crugeira PJL, Amaral JS, Rodrigues AE, Barreiro MF. Disclosing the potential of Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu, and Melissa officinalis L. hydrosols as eco-friendly antimicrobial agents. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:1. [PMID: 38163838 PMCID: PMC10758378 DOI: 10.1007/s13659-023-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Antimicrobial resistance is a major global health concern, threatening the effective prevention and treatment of infections caused by microorganisms. These factors boosted the study of safe and green alternatives, with hydrosols, the by-products of essential oils extraction, emerging as promising natural antimicrobial agents. In this context, four hydrosols obtained from Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu and Melissa officinalis L. were studied. Their chemical composition comprises neral, geranial, 1,8-cineole, terpinen-4-ol, and oplopanonyl acetate, compounds with recognised antimicrobial activity. Concerning antimicrobial activity, significant differences were found using different hydrosol concentrations (10-20% v/v) in comparison to a control (without hydrosol), showing the potential of the tested hydrosols to inhibit the microbial growth of Escherichia coli, Staphylococcus aureus, and Candida albicans. A. citrodora hydrosol was the most effective one, inhibiting 90% of E. coli growth and 80% of C. albicans growth, for both hydrosol concentrations (p < 0.0001). With hydrosol concentration increase, it was possible to observe an improved antimicrobial activity with significant reductions (p < 0.0001). The findings of this work indicate the viability of reusing and valuing the hydrosols, encouraging the development of green applications for different fields (e.g., food, agriculture, pharmaceuticals, and cosmetics).
Collapse
Affiliation(s)
- Heloísa H S Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Pedro J L Crugeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
| | - Alírio E Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria-Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal.
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal.
| |
Collapse
|
24
|
Gao L, Liang Y, Xiong Q, Huang M, Jiang Y, Zhang J. Control of citrus blue and green molds by Actinomycin X 2 and its possible antifungal mechanism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105718. [PMID: 38225074 DOI: 10.1016/j.pestbp.2023.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
Citrus blue and green molds caused by Penicillium digitatum, P. italicum, and P. polonicum, are the major postharvest diseases of citrus fruit. In the present study, Actinomycin X2 (Act-X2), a naturally occurring antibiotic produced by Streptomyces species, was found to show excellent antifungal effect against these three pathogens with a minimum inhibitory concentration (MIC) value of 62.5 μg/mL for them all, which was better than the positive control thiophanate-methyl. Act-X2 significantly reduced the percentage of spore germination, and highly inhibited the mycelial growth of P. italicum, P. digitatum, and P. polonicum with EC50 values being 34.34, 13.76, and 37.48 μg/mL, respectively. In addition, Act-X2 greatly decreased the intracellular protein content while increasing the reactive oxygen species (ROS) level and superoxide anion (O2-) content in the mycelia of pathogens. In vivo test indicated that Act-X2 strongly inhibited the infection of navel oranges by these three Penicillium species, with an inhibition percentage of >50% for them all at the concentration of 10 MIC. Transcriptome analysis suggested that Act-X2 might highly influence the ribosomal functions of P. polonicum, which was supported as well by the molecular docking analysis of Act-X2 with some key functional proteins and RNAs of the ribosome. Furthermore, Act-X2 significantly reduced the decay percentage and improved the firmness, color, and sugar-acid ratio of navel oranges spray-inoculated with P. polonicum during the postharvest storage at 4 °C for 60 d.
Collapse
Affiliation(s)
- Liangliang Gao
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Yan Liang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Qin Xiong
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Meiling Huang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Yueming Jiang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China; South China Botanical Garden, Chinese Academy of Science, Guangzhou 510650, China
| | - Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
25
|
Gigante V, Aliotta L, Ascrizzi R, Pistelli L, Zinnai A, Batoni G, Coltelli MB, Lazzeri A. Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review. Polymers (Basel) 2023; 15:4700. [PMID: 38139951 PMCID: PMC10747240 DOI: 10.3390/polym15244700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Sustainable packaging has been steadily gaining prominence within the food industry, with biobased materials emerging as a promising substitute for conventional petroleum-derived plastics. This review is dedicated to the examination of innovative biobased materials in the context of bread packaging. It aims to furnish a comprehensive survey of recent discoveries, fundamental properties, and potential applications. Commencing with an examination of the challenges posed by various bread types and the imperative of extending shelf life, the review underscores the beneficial role of biopolymers as internal coatings or external layers in preserving product freshness while upholding structural integrity. Furthermore, the introduction of biocomposites, resulting from the amalgamation of biopolymers with active biomolecules, fortifies barrier properties, thus shielding bread from moisture, oxygen, and external influences. The review also addresses the associated challenges and opportunities in utilizing biobased materials for bread packaging, accentuating the ongoing requirement for research and innovation to create advanced materials that ensure product integrity while diminishing the environmental footprint.
Collapse
Affiliation(s)
- Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
| | - Laura Pistelli
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy;
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| |
Collapse
|
26
|
Niu A, Tan L, Tan S, Wang G, Qiu W. The Temporal Dynamics of Sensitivity, Aflatoxin Production, and Oxidative Stress of Aspergillus flavus in Response to Cinnamaldehyde Vapor. Foods 2023; 12:4311. [PMID: 38231749 DOI: 10.3390/foods12234311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Cinnamaldehyde (CA), a natural plant extract, possesses notable antimicrobial properties and the ability to inhibit mycotoxin synthesis. This study investigated the effects of different concentrations of gaseous CA on A. flavus and found that higher concentrations exhibited fungicidal effects, while lower concentrations exerted fungistatic effects. Although all A. flavus strains exhibited similar responses to CA vapor, the degree of response varied among them. Notably, A. flavus strains HN-1, JX-3, JX-4, and HN-8 displayed higher sensitivity. Exposure to CA vapor led to slight damage to A. flavus, induced oxidative stress, and inhibited aflatoxin B1 (AFB1) production. Upon removal of the CA vapor, the damaged A. flavus resumed growth, the oxidative stress weakened, and AFB1 production sharply increased in aflatoxin-producing strains. In the whole process, no aflatoxin was detected in aflatoxin-non-producing A. flavus. Moreover, the qRT-PCR results suggest that the recovery of A. flavus and the subsequent surge of AFB1 content following CA removal were regulated by a drug efflux pump and velvet complex proteins. In summary, these findings emphasize the significance of optimizing the targeted concentrations of antifungal EOs and provide valuable insight for their accurate application.
Collapse
Affiliation(s)
- Ajuan Niu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Leilei Tan
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Song Tan
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guangyu Wang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Weifen Qiu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- Joint Laboratory for International Cooperation in Grain Circulation and Security, Nanjing 210023, China
| |
Collapse
|
27
|
Gutiérrez-Pacheco MM, Torres-Moreno H, Flores-Lopez ML, Velázquez Guadarrama N, Ayala-Zavala JF, Ortega-Ramírez LA, López-Romero JC. Mechanisms and Applications of Citral's Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations. Antibiotics (Basel) 2023; 12:1608. [PMID: 37998810 PMCID: PMC10668791 DOI: 10.3390/antibiotics12111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
Citral is a monoterpene constituted by two isomers known as neral and geranial. It is present in different plant sources and recognized as safe (GRAS) by the Food and Drug Administration (FDA). In recent years, investigations have demonstrated that this compound exhibited several biological activities, such as antibacterial, antifungal, antibiofilm, antiparasitic, antiproliferative, anti-inflammatory, and antioxidant properties, by in vitro and in vivo assays. Additionally, when incorporated into different food matrices, citral can reduce the microbial load of pathogenic microorganisms and extend the shelf life. This compound has acceptable drug-likeness properties and does not present any violations of Lipinski's rules, which could be used for drug development. The above shows that citral could be a compound of interest for developing food additives to extend the shelf life of animal and vegetable origin foods and develop pharmaceutical products.
Collapse
Affiliation(s)
| | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, H. Caborca 83600, Sonora, Mexico;
| | - María Liliana Flores-Lopez
- Centro de Investigación e Innovación Científica y Tecnológica, Universidad Autónoma de Coahuila, Saltillo 25070, Coahuila, Mexico;
| | - Norma Velázquez Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - J. Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Sonora, Mexico;
| | - Luis Alberto Ortega-Ramírez
- Departamento de Ciencias de la Salud, Universidad Estatal de Sonora, San Luis Río Colorado 83430, Sonora, Mexico;
| | - Julio César López-Romero
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, H. Caborca 83600, Sonora, Mexico;
| |
Collapse
|
28
|
Allizond V, Cavallo L, Roana J, Mandras N, Cuffini AM, Tullio V, Banche G. In Vitro Antifungal Activity of Selected Essential Oils against Drug-Resistant Clinical Aspergillus spp. Strains. Molecules 2023; 28:7259. [PMID: 37959679 PMCID: PMC10650698 DOI: 10.3390/molecules28217259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Treatment options for aspergillosis include amphotericin B (AMB) and azole compounds, such as itraconazole (ITZ). However, serious side effects related to these antifungal agents are increasingly evident, and resistance continues to increase. Currently, a new trend in drug discovery to overcome this problem is represented by natural products from plants, or their extracts. Particularly, there is a great interest in essential oils (EOs) recognized for their antimicrobial role towards bacteria, fungi and viruses. METHODS In this study, we evaluated the antifungal activity of eleven commercial EOs-clove, eucalyptus, geranium, hybrid lavender, lavender, lemon, lemongrass, neroli, oregano, tea tree and red red thyme-in comparison with AMB and ITZ against Aspergillus flavus, A. fumigatus and A. niger clinical isolates. Antifungal activity was determined by broth microdilution method, agar diffusion technique, fungistatic and fungicidal activities and vapor contact assay. RESULTS Gas chromatography-mass spectrometry analysis displayed two groups of distinct biosynthetical origin: monoterpenes dominated the chemical composition of the most oils. Only two aromatic compounds (eugenol 78.91% and eugenyl acetate 11.64%) have been identified as major components in clove EO. Lemongrass EO exhibits the strongest antimicrobial activity with a minimum inhibitory concentration of 0.56 mg/mL and a minimum fungicidal concentration of 2.25-4.5 mg/mL against Aspergillus spp. strains. Clove and geranium EOs were fairly effective in inhibiting Aspergillus spp. growth. CONCLUSIONS These results demonstrate the antimicrobial potential of some EOs and support the research of new alternatives or complementary therapies based on EOs.
Collapse
Affiliation(s)
| | | | | | - Narcisa Mandras
- Department Public Health and Pediatrics, Microbiology Division, University of Torino, 10126 Turin, Italy; (V.A.); (L.C.); (J.R.); (A.M.C.); (V.T.); (G.B.)
| | | | | | | |
Collapse
|
29
|
Li L, Lin Y, Agyekumwaa Addo K, Yu Y, Liao C. Effect of allyl isothiocyanate on the growth and virulence of Clostridium perfringens and its application on cooked pork. Food Res Int 2023; 172:113110. [PMID: 37689877 DOI: 10.1016/j.foodres.2023.113110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
The objective of this study is to explore the antibacterial action modes and virulence-inhibitory effects of allyl isothiocyanate (AITC) against Clostridium perfringens (C. perfringens). The minimum inhibitory concentration (MIC) of AITC against vegetative cells of Cp 13124 was 0.1 μL/mL, and the time-kill kinetics analysis revealed that AITC could significantly suppress the growth of Cp 13124. According to the results from scanning electron microscopy (SEM), fluorescence microscopy, and UV absorbance substance detection, the cell membrane of Cp 13124 was damaged upon AITC treatment, causing a loss of integrity and the release of intracellular substances. Meanwhile, the fluorescence quenching experiment indicated the interaction of AIT-C with membrane proteins, which caused changes in the conformation of membrane proteins. Measurement of reactive oxygen species (ROS) and flow cytometry analysis demonstrated that AITC could induce apoptosis through oxidative stress. The formation of Cp 13124 biofilms was inhibited by AITC using the crystalline violet method, which was possibly related to the inhibition of sliding motility. Finally, low concentrations of AITC could be used as an antibacterial agent to inhibit the outgrowth of Cp 13124 in cooked pork, suggesting that AITC is a promising candidate for novel preservatives in the meat business.
Collapse
Affiliation(s)
- Linying Li
- Research Center of Food Safety and Detection, College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yilin Lin
- Research Center of Food Safety and Detection, College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Keren Agyekumwaa Addo
- Research Center of Food Safety and Detection, College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yigang Yu
- Research Center of Food Safety and Detection, College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Caihu Liao
- Yingdong Food Science and Engineering Institute, Shaoguan University, Shaoguan 512005, China; Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resourcesin Northern Guangdong, Shaoguan 512005, China.
| |
Collapse
|
30
|
Fan K, Qian S, Zhang Z, Huang Q, Hu Z, Nie D, Meng J, Guo W, Zhao Z, Han Z. Recent advances in the combinations of plant-sourced natural products for the prevention of mycotoxin contamination in food. Crit Rev Food Sci Nutr 2023; 64:10626-10642. [PMID: 37357923 DOI: 10.1080/10408398.2023.2227260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Mycotoxins, secondary metabolites produced by mycotoxigenic fungi, are a major problem affecting food safety and security, because of their adverse health effects, their socio-economic impact and the difficulty of degradation or removal by conventional food processing methods. Plant-sourced natural products are a novel and effective control method for fungal infestation and mycotoxin production, with the advantages of biodegradability and acceptability for food use. However, development of resistance, low and inconsistent efficacy, and a limited range of antifungal activities hinder the effective application of single plant natural products for controlling mycotoxin contamination. To overcome these limitations, combinations of plant natural products have been tested extensively and found to increase efficacy, often synergistically. However, this extensive and promising research area has seen little development of practical applications. This review aims to provide up-to-date information on the antifungal, anti-mycotoxigenic and synergistic effects of combinations of plant natural products, as well as their mechanisms of action, to provide a reference source for future research and encourage application development.
Collapse
Affiliation(s)
- Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shenan Qian
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Hu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
31
|
Cheng S, Su R, Song L, Bai X, Yang H, Li Z, Li Z, Zhan X, Xia X, Lü X, Shi C. Citral and trans-cinnamaldehyde, two plant-derived antimicrobial agents can induce Staphylococcus aureus into VBNC state with different characteristics. Food Microbiol 2023; 112:104241. [PMID: 36906323 DOI: 10.1016/j.fm.2023.104241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Viable but nonculturable (VBNC) state bacteria are difficult to detect in the food industry due to their nonculturable nature and their recovery characteristics pose a potential threat to human health. The results of this study indicated that S. aureus was found to enter the VBNC state completely after induced by citral (1 and 2 mg/mL) for 2 h, and after induced by trans-cinnamaldehyde (0.5 and 1 mg/mL) for 1 h and 3 h, respectively. Except for VBNC state cells induced by 2 mg/mL citral, the VBNC state cells induced by the other three conditions (1 mg/mL citral, 0.5 and 1 mg/mL trans-cinnamaldehyde) were able to be resuscitated in TSB media. In the VBNC state cells induced by citral and trans-cinnamaldehyde, the ATP concentration was reduced, the hemolysin-producing ability was significantly decreased, but the intracellular ROS level was elevated. The results of heat and simulated gastric fluid experiments showed different environment resistance on VBNC state cells induced by citral and trans-cinnamaldehyde. In addition, by observing the VBNC state cells showed that irregular folds on the surface, increased electron density inside and vacuoles in the nuclear region. What's more, S. aureus was found to enter the VBNC state completely after induced by meat-based broth containing citral (1 and 2 mg/mL) for 7 h and 5 h, after induced by meat-based broth containing trans-cinnamaldehyde (0.5 and 1 mg/mL) for 8 h and 7 h. In summary, citral and trans-cinnamaldehyde can induce S. aureus into VBNC state and food industry needs to comprehensively evaluate the antibacterial capacity of these two plant-derived antimicrobial agents.
Collapse
Affiliation(s)
- Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuo Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116304, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
32
|
Duan WY, Zhang SB, Lei JD, Qin YL, Li YN, Lv YY, Zhai HC, Cai JP, Hu YS. Protection of postharvest grains from fungal spoilage by biogenic volatiles. Appl Microbiol Biotechnol 2023; 107:3375-3390. [PMID: 37115251 DOI: 10.1007/s00253-023-12536-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Fungal spoilage of postharvest grains poses serious problems with respect to food safety, human health, and the economic value of grains. The protection of cereal grains from deleterious fungi is a critical aim in postharvest grain management. Considering the bulk volume of grain piles in warehouses or bins and food safety, fumigation with natural gaseous fungicides is a promising strategy to control fungal contamination on postharvest grains. Increasing research has focused on the antifungal properties of biogenic volatiles. This review summarizes the literature related to the effects of biogenic volatiles from microbes and plants on spoilage fungi on postharvest grains and highlights the underlying antifungal mechanisms. Key areas for additional research on fumigation with biogenic volatiles in postharvest grains are noted. The research described in this review supports the protective effects of biogenic volatiles against grain spoilage by fungi, providing a basis for their expanded application in the management of postharvest grains.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Jun-Dong Lei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu-Liang Qin
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yan-Nan Li
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jing-Ping Cai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
33
|
Wang Y, Hu Z, Wang B, Yang D, Liao J, Zhang M. Effect of high-voltage electrospray on the inactivation, induced damage and growth of microorganisms and flavour components of honey raspberry wine. Int J Food Microbiol 2023; 388:110060. [PMID: 36630827 DOI: 10.1016/j.ijfoodmicro.2022.110060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Electrospray (ES) is a new non-thermal processing technology for pasteurising liquid foods. This study aimed to investigate the effects of ES on the cell structure and function of Saccharomyces cerevisiae, Escherichia coli and Staphylococcus aureus and then compare the effects of ES and heat treatment (HT) on microbial inactivation and flavour composition in honey raspberry wine. First, we found that the inactivation effect of ES treatment on the three microorganisms was significantly influenced by the voltage intensity. The degree of damage to the cellular structures and functions of the three microorganisms increased with increasing voltage. Second, the environment in which the microorganisms were present significantly influenced the ES pasteurisation effect. Pasteurisation by ES was better when the three microorganisms were in honey raspberry wine than in saline. Finally, the total number of colonies in honey raspberry wine was reduced from 4.50 to 2.03 log colony forming units/mL after ES treatment, and the wine had good stability during storage (84 days at 4 °C). In the honey raspberry wine, the contents of the main flavour substances (ketones and esters) did not change significantly after ES treatment, but HT decreased the content of esters and ketones by 13.5 % and 75.4 %, respectively.
Collapse
Affiliation(s)
- Yuchuan Wang
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Zili Hu
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Dongmei Yang
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Junying Liao
- Yili Tanggulaikumo Biotechnology Co., Ltd., 835100 Yili, Xinjiang, China
| | - Min Zhang
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| |
Collapse
|
34
|
Citral and cinnamaldehyde – Pickering emulsion stabilized by zein coupled with chitosan against Aspergillus. spp and their application in food storage. Food Chem 2023; 403:134272. [DOI: 10.1016/j.foodchem.2022.134272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
|
35
|
Li Z, Wu H, Liu J, Hao H, Bi J, Hou H, Zhang G. Synergistic effects of benzyl isothiocyanate and resveratrol against Listeria monocytogenes and their application in chicken meat preservation. Food Chem 2023; 419:135984. [PMID: 37044056 DOI: 10.1016/j.foodchem.2023.135984] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
This study aimed to investigate the synergistic effects of benzyl isothiocyanate (BITC) and resveratrol (RS) on Listeria monocytogenes and their application in chicken meat preservation. BITC combined with RS (BR) significantly enhanced the antimicrobial activity and inhibited the growth of Listeria monocytogenes within 24 h compared to individual treatment, as well as suppressing bacterial swimming and swarming motility, reducing biofilm formation by 56.4%, increasing cell membrane disruption, and inducing intracellular ROS surges. Synergistic effects were associated with the inhibition of biofilm formation, cell membrane destruction, and ROS production. Biofilm removal facilitated the direct antimicrobial action of BR. RS disrupted cell membrane permeability, allowing more BITC into the cells, resulting in increased intracellular antibacterial levels, cell membrane hyperpolarization, and rapid ROS accumulation. Furthermore, BR visibly slowed the microbial growth in chicken flesh stored at 25 °C and 4 °C. Therefore, BR is expected to be a new strategy for food preservation.
Collapse
Affiliation(s)
- Zhaolun Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hongyan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jianan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian 116034, China.
| |
Collapse
|
36
|
Yakoubi S, Kobayashi I, Uemura K, Nakajima M, Hiroko I, Neves MA. Development of a novel colloidal system enhancing the dispersibility of tocopherol nanoparticles in a nanoscale nutraceutical delivery system. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
37
|
Chitosan-Based Nanoencapsulation of Ocimum americanum Essential Oil as Safe Green Preservative Against Fungi Infesting Stored Millets, Aflatoxin B1 Contamination, and Lipid Peroxidation. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
38
|
Abad AV, Manzanares P, Marcos JF, Martínez-Culebras PV. The Penicillium digitatum antifungal protein PdAfpB shows high activity against mycobiota involved in sliced bread spoilage. Food Microbiol 2023; 109:104142. [DOI: 10.1016/j.fm.2022.104142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
|
39
|
Antifungal activity and inhibitory mechanisms of ferulic acid against the growth of Fusarium graminearum. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Firmanda A, Fahma F, Warsiki E, Syamsu K, Arnata IW, Sartika D, Suryanegara L, Qanytah, Suyanto A. Antimicrobial mechanism of nanocellulose composite packaging incorporated with essential oils. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Candida albicans Reactive Oxygen Species (ROS)-Dependent Lethality and ROS-Independent Hyphal and Biofilm Inhibition by Eugenol and Citral. Microbiol Spectr 2022; 10:e0318322. [PMID: 36394350 PMCID: PMC9769929 DOI: 10.1128/spectrum.03183-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is part of the normal human flora but is most frequently isolated as the causative opportunistic pathogen of candidiasis. Plant-based essential oils and their components have been extensively studied as antimicrobials, but their antimicrobial impacts are poorly understood. Phenylpropenoids and monoterpenes, for example, eugenol from clove and citral from lemon grass, are potent antifungals against a wide range of pathogens. We report the cellular response of C. albicans to eugenol and citral, alone and combined, using biochemical and microscopic assays. The MICs of eugenol and citral were 1,000 and 256 μg/mL, respectively, with the two exhibiting additive effects based on a fractional inhibitory concentration index of 0.83 ± 0.14. High concentrations of eugenol caused membrane damage, oxidative stress, vacuole segregation, microtubule dysfunction and cell cycle arrest at the G1/S phase, and while citral had similar impacts, they were reactive oxygen species (ROS) independent. At sublethal concentrations (1/2 to 1/4 MIC), both oils disrupted microtubules and hyphal and biofilm formation in an ROS-independent manner. While both compounds disrupt the cell membrane, eugenol had a greater impact on membrane dysfunction. This study shows that eugenol and citral can induce vacuole and microtubule dysfunction, along with the inhibition of hyphal and biofilm formation. IMPORTANCE Candida albicans is a normal resident on and in the human body that can cause relatively benign infections. However, when our immune system is severely compromised (e.g., cancer chemotherapy patients) or underdeveloped (e.g., newborns), this fungus can become a deadly pathogen, infecting the bloodstream and organs. Since there are only a few effective antifungal agents that can be used to combat fungal infections, these fungi have been exposed to them over and over again, allowing the fungi to develop resistance. Instead of developing antifungal agents that kill the fungi, some of which have undesirable side effects on the human host, researchers have proposed to target the fungal traits that make the fungus more virulent. Here, we show how two components of plant-based essential oils, eugenol and citral, are effective inhibitors of C. albicans virulence traits.
Collapse
|
42
|
Zhao Y, Wang X, Zhang L, Wang K, Wu Y, Yao J, Cui B, Chen Z. Anti-Fungal Activity of Moutan cortex Extracts against Rice Sheath Blight ( Rhizoctonia solani) and Its Action on the Pathogen's Cell Membrane. ACS OMEGA 2022; 7:47048-47055. [PMID: 36570206 PMCID: PMC9773796 DOI: 10.1021/acsomega.2c06150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Rice sheath blight (RSB) caused by Rhizoctonia solani is one of the most destructive diseases of rice (Oryza sativa). Although chemical fungicides are the most important control methods, their long-term unreasonable application has brought about problems such as environmental pollution, food risks, and non-target poisoning. Therefore, considering the extraction of fungistatic substances from plants may be an alternative in the future. In this study, we found that the Moutan cortex ethanol extract has excellent antifungal activity against R. solani, with a 100% inhibition rate at 1000 μg/mL, which aroused our great exploration interest. In-depth exploration found that the antifungal active ingredients of M. cortex were mainly concentrated in the petroleum ether extract of the M. cortex ethanol extract, which still maintained a 100% inhibition rate with 250 μg/mL, and its effective medium concentration (EC50) was 145.33 μg/mL against R. solani. Through the measurement of extracellular relative conductivity and OD260, the petroleum ether extract induced leakage of intracellular electrolytes and nucleic acids, indicating that the cell membrane was ruined. Therefore, we preliminarily determined that the cell membrane may be the target of the petroleum ether extract. Moreover, we found that petroleum ether extract reduced the content of ergosterol, a component of the cell membrane, which may be one of the reasons for the cell membrane destruction. Furthermore, the increase of MDA content would lead to membrane lipid peroxidation, further aggravating membrane damage, resulting in increased membrane permeability. Also, the destruction of the cell membrane was observed by the phenomenon of the mycelium being transparent and broken. In conclusion, this is the first report of the M. cortex petroleum ether extract exhibiting excellent antifungal activity against R. solani. The effect of the M. cortex petroleum ether extract on R. solani may be on the cell membrane, inducing the disorder of intracellular substances and metabolism, which may be one of the antifungal mechanisms against R. solani.
Collapse
Affiliation(s)
- Yongtian Zhao
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Xinge Wang
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Lian Zhang
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Keying Wang
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Yanchun Wu
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Jia Yao
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Baolu Cui
- College
of Life Science and Agriculture, Qiannan
Normal University for Nationalities, Duyun, Guizhou558000, China
| | - Zhuo Chen
- Key
Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry
of Education, Guizhou University, Guiyang, Guizhou550025, China
| |
Collapse
|
43
|
Qiu L, Zhang M, Chitrakar B, Adhikari B, Yang C. Effects of nanoemulsion-based chicken bone gelatin-chitosan coatings with cinnamon essential oil and rosemary extract on the storage quality of ready-to-eat chicken patties. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
dos Reis Gasparetto B, Chelala Moreira R, Priscilla França de Melo R, de Souza Lopes A, de Oliveira Rocha L, Maria Pastore G, Lemos Bicas J, Martinez J, Joy Steel C. Effect of supercritical CO2 fractionation of Tahiti lemon (Citrus latifolia Tanaka) essential oil on its antifungal activity against predominant molds from pan bread. Food Res Int 2022; 162:111900. [DOI: 10.1016/j.foodres.2022.111900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
|
45
|
β-Carboline Alkaloids from Peganum harmala Inhibit Fusarium oxysporum from Codonopsis radix through Damaging the Cell Membrane and Inducing ROS Accumulation. Pathogens 2022; 11:pathogens11111341. [PMID: 36422593 PMCID: PMC9693454 DOI: 10.3390/pathogens11111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium oxysporum is a widely distributed soil-borne pathogenic fungus that can cause medicinal herbs and crops to wither or die, resulting in great losses and threat to public health. Due to the emergence of drug-resistance and the decline of the efficacy of antifungal pesticides, there is an urgent need for safe, environmentally friendly, and effective fungicides to control this fungus. Plant-derived natural products are such potential pesticides. Extracts from seeds of Peganum harmala have shown antifungal effects on F. oxysporum but their antifungal mechanism is unclear. In vitro antifungal experiments showed that the total alkaloids extract and all five β-carboline alkaloids (βCs), harmine, harmaline, harmane, harmalol, and harmol, from P. harmala seeds inhibited the growth of F. oxysporum. Among these βCs, harmane had the best antifungal activity with IC50 of 0.050 mg/mL and MIC of 40 μg/mL. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results revealed that the mycelia and spores of F. oxysporum were morphologically deformed and the integrity of cell membranes was disrupted after exposure to harmane. In addition, fluorescence microscopy results suggested that harmane induced the accumulation of ROS and increased the cell death rate. Transcriptomic analysis showed that the most differentially expressed genes (DEGs) of F. oxysporum treated with harmane were enriched in catalytic activity, integral component of membrane, intrinsic component of membrane, and peroxisome, indicating that harmane inhibits F. oxysporum growth possibly through damaging cell membrane and ROS accumulation via regulating steroid biosynthesis and the peroxisome pathway. The findings provide useful insights into the molecular mechanisms of βCs of P. harmala seeds against F. oxysporum and a reference for understanding the application of βCs against F. oxysporum in medicinal herbs and crops.
Collapse
|
46
|
Ju J, Lei Y, Guo Y, Yu H, Cheng Y, Yao W. Eugenol and citral kills Aspergillus niger through the tricarboxylic acid cycle and its application in food preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Proteomic analysis of antifungal mechanism of star anise essential oil against Aspergillus niger and its application potential in prolonging bread shelf life. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Identification of postbaking mold contamination through onsite monitoring of baking factory environment: A case study of bakery company in Taiwan. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Wang W, Bao X, Bové M, Rigole P, Meng X, Su J, Coenye T. Antibiofilm Activities of Borneol-Citral-Loaded Pickering Emulsions against Pseudomonas aeruginosa and Staphylococcus aureus in Physiologically Relevant Chronic Infection Models. Microbiol Spectr 2022; 10:e0169622. [PMID: 36194139 PMCID: PMC9602683 DOI: 10.1128/spectrum.01696-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022] Open
Abstract
Phytochemicals are promising antibacterials for the development of novel antibiofilm drugs, but their antibiofilm activity in physiologically relevant model systems is poorly characterized. As the host microenvironment can interfere with the activity of the phytochemicals, mimicking the complex environment found in biofilm associated infections is essential to predict the clinical potential of novel phytochemical-based antimicrobials. In the present study, we examined the antibiofilm activity of borneol, citral, and combinations of both as well as their Pickering emulsions against Staphylococcus aureus and Pseudomonas aeruginosa in an in vivo-like synthetic cystic fibrosis medium (SCFM2) model, an in vitro wound model (consisting of an artificial dermis and blood components at physiological levels), and an in vivo Galleria mellonella model. The Pickering emulsions demonstrated an enhanced biofilm inhibitory activity compared to both citral and the borneol/citral combination, reducing the minimum biofilm inhibitory concentration (MBIC) values up to 2 to 4 times against P. aeruginosa PAO1 and 2 to 8 times against S. aureus P8-AE1 in SCMF2. In addition, citral, the combination borneol/citral, and their Pickering emulsions can completely eliminate the established biofilm of S. aureus P8-AE1. The effectiveness of Pickering emulsions was also demonstrated in the wound model with a reduction of up to 4.8 log units in biofilm formation by S. aureus Mu50. Furthermore, citral and Pickering emulsions exhibited a significant degree of protection against S. aureus infection in the G. mellonella model. The present findings reveal the potential of citral- or borneol/citral-based Pickering emulsions as a type of alternative antibiofilm candidate to control pathogenicity in chronic infection. IMPORTANCE There is clearly an urgent need for novel formulations with antimicrobial and antibiofilm activity, but while there are plenty of studies investigating them using simple in vitro systems, there is a lack of studies in which (combinations of) phytochemicals are evaluated in relevant models that closely resemble the in vivo situation. Here, we examined the antibiofilm activity of borneol, citral, and their combination as well as Pickering emulsions (stabilized by solid particles) of these compounds. Activity was tested against Staphylococcus aureus and Pseudomonas aeruginosa in in vitro models mimicking cystic fibrosis sputum and wounds as well as in an in vivo Galleria mellonella model. The Pickering emulsions showed drastically increased antibiofilm activity compared to that of the compounds as such in both in vitro models and protected G. mellonella larvae from S. aureus-induced killing. Our data show that Pickering emulsions from phytochemicals are potentially useful for treating specific biofilm-related chronic infections.
Collapse
Affiliation(s)
- Wen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Xuerui Bao
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Mona Bové
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Xiaofeng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
50
|
Zhang L, Zhang M, Ju R, Mujumdar AS, Liu K. Synergistic antibacterial mechanism of different essential oils and their effect on quality attributes of ready-to-eat pakchoi (Brassica campestris L. ssp. chinensis). Int J Food Microbiol 2022; 379:109845. [PMID: 35940117 DOI: 10.1016/j.ijfoodmicro.2022.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
The mixture of garlic essential oil (GEO), ginger essential oil (GIEO) and litsea cubeba essential oil (LCEO) was prepared and its effect on the antibacterial activity of E. coli, S. aureus and P. aeruginosa, as well as properties of ready-to-eat pakchoi during storage were assessed. GEO, GIEO or LCEO treatment significantly enhanced the accumulation of reactive oxygen species (ROS) levels, resulting in disruption of the permeability of cell membrane, the leakage of cytoplasmic contents, and the alteration of the secondary structure of bacterial proteins. Meanwhile, GEO, GIEO or LCEO treatment repressed the key enzyme in tricarboxylic acid (TCA) and Hexose monophosphate pathway (HMP) cycle of E. coli, S. aureus and P. aeruginosa. Essential oil treatments (p < 0.05) could significantly prolong the shelf life of pakchoi, total bacterial count (TBC) values and chlorophyll content of GEO/GIEO/LCEO sample were 3.47 log cfu/g and 0.82 mg/g, respectively, after storage for 7 days. E. coli, S. aureus and P. aeruginosa counts in GEO/GIEO/LCEO samples decreased by 56.76 %, 70.10 %, 73.95 % compared to CK (no essential oil) samples. The comprehensive results from the sensory (flavor and color) and microbial analysis (especially TBC) showed that GEO/GIEO/LCEO could extend the shelf life of ready-to-eat pakchoi from 4 d to 7 d. As compared with GEO, GIEO or LCEO individually, the combination of GEO, GIEO and LCEO exhibited synergistic effect and more pronouncedly antibacterial activity to improve quality of ready-to-eat pakchoi.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, 210037 Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Kun Liu
- Sichuan Tianwei Food Group Co., Ltd., 610000 Chengdu, China
| |
Collapse
|